JP4273384B2 - Organic substance decomposition reaction evaluation test equipment by microorganisms - Google Patents

Organic substance decomposition reaction evaluation test equipment by microorganisms Download PDF

Info

Publication number
JP4273384B2
JP4273384B2 JP2001402651A JP2001402651A JP4273384B2 JP 4273384 B2 JP4273384 B2 JP 4273384B2 JP 2001402651 A JP2001402651 A JP 2001402651A JP 2001402651 A JP2001402651 A JP 2001402651A JP 4273384 B2 JP4273384 B2 JP 4273384B2
Authority
JP
Japan
Prior art keywords
decomposition reaction
microorganisms
container
reaction evaluation
evaluation test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001402651A
Other languages
Japanese (ja)
Other versions
JP2003177123A (en
Inventor
健敏 圓井
清彦 中崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marui Co Ltd
Original Assignee
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marui Co Ltd filed Critical Marui Co Ltd
Priority to JP2001402651A priority Critical patent/JP4273384B2/en
Publication of JP2003177123A publication Critical patent/JP2003177123A/en
Application granted granted Critical
Publication of JP4273384B2 publication Critical patent/JP4273384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は我々の日常生活で生じた都市ゴミ(厨芥物等)、下水汚泥、農産廃棄物等の有機性廃棄物をコンポスト(堆肥)化し、処理に必要な最適条件を判断するようにした微生物による有機物分解反応評価試験装置に関する。
【0002】
【従来の技術】
近年、特に都市部では有機性廃棄物による悪臭や、野犬、烏等により多くの二次公害を引き起して環境が悪化しているのが現状であり、この有機性廃棄物の処理に当たっては微生物の働きによるコンポスト化が有効な手段として用いられている。
【0003】
コンポスト化については先行技術例において、一般にコンポスト化処理の進行状況やコンポスト化処理物の品質を知るための指標が種々報告されており、中でも熟成度は特に重要視されている指標である。熟成度の評価は、例えば炭酸ガスの発生量、生成化合物量、酸素活性、種子の発芽、有機物残存量、C/N比、温度変化、物体色等の測定により行われるが、これらの測定には一般にクロマトグラフィー、重量測定、紫外部吸収、発芽実験、温度測定法、目視観察等の方法が用いられるが、かかる方法は煩雑な操作であり、しかも結果が曖昧で信頼性が低いと云われる。
【0004】
また、有機物のコンポスト化処理物を溶媒抽出することで得られる液相の全有機炭素量及び生分解による呼吸量を測定し、測定時の全有機炭素量及び生分解による呼吸量の経時変化を指標にコンポスト化処理物の熟成度を判断すること、また、有機物のコンポスト化処理物の固相の生分解による呼吸量を測定し、生分解による呼吸量の経時変化を指標にコンポスト化処理物の熟成度を判断すると云う評価方法がある。(例えば特開2001−83137号特許公開公報参照)
【0005】
【発明が解決しようとする課題】
しかし乍ら上記従来の熟成度を判断する評価方法及び装置では、コンポスト化処理物の分解反応状態や生分解性材料の分解反応状態を、特別の取り扱い技術を要する高価なクロマトグラフィーや赤外線ガス吸光装置等を用いており、市場での汎用性に乏しい欠点があり、本発明は斯かる問題点の解決を図る。
【0006】
【課題を解決するための手段】
サンプル重量を検出して熟成に必要な酸素(空気)の供給を行う熟成容器と、熟成容器内のサンプルを攪拌して均一な熟成を促す攪拌装置とからなり、熟成容器内で発生した二酸化炭素や水素イオン濃度、温度、湿度により熟成環境を制御するようにしてなる微生物による有機物分解反応評価試験装置。
【0007】
【発明の実施の形態】
先ず本発明装置について、概要を図例により述べると、熟成容器に収容した有機性廃棄物の重量を測定する自動計量手段Aと、羽根を昇降且つ自転及び公転しながら該熟成容器のサンプルを隈なく攪拌するようにした攪拌手段Bと、該攪拌手段Bの動作を温度、水分、pH、二酸化炭素等の検出データによって熟成環境をフィードバック制御する演算装置Cとからなる。
【0008】
以下、上記各手段について詳述すると、機枠1の正面右半部に機構部を設けており、下端部寄りの自動計量手段Aは、該機枠1の下端部に一対のガイドレール2、2を前後方向に水平設置し、該レール2、2上には熟成容器8の移動架台3を前後及び左右に介在したダブルローラー4、4によって軽快に前後移動するように支持している。
【0009】
前記移動架台3にはその上面所定位置に熟成容器8を着脱自由に載置するうにしており、支持部材7上のロードセル6に連接された三個の突起5によって前記熟成容器8の底板9を載支することにより該熟成容器内の有機性廃棄物の重量を自動測定するようにしている。
【0010】
前記支持部材7は後述する荷重掛脱機構34と連動する連杆12、12によりその両端部を垂支する。
【0011】
又、サンプル攪拌手段Bは、前記熟成容器8の上方にあって、機枠1の前後及び左右四隅に縦設したガイドレール13、13により案内される昇降板14上に設置されており、しかも該昇降板14の下面に定置した鞘筒15内には図4に示すように上端に傘歯車16を嵌着した中空軸17をベアリングを介して回動可能に枢支しており、更に該中空軸17内にはその中央部に温度、水分、pH等の各センサー18を保持する管体19を前記昇降板14上に適宜設置(回転不可能)している。
【0012】
前記鞘筒15の下部には前記容器8の口端に当接する深底の蓋体20を該鞘筒15との間で蛇腹21によって気密を保った儘自重で下降摺動できるように嵌合しており、又、中空軸17の下端部に遊星歯車22の軸23を枢支する回転板24を嵌着し、該遊星歯車22を前記鞘筒15の下端に嵌着した固定歯車25と咬合させると共に、前記二本の軸23の下端に夫々攪拌羽根26、26を嵌脱自由に取着している。
【0013】
又、前記昇降板14の上面には傘歯車16と咬合する傘歯車27を鎖帯28(図3)を介して連動するモーターMを設置しており、該昇降板14は機枠1の上部水平支持板29に枢設した一対の螺軸30、30と夫々螺合しており、水平支持板29の下面に設置した昇降用モーターMの出力軸端の鎖輪31から各螺軸30、30上の鎖輪32、32間に亘って鎖帯を掛張している。
【0014】
一方前記ロードセル6の支持部材7の両端部に連結した連杆12、12は昇降板14及び上部水平支持板29を夫々摺動自由に縦貫し、上端を該支持板29から脱落しないように係留しており、しかも該連杆12、12上には連結片c(図5)を取着すると共に、連結片cと機枠1の内側に突設した支持部材d(図4)とに跨がって二組のリンクa、bを連設することにより四リンクを形成し、該昇降板14上に該リンクa、bの連結部と相接する紡錐体33を突設して荷重掛脱機構34を構成する。
【0015】
この他前記熟成容器8の底部には通気可能な中底10と底板9との空所に給気口11を設置する共に、蓋体20の上底には二酸化炭素(CO)の導出口35を設けている。
【0016】
更に該機枠1の左半部には上記モーターM、M等の機構操作部、空気つまり酸素の供給量、初期温度の設定等をコントロールする制御部や、有機性廃棄物の熟成度進行に伴って生じる二酸化炭素量、温度、湿度(水分)、pH等のデータ収集部や、予め計測したサンプル重量に基づいて定量的に相関性を求める演算処理部、記録部等の各種機能を備えた集中制御装置Cを装備している。
【0017】
以上で本発明の構成を詳説したが、例えば荷重掛脱機構34は必ずしもリンクと紡錐体で構成する必要はなくオイルシリンダーやエアーシリンダー等の流体圧力を利用しても良く、その他本発明装置の上記各部は何れも一例に過ぎず、上記に限定するものではなく均等技術の範囲を含むものとする。
【0018】
次に一連の動作について述べる。先ず、実施例として水分割合を約50%に乾燥調製した厨芥物5kgを熟成容器8に収容し、前方へ引き出された移動架台3上の所定位置に該容器8を静置して装置内へ挿入し、モーターMを低速で駆動する事により各螺軸30、30は回動して昇降板14をガイド13、13(図1、2)によって導き乍ら下降する。
【0019】
連杆12は上部水平支持板29により保持されており、しかもリンクbの一端は機枠1上の支持部材dに枢着されているので下降しないが、モーターM、紡錐体33、鞘筒15とこれに支持されている蓋体20及び遊星歯車機構、管体19等の全てが共に下降する。
【0020】
蓋体20の下端面が容器8の端面と出合う直前の位置から相対する二つの紡錐体33、33の膨出部(頭部)がリンクa、bの連結部に圧接し始め、該両リンクa、bに延伸力が作用して連結片cの部分で連杆12を押し上げ、これに従って下端支持部材7を持ち上げる。
【0021】
従って突起5は移動架台3の透孔を経て上部に臨み、その上端面で容器底板9の下面に圧接して容器を移動架台3から浮き上がらせることにより、容器内の厨芥物の荷重は該支持部材7上のロードセル6に作用し、その結果厨芥物の重量計測が開始される。
【0022】
更に紡錐体33は昇降板14と共に下降し、膨出部がリンクa、bの連結部を通過して離れることにより、連杆12は自重で下がり前記突起5と底板9との接触は解除され重量計測は終了する。
【0023】
その後やがて、熟成容器8の上端面に蓋体20の下端面が接触した時点(図6の状態)で該容器8は蓋体20によって密閉され気密状態になり、同時に前記モーターMの制御回路は容器の深さの範囲内で反復上下する動作に切り換えられる。
【0024】
ここで今度はモーターMの駆動が加わり、傘歯車27、16を介して中空軸17が回動するのでこれにより該軸下端部に取着した回転板24も回転し、これに伴って該回転板24上の遊星歯車22は鞘筒15下端の固定歯車25の周囲を公転し乍ら自転を開始する。
【0025】
つまり軸23は回転しながなら固定歯車25の周囲を公転し且つ鞘筒15の上下動と相俟って容器内の厨芥物を隈なく攪拌すると同時に給気口11から空気つまり微生物の活性化の為に酸素の補給を行い、取り出し口35からは二酸化炭素を収集し、センサー18によって水素イオン濃度、温度の変化、湿度変化等の情報を時間的な経過として捉え演算制御部Cへ送り情報処理する。
【0026】
尚、上記攪拌羽根の昇降は必要に応じてその動作態様(攪拌速度或いは公転、自転)を自由に変更できる制御方法を取っており、以上の動作における二酸化炭素発生速度(mol/h/g)の経時変化(hr)を図8に示し、又、本装置では二酸化炭素及び重量を連続的に測定することによって、従来の有機物分解手段でサンプリング測定した場合に比べて、精度の良い結果が得られる。
【0027】
更に図9に凡そ24時間毎に容器内のサンプルを取り出し反応率を算出したもの及びこの装置で連続測定により得た分解反応率(%)の経時変化(hr)を示す。この図では時間毎にサンプリングした結果と自動連続測定の結果とが必ずしも一致しないが、これはサンプルの取り出し操作がコンポストの分解反応率に影響したり、サンプリング部分つまり採取ヶ所及び採取量のばらつき等によって生じた誤差と考えられる。
【0028】
従って、本発明装置では二酸化炭素発生量及び重量を連続的に測定することにより図9(実線)のような滑らかな特性が得られ、且つ時間経過と共に限りなく処理が進行していく様子が伺え、従って高精度の分解反応率を求めることが可能である。
【0029】
従って、本発明装置では連続攪拌する事により二酸化炭素の発生量も安定し、しかも発生総量も多く有機物の分解反応が効率的に行われていることが明らかである。
【0030】
本発明では有機性廃棄物をコンポスト化する際、条件を種々変えながら多くのデータを採取することにより、何れの条件が夫々の種類によって最も適してるかが容易に判断でき、効率的にコンポスト化が推進できる。
【0031】
【発明の効果】
本発明は密閉した熟成容器を用いると共に微生物の活性化に必要な空気(酸素)を供給し乍ら温度や湿度、水素イオン濃度(pH)、二酸化炭素発生量その他各種のガスの発生量等のデータから熟成条件を制御するようにした簡単なものであるから都市ゴミ、下水汚泥、農産廃棄物等の有機性廃棄物のコンポスト化処理時の分解反応状態、生分解性材料の分解反応状態等をクロマトグラフィーや赤外線ガス吸光装置等の高価な分析装置を必要とせず設備費が著しく低減する。
【0032】
また、有機性廃棄物のコンポスト化処理時の分解反応状態、生分解性材料の分解反応状態等をクロマトグラフィーや赤外線ガス吸光装置等を用いない為に取り扱い上、特に操作技術を必要とせず何人もが極めて簡単に操作に携わることができ汎用性の高い装置の提供が可能である。
【0033】
有機性廃棄物の種類は多く、微生物分解性も夫々異なるので、同一処理量(重量)の装置であってもその規模は異なるので、本発明装置を用いて、夫々の有機性廃棄物についての分解性を評価することによって、コンポスト化に必要な装置の大きさ(規模)が決定できるので装置の設計には不可欠である。
【0034】
生分解性プラスチックの開発にはコンポスト化過程における分解性を評価する必要がある。分解性は生分解性プラスチックを添加しないものと、したものとの間でCO発生量の差を測定する方法が標準法になっている。しかし、確実で正確な試験機は存在しなかったが、本発明試験装置は生分解性プラスチックの分解性評価に最適である。
【0035】
コンポスト化は微生物による有機物の分解過程で進行し、特別活性な微生物を添加してコンポスト化を速めることが考えられているが、試験管中の純粋培養で効果があっても実際の有機性廃棄物でしかも純粋培養でない混合微生物の系では効果がないことが殆どである。そこでコンポスト化過程で有効な微生物のスクリーニングをするには、有機性廃棄物の混合微生物系で微生物の効果を確かめるための特別な試験機の開発が不可欠である。本発明試験装置は、接種微生物(添加微生物)の効果を容易に検証することができる。
【0036】
また、現在多くのコンポスト化装置が市販されているが、その中には、コンポスト原料が実際に良好に分解されるものや、ただ乾燥・粉砕されるだけのものなどあり、両者は一見しただけでは判断できないが、このようなコンポスト化装置から出てくるコンポストを本発明装置で分解試験すれば、これらのコンポスト化装置でどれくらい有機物を分解したかが容易に判断できる。即ち、コンポスト化装置の性能を的確に評価できる。従って本発明装置は開発のために欠かすことができない試験装置である。
【図面の簡単な説明】
【図1】本発明装置の正面図
【図2】同上右側面図
【図3】同上平面図
【図4】同上要部拡大縦断面図
【図5】図4の上半右側面図
【図6】本発明機構部の動作状態を示す部分正面図
【図7】同上動作の進行状態を示す部分正面図
【図8】本発明による温度と二酸化炭素の経時変化を示すデータ
【図9】比較例の温度と二酸化炭素の経時変化を示すデータ
【符号の説明】
A 自動計量手段
B 攪拌手段
8 熟成容器
11 給気口
18 センサー
26、26 攪拌羽根
35 二酸化炭素取り出し口
[0001]
BACKGROUND OF THE INVENTION
The present invention composts organic waste such as municipal waste (such as waste), sewage sludge, and agricultural waste generated in our daily lives to determine the optimum conditions necessary for treatment. The present invention relates to an organic substance decomposition reaction evaluation test apparatus.
[0002]
[Prior art]
In recent years, particularly in urban areas, the environment is deteriorating due to a lot of secondary pollution caused by bad smell caused by organic waste, wild dogs, traps, etc., and when treating this organic waste, Composting by the action of microorganisms is used as an effective means.
[0003]
Regarding the composting, in the prior art examples, various indicators for knowing the progress of composting processing and the quality of the composted product are generally reported, and the maturity is an especially important indicator. The maturity is evaluated by measuring, for example, the amount of carbon dioxide generated, the amount of generated compounds, oxygen activity, seed germination, residual amount of organic matter, C / N ratio, temperature change, object color, etc. In general, methods such as chromatography, weight measurement, ultraviolet absorption, germination experiment, temperature measurement method, and visual observation are used, but such a method is a complicated operation, and the results are ambiguous and unreliable. .
[0004]
In addition, the total organic carbon content in the liquid phase obtained by solvent extraction of the composted product of organic matter and the respiration rate due to biodegradation are measured, and the change over time in the total organic carbon amount at the time of measurement and the respiration rate due to biodegradation is measured. Determining the maturity of composted products as an index, measuring respiration rate due to biodegradation of solid phase of organic composted products, and composting product as a function of changes in respiration rate over time due to biodegradation There is an evaluation method for judging the degree of maturation of the rice. (See, for example, Japanese Patent Laid-Open No. 2001-83137)
[0005]
[Problems to be solved by the invention]
However, in the conventional evaluation method and apparatus for judging the degree of ripening, the decomposition reaction state of the composted product and the decomposition reaction state of the biodegradable material are measured by expensive chromatography or infrared gas absorption requiring special handling techniques. However, the present invention aims to solve such a problem.
[0006]
[Means for Solving the Problems]
Carbon dioxide generated in the maturation vessel consists of a maturation vessel that detects the sample weight and supplies oxygen (air) necessary for maturation, and a stirrer that stirs the sample in the maturation vessel to promote uniform maturation. Organic substance decomposition reaction evaluation test equipment by microorganisms that controls the aging environment by the concentration of hydrogen ions, temperature, and humidity.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
First, the outline of the apparatus of the present invention will be described with reference to drawings. Automatic weighing means A for measuring the weight of the organic waste contained in the aging container, and a sample of the aging container while moving the blade up and down and rotating and revolving. Stirring means B that stirs without stirring, and an arithmetic unit C that feedback-controls the aging environment based on detection data such as temperature, moisture, pH, and carbon dioxide for the operation of the stirring means B.
[0008]
Hereinafter, the above-mentioned means will be described in detail. A mechanism portion is provided in the front right half of the machine casing 1, and the automatic weighing means A near the lower end is provided with a pair of guide rails 2 at the lower end of the machine casing 1. 2 is horizontally installed in the front-rear direction, and on the rails 2 and 2, the moving frame 3 of the aging container 8 is supported by the double rollers 4 and 4 interposed in the front-rear and left-right directions so as to be easily moved back and forth.
[0009]
An aging container 8 is detachably mounted on the movable frame 3 at a predetermined position on the upper surface thereof, and a bottom plate 9 of the aging container 8 is formed by three protrusions 5 connected to the load cell 6 on the support member 7. The weight of the organic waste in the aging container is automatically measured.
[0010]
The support member 7 is suspended at both ends thereof by linkages 12 and 12 interlocking with a load applying / removing mechanism 34 described later.
[0011]
The sample agitating means B is located above the aging container 8 and is installed on a lifting plate 14 guided by guide rails 13 and 13 provided vertically at the front and rear of the machine frame 1 and at the four left and right corners. As shown in FIG. 4, a hollow shaft 17 fitted with a bevel gear 16 at its upper end is pivotally supported via a bearing in a sheath cylinder 15 placed on the lower surface of the elevating plate 14. In the hollow shaft 17, a tube body 19 that holds sensors 18 for temperature, moisture, pH, and the like is appropriately installed (not rotatable) on the elevating plate 14 at the center thereof.
[0012]
A deep-bottomed lid 20 that is in contact with the mouth end of the container 8 is fitted to the lower portion of the sheath tube 15 so that it can be slid down with its own weight while being airtight between the sheath tube 15 and the bellows 21. A rotating plate 24 that pivotally supports the shaft 23 of the planetary gear 22 is fitted to the lower end portion of the hollow shaft 17, and the planetary gear 22 is fitted to the lower end of the sheath cylinder 15; At the same time, the stirring blades 26 and 26 are attached to the lower ends of the two shafts 23 so as to be freely fitted and detached.
[0013]
Further, on the upper surface of the lift plate 14, a motor M 2 , which interlocks a bevel gear 27 that meshes with the bevel gear 16 via a chain band 28 (FIG. 3), is installed. A pair of screw shafts 30, 30 pivoted on the upper horizontal support plate 29 are respectively screwed, and each screw shaft is connected to a chain ring 31 at the output shaft end of the lifting motor M 1 installed on the lower surface of the horizontal support plate 29. A chain band is stretched between the chain rings 32 on the 30 and 30.
[0014]
On the other hand, the linkages 12, 12 connected to the both ends of the support member 7 of the load cell 6 vertically slidably pass through the elevating plate 14 and the upper horizontal support plate 29, and the upper end is moored so as not to fall off the support plate 29. In addition, a connecting piece c (FIG. 5) is mounted on the linkages 12 and 12, and straddles the connecting piece c and a support member d (FIG. 4) projecting inside the machine casing 1. Thus, four links are formed by connecting two sets of links a and b in series, and a spindle 33 is provided on the elevating plate 14 so as to protrude from the connecting portion of the links a and b. The hanging mechanism 34 is configured.
[0015]
In addition, an air supply port 11 is provided in the space between the bottom 10 and the bottom plate 9 at the bottom of the aging container 8, and a carbon dioxide (CO 2 ) outlet is provided at the upper bottom of the lid 20. 35 is provided.
[0016]
Further, the left half of the machine casing 1 has a mechanism operation unit such as the motors M 1 and M 2 , a control unit for controlling the supply amount of air, that is, oxygen, initial temperature setting, and the maturity of organic waste. Various functions such as a data collection unit such as the amount of carbon dioxide, temperature, humidity (moisture), pH, etc. that accompanies progress, an arithmetic processing unit that obtains a quantitative correlation based on a pre-measured sample weight, and a recording unit Equipped with the centralized control device C provided.
[0017]
Although the configuration of the present invention has been described in detail above, for example, the load applying / removing mechanism 34 does not necessarily need to be configured by a link and a spindle, and may use fluid pressure such as an oil cylinder or an air cylinder. Each of the above sections is merely an example, and is not limited to the above, but includes the scope of equivalent technology.
[0018]
Next, a series of operations will be described. First, as an example, 5 kg of dried food prepared to a moisture content of about 50% is accommodated in an aging container 8, and the container 8 is left at a predetermined position on the movable frame 3 drawn forward and placed into the apparatus. inserted, the screw shaft 30, 30 by driving the motor M 1 in a low speed is notwithstanding et lowered guided by guides 13 a lifting plate 14 rotates (FIG. 1).
[0019]
Communicating rod 12 is held by the upper horizontal support plate 29, moreover one end of the link b is not lowered because it is pivotally connected to the support member d on the machine frame 1, a motor M 2, spindle body 33, the sheath The cylinder 15, the lid 20 supported by the cylinder 15, the planetary gear mechanism, the pipe body 19 and the like all descend.
[0020]
The bulging portions (heads) of the two spindles 33 and 33 facing each other from the position immediately before the lower end surface of the lid 20 meets the end surface of the container 8 begin to press against the connecting portions of the links a and b. A stretching force acts on the links a and b to push up the linkage 12 at the connecting piece c, and lift the lower end support member 7 accordingly.
[0021]
Therefore, the protrusion 5 faces the upper part through the through hole of the movable frame 3 and presses against the lower surface of the container bottom plate 9 at its upper end surface to lift the container from the movable frame 3 so that the load of the object in the container is supported. It acts on the load cell 6 on the member 7, and as a result, the weighing of the load is started.
[0022]
Further, the spindle 33 is lowered together with the elevating plate 14, and the bulging portion is separated by passing through the connecting portions of the links a and b, so that the linkage 12 is lowered by its own weight and the contact between the protrusion 5 and the bottom plate 9 is released. The weight measurement is finished.
[0023]
Then eventually, becomes airtight sealed when the lower end surface of the lid 20 on the upper end face are in contact (the state of FIG. 6) by the container 8 the lid 20 of the ripening container 8, at the same time the motor M 1 of the control circuit Is switched to repeated up and down movement within the depth of the container.
[0024]
Here now joined by the driving of the motor M 2, since the hollow shaft 17 via a bevel gear 27,16 is rotated thereby rotating the rotation plate 24 which is attached to the shaft lower end, the connection with this The planetary gear 22 on the rotating plate 24 revolves around the fixed gear 25 at the lower end of the sheath cylinder 15 and starts rotating.
[0025]
That is, if the shaft 23 rotates, it revolves around the fixed gear 25 and, in combination with the vertical movement of the sheath tube 15, stirs the contents in the container thoroughly, and at the same time, air, that is, the activity of microorganisms from the air supply port 11. Oxygen is replenished for carbonization, carbon dioxide is collected from the take-out port 35, and information such as hydrogen ion concentration, temperature change, humidity change, etc. is captured by the sensor 18 as time lapse and sent to the calculation control unit C Information processing.
[0026]
In addition, the raising / lowering of the said stirring blade has taken the control method which can change freely the operation | movement aspect (stirring speed or revolution, rotation) as needed, and the carbon dioxide generation speed (mol / h / g) in the above operation | movement. FIG. 8 shows the time-dependent change (hr) in FIG. 8, and the present apparatus obtains more accurate results by continuously measuring the carbon dioxide and the weight as compared with the case of sampling measurement by the conventional organic substance decomposition means. It is done.
[0027]
Further, FIG. 9 shows a sample in which a sample is taken out every about 24 hours and a reaction rate is calculated, and a change with time (hr) of a decomposition reaction rate (%) obtained by continuous measurement with this apparatus. In this figure, the result of sampling every hour and the result of automatic continuous measurement do not necessarily match, but this may affect the decomposition reaction rate of the compost, the sampling part, that is, the sampling location and the variation in the sampling amount, etc. This is considered to be an error caused by.
[0028]
Therefore, in the apparatus of the present invention, it is possible to obtain a smooth characteristic as shown in FIG. 9 (solid line) by continuously measuring the amount of carbon dioxide generated and the weight, and it can be seen that the process proceeds without limit as time passes. Therefore, it is possible to obtain a highly accurate decomposition reaction rate.
[0029]
Therefore, in the apparatus of the present invention, it is clear that by continuously stirring, the generated amount of carbon dioxide is stabilized and the generated total amount is large, and the decomposition reaction of the organic matter is performed efficiently.
[0030]
In the present invention, when composting organic waste, by collecting a lot of data while changing various conditions, it is possible to easily determine which condition is most suitable for each type and efficiently composting. Can be promoted.
[0031]
【The invention's effect】
The present invention uses a sealed aging container and supplies air (oxygen) necessary for activating microorganisms, while the temperature, humidity, hydrogen ion concentration (pH), carbon dioxide generation amount and other various gas generation amounts, etc. Since the aging conditions are controlled from the data, the decomposition reaction state during composting of organic waste such as municipal waste, sewage sludge and agricultural waste, the decomposition reaction state of biodegradable materials, etc. The equipment cost is significantly reduced without the need for expensive analyzers such as chromatography and infrared gas absorption devices.
[0032]
In addition, the decomposition reaction state of organic waste during composting and the decomposition reaction state of biodegradable materials are handled without using any chromatography or infrared gas absorption device. Therefore, it is possible to provide a highly versatile device that can be used in operation very easily.
[0033]
Since there are many types of organic waste and microbial degradability is different, the scale of each device is the same even if the device has the same processing amount (weight). By evaluating the decomposability, the size (scale) of the device required for composting can be determined, which is indispensable for the device design.
[0034]
To develop biodegradable plastics, it is necessary to evaluate the degradability in the composting process. As for degradability, a standard method is a method of measuring the difference in CO 2 generation amount between the case where no biodegradable plastic is added and the case where the biodegradable plastic is not added. However, although there is no reliable and accurate testing machine, the test apparatus of the present invention is most suitable for evaluating the degradability of biodegradable plastics.
[0035]
Composting progresses in the process of decomposition of organic matter by microorganisms, and it is considered to add specially active microorganisms to speed up composting, but even if it is effective in pure culture in test tubes, actual organic waste It is almost ineffective in mixed microbial systems that are both non-pure cultures. Therefore, in order to screen for effective microorganisms in the composting process, it is essential to develop a special testing machine for confirming the effects of microorganisms in a mixed microorganism system of organic waste. The test apparatus of the present invention can easily verify the effect of the inoculated microorganism (added microorganism).
[0036]
In addition, many composting devices are currently on the market, but some of them are actually well decomposed or only dried and crushed. However, if a compost produced from such a composting apparatus is subjected to a decomposition test using the apparatus of the present invention, it can be easily determined how much organic matter has been decomposed by these composting apparatuses. That is, the performance of the composting apparatus can be accurately evaluated. Therefore, the device of the present invention is a test device indispensable for development.
[Brief description of the drawings]
1 is a front view of the apparatus of the present invention. FIG. 2 is a right side view of the same. FIG. 3 is a plan view of the same. FIG. 4 is an enlarged vertical sectional view of a main part of the same. 6] Partial front view showing the operating state of the mechanism part of the present invention. [FIG. 7] Partial front view showing the progress of the operation. [FIG. 8] Data showing the change with time in temperature and carbon dioxide according to the present invention. Example data showing changes over time in temperature and carbon dioxide [Explanation of symbols]
A Automatic metering means B Stirring means 8 Aging container 11 Air supply port 18 Sensor 26, 26 Stirring blade 35 Carbon dioxide outlet

Claims (1)

有機物分解反応評価装置において、荷重掛脱機構34によって支配され上下動するようにした連杆12、12の下端部に支持部材7を水平保持し、支持部材7上にロードセル6を介してその上部に複数個の突起5、5を立設した突起支持基盤を載置し、機枠1の下部に前後方向に平行に対設したガイドレール2、2上に夫々ガイドローラー4、4を介して熟成容器8を載支する移動架台3を前記突起5、5の上位に配置すると共に、移動架台3に穿設した透孔から熟成容器8の底板を突起5、5の上端で受載したとき熟成容器8内の有機物を計量するようにしたことを特徴とする微生物による有機物分解反応評価試験装置。  In the organic matter decomposition reaction evaluation apparatus, the support member 7 is horizontally held at the lower ends of the linkages 12 and 12 which are controlled by the load application / removal mechanism 34 and move up and down. A projection support base having a plurality of projections 5 and 5 mounted thereon is placed on the guide rails 2 and 2 that are arranged in parallel to the front and rear in the lower part of the machine frame 1 via guide rollers 4 and 4 respectively. When the mobile pedestal 3 for supporting the aging container 8 is disposed above the protrusions 5 and 5 and the bottom plate of the aging container 8 is received by the upper ends of the protrusions 5 and 5 from the through holes formed in the mobile pedestal 3 An organic matter decomposition reaction evaluation test apparatus using microorganisms, characterized in that the organic matter in the aging container 8 is measured.
JP2001402651A 2001-12-12 2001-12-12 Organic substance decomposition reaction evaluation test equipment by microorganisms Expired - Fee Related JP4273384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001402651A JP4273384B2 (en) 2001-12-12 2001-12-12 Organic substance decomposition reaction evaluation test equipment by microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001402651A JP4273384B2 (en) 2001-12-12 2001-12-12 Organic substance decomposition reaction evaluation test equipment by microorganisms

Publications (2)

Publication Number Publication Date
JP2003177123A JP2003177123A (en) 2003-06-27
JP4273384B2 true JP4273384B2 (en) 2009-06-03

Family

ID=19190380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001402651A Expired - Fee Related JP4273384B2 (en) 2001-12-12 2001-12-12 Organic substance decomposition reaction evaluation test equipment by microorganisms

Country Status (1)

Country Link
JP (1) JP4273384B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4521841B2 (en) * 2005-03-25 2010-08-11 国立大学法人静岡大学 Determination of maturity
JP5830805B1 (en) * 2015-01-14 2015-12-09 環清技研エンジニアリング株式会社 Fermentation control system and fermentation control method for organic waste
CN106018701A (en) * 2016-06-29 2016-10-12 合肥槟阳农业科技有限公司 Decomposition detection method for strawberry organic fertilizer
CN113447644A (en) * 2021-05-31 2021-09-28 海南大学 Experimental device for be used for studying plastics compost degradation

Also Published As

Publication number Publication date
JP2003177123A (en) 2003-06-27

Similar Documents

Publication Publication Date Title
US5526705A (en) Automated work station for analyzing soil samples
Pell et al. 7.2 Soil Respiration
EP1184765A2 (en) Apparatus for operating fermentation
US11789005B2 (en) Device and method for determining degradation rate of biodegradable polymers in soil
CN108037229B (en) Soil environment monitoring system
JP4273384B2 (en) Organic substance decomposition reaction evaluation test equipment by microorganisms
US4230676A (en) Composting apparatus
CN114859027A (en) Intelligent control and analysis system based on plastic biodegradation
KR200426029Y1 (en) Reaction System for Biodegradable Tests of Polymeric Plastic Materials
CN205898672U (en) Soil total organic carbon detection device
KR20040026251A (en) An apparatus for measuring biodegradability of a sample using non-dispersive infrared analysis method and method thereof
US5700109A (en) Traveling multi-functional disposal simulation installation
CN218629756U (en) Water ecology monitoring devices
CN215049742U (en) Small-size multi-functional fermenting installation
CN206725453U (en) A kind of P in soil H value detection devices
Jayasekara et al. An automated multi‐unit composting facility for biodegradability evaluations
AU2008270062B2 (en) Mobile probe composting method and corresponding device
WO2021028942A1 (en) A soil analysis apparatus
SE506420C2 (en) Method and apparatus for measuring the content of chemicals during bleaching
CN115290514B (en) Aerobic granular sludge culture effect testing device based on Internet of things control
CN215833417U (en) Composting device for determining disintegration degree of high polymer material
AU621594B2 (en) Process for the quantification of methane gas bacteria
CN113640285A (en) Online water quality detection equipment for river channel and using method thereof
CN218240044U (en) Control system based on plastic biodegradation
CN219997104U (en) Pesticide residue detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees