JP4270712B2 - Gas detection method and apparatus - Google Patents

Gas detection method and apparatus Download PDF

Info

Publication number
JP4270712B2
JP4270712B2 JP2000116563A JP2000116563A JP4270712B2 JP 4270712 B2 JP4270712 B2 JP 4270712B2 JP 2000116563 A JP2000116563 A JP 2000116563A JP 2000116563 A JP2000116563 A JP 2000116563A JP 4270712 B2 JP4270712 B2 JP 4270712B2
Authority
JP
Japan
Prior art keywords
gas
gas detection
output
detection element
energized state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000116563A
Other languages
Japanese (ja)
Other versions
JP2001296266A (en
Inventor
弘和 三橋
武司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2000116563A priority Critical patent/JP4270712B2/en
Publication of JP2001296266A publication Critical patent/JP2001296266A/en
Application granted granted Critical
Publication of JP4270712B2 publication Critical patent/JP4270712B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体式のガス検知素子を設け、前記ガス検知素子に通電して、そのガス検知素子からの出力を得るとともに、前記ガス検知素子を通電加熱自在にするガス検知回路を設け、前記ガス検知素子からの出力を基に、警報を発する警報装置を設けたガス検知装置および、そのガス検知装置によるガス検知方法に関する。
【0002】
【従来の技術】
従来、この種のガス検知装置としては、前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うとともに、被検知ガスの濃度が無視できる程度以下である清浄空気中における第二通電状態での前記ガス検知素子からの安定出力(ベース出力)を第一出力とし、前記第二通電状態終了時における、被検知ガスに対する前記ガス検知素子からの第二出力を求めてその差を被検知ガスに基づく出力として算出することが行われている。
しかしながら、このような方法によると、ガス検知素子の劣化等に伴う第一出力の変動を相殺することが出来ず、次第に正確なガス濃度を求められなくなる虞がある。また、その第一出力の変動による影響を防止するために、前記第二通電状態時におけるベース出力の変動を経時的に測定し、その平均値を持って第一出力として、前記第二出力との差を求め、長期に渡ってより正確にガス濃度が求められるようにすることが考えられており、これらの制御を行うことが出来るガス検知装置が考えられている。
【0003】
【発明が解決しようとする課題】
しかし、たとえば、前記ガス濃度の測定が、警報を発すべき目的で行われているような場合、上述のようなガス検知方法を採用したとしても、被検知ガスを検知すべき空間内に、前記被検知ガスが警報レベル以下であらかじめ微量に存在するようなときや、経時劣化により夾雑ガスを過敏に検出してしまうような特性になってしまったときには、前記ベース出力が経時的に次第に上昇して、第二通電状態の開始時と終了時とでは出力が大きく異なる状況があった。そのため、このような場合、測定すべき被検知ガス量は、変動するベース出力の平均値を基に算出されるため、ガス濃度が0であると見なす基準となる第一出力が正確に求められず、変動する要因になっていることになって、やはり濃度測定における信頼性が十分であるとはいえなかった。
また、特に高濃度ガスの検知を行いたいような場合には、ガス検知素子のベース出力が短時間に急上昇するという事情があって、たとえ前記ガス検知素子が劣化していなくてもベース出力の安定状態を得ることが困難である場合が多く、やはり第一出力を正確に求めることは困難となり、正確なガス濃度を求めることが出来ず、やはり濃度測定における信頼性が十分であるとはいえなかった。
【0004】
従って、本発明の目的は、上記欠点に鑑み、高濃度の被検知ガスを検知する場合であっても、より信頼性高く、被検知ガスの濃度を測定することのできる技術を提供することにある。
【0005】
【課題を解決するための手段】
この目的を達成するための本発明のガス検知方法の特徴手段は、
半導体式のガス検知素子を設け、前記ガス検知素子に通電して、そのガス検知素子からの出力を得るとともに、前記ガス検知素子を通電加熱自在にするガス検知回路を設け、前記ガス検知素子からの出力を基に、警報を発する警報装置を設けたガス検知装置によるガス検知方法であって、
前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うとともに、
前記ガス検知素子を被検知ガス雰囲気中に配置した状態で、前記ガス検知素子が前記第二通電状態から前記第一通電状態に切り替えられた後、少なくとも前記ガス検知素子が被検知ガスを検知しなくなる温度に上昇するまでの待機時間をあらかじめ求め、当該待機時間にわたって前記第一通電状態を維持し、
前記第一通電状態開始後、前記待機時間経過時の前記ガス検知素子からの第一出力を求めるとともに、
前記第二通電状態時における前記ガス検知素子からの第二出力を求め、
前記第一、第二出力の差を前記ガス検知素子による、前記被検知ガスに対する出力とする点にある。
【0006】
また、前記目的を達成するための本発明のガス検知装置の特徴構成は、
半導体式のガス検知素子を設け、前記ガス検知素子に通電して、そのガス検知素子からの出力を得るとともに、前記ガス検知素子を通電加熱自在にするガス検知回路を設け、前記ガス検知素子からの出力を基に、警報を発する警報装置を設けたガス検知装置であって、
前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うとともに、前記ガス検知素子を被検知ガス雰囲気中に配置した状態で、前記ガス検知素子が前記第二通電状態から前記第一通電状態に切り替えられた後、前記ガス検知素子が被検知ガスを検知しなくなる温度に上昇するまでの時間をあらかじめ求めておき、当該時間を待機時間として、前記第一通電状態開始後、前記待機時間経過時の前記第一通電状態における前記ガス検知素子からの第一出力を求めるとともに、前記第二通電状態時における前記ガス検知素子からの第二出力を求め、前記第一、第二出力の差を算出する制御装置を設けた点にある。
【0007】
〔作用効果〕
つまり、前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うと、前記ガス検知素子が長期の使用等により、劣化傾向にあるとしても、前記第一通電状態において、前記ガス検知素子は、高温に晒され、その表面に付着した付着物は酸化除去されるとともに、前記ガス検知素子自体の表面付着水分量も一定の状態に維持しやすくなる。また、第二加熱状態において前記ガス検知素子は、雰囲気中の被検知ガスを吸着して、出力検知用の電圧が印加された場合に、そのガス検知素子表面における被検知ガスの酸化反応等による電子状態の変化が電流に反映されることとなるため、被検知ガスの濃度に応じた出力を呈するとともに、高いガス選択性を発揮することが出来るのである。従って、このようにすると、安定して被検知ガスを検出させることが出来るとともに、長期に渡って信頼性の高い検知結果を与えることが出来るのである。
【0008】
この場合、前記ガス検知素子を清浄空気中に配置した状態での前記ガス検知素子の出力を求めると、前記被検知ガスの濃度が0の場合における前記ガス検知素子からの前記ガス検知素子からの出力を知ることが出来る。ここで、前記ガス検知素子が前記第一通電状態から前記第二通電状態に切り替えられた直後には、前記出力は不安定であり、被検知ガス濃度0に対応する出力を得られるものとは言い難い。また、第二通電状態で雰囲気中に被検知ガスが高濃度に存在するような場合には、ベース出力が急上昇して被検知ガス濃度0に対する出力はえられにくい。そこで、本発明者らは、前記被検知ガスの存在の有無に関わらず、ガス検知素子の温度が被検知ガスを検知しなくなるまで上昇したパージ状態では、前記ガス検知素子からの出力が安定する状態となる点に想到し、本発明を完成するに到った。
【0009】
つまり、本発明によれば、前記第一通電状態において、前記ガス検知素子を、被検知ガスを検知しなくなる温度にまで加熱しておけば、その温度にて得られる第一出力は、被検知ガス濃度0に対応するものと見なすことが出来るから、前記ガス検知素子が前記第二通電状態に維持されている状態で、測定対象のガスに対する出力としての第二出力を得れば、被検知ガスに基づく出力が前記ベース出力に上乗せされ、前記第一、第二出力の差が被検知ガスによる出力となる。尚、前記第一出力及び第二出力の差を求める際には、第一、第二通電状態の1サイクルのうちで得られる第一出力及び第二出力の差を求めれば、制御の都合上どちらを先に求める形態としても良い。
【0010】
従って、前記第一、第二出力の差は、ベース出力が雰囲気中の被検知ガスの濃度に依存しない状態で得られたものであり、正確に前記被検知ガスの濃度に適応したものとなっているといえる。そのため、被検知ガスの濃度を判定するに当たっても正確な判断が行えることになった。
【0011】
尚、ガス検知素子をパージ状態に加熱する場合、前記ガス検知素子は300℃〜450℃程度に加熱され、吸着状態に維持される場合、前記ガス検知素子は常温〜300℃程度に、加熱され、そのガス検知素子の特性により個有の温度範囲を有する。
【発明の実施の形態】
以下に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、本発明のガス検知装置は、半導体式のガス検知素子1を設け、前記ガス検知素子1に通電して、そのガス検知素子1からの出力を得るとともに、前記ガス検知素子1を通電加熱自在にするブリッジ回路を含んでなるガス検知回路2を設け、前記ガス検知素子1からの出力を基に、警報を発する必要性があるか否かの判断を行う制御装置3を設けるとともに、警報を発する警報装置4を設けて構成してある。
【0012】
前記制御装置3は、前記ガス検知素子1に電圧をかけ、パージ加熱する第一通電状態と、前記ガス検知素子1に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御部31を設けてある。
【0013】
前記ガス検知素子を被検知ガス中に配置した状態で、前記ガス検知素子が前記第二通電状態から前記第一通電状態に切り替えられた後、前記ガス検知素子の温度が被検知ガスを検知しなくなるまで上昇するまでの待機時間をあらかじめ求めておき、
前記第一通電状態開始後、前記待機時間経過時の前記ガス検知素子からの第一出力を求めるとともに、
前記第二通電状態における前記ガス検知素子からの第二出力を求めるタイマ32及び出力部33を設け、さらに、前記第一、第二出力の差を算出する演算部34を設けてある。
【0014】
具体的には、前記第一通電状態は2.0Vにて5秒、第二通電状態は電圧を印荷せずに5秒継続する。ここで第一通電状態の開始時から2.8秒(待機時間)後から5秒後までのベース出力として第一出力を得る。また、第二通電状態時に、第二出力を得る。
得られた出力は、前記演算部33によって、前記第一、第二出力の差が求められる。さらにその差を基に、警報の判断を行うとともに、警報を発する必要がある場合には、警報出力が前記警報装置4に出力され、警報音等の警報を発する。
【0015】
【実施例】
以下に本発明の実施例を図面に基づいて説明する。
ガス検知素子1として約30μm径の白金線コイル11を覆って、酸化スズ半導体を0.5mm径に設けて、その酸化スズ半導体を600℃で1時間焼成して、ガス感応部12を形成し、前記ガス感応部12にパラジウムを0.05mol%添加してある常温作動型で、一酸化炭素ガス(被検知ガス)選択性の熱線型半導体式ガス検知素子を設け(図2参照)、先の第一通電状態を行ったところ清浄空気中及び被検知ガス中において図3に示すような出力経過を示した。このガス検知素子1は、2.8秒(待機時間)後に300℃以上に加熱されることがわかり、また、このガス検知素子は常温付近でのみ出力を呈し、300℃以上においてガス出力を生じないために、前記被検知ガスの濃度0における出力が正確に得られることがわかる。この第一出力は前記ガス検知素子の温度上昇に伴って減少し、減衰曲線を描きながら2.8秒後には清浄空気(Air)の出力にまで達して安定化することがわかる。従って、前記待機時間としては2.8秒と設定し、第一通電状態開始から5秒後までの出力を持って第一出力を決定することが出来る。
【0016】
また、前記第二通電状態開始後の前記ガス検知素子の出力経過を求めると図4のようになり、ほぼ3秒間でガス検知素子の温度が常温にまで復帰し、前記第二出力を測定可能な状況が得られ、かつ、数ミリ秒間のパルス的な電圧印加で被検知ガスに対する出力経過を求めたところ、3秒後には、十分高濃度の被検知ガスの濃度を決定できる出力が得られていることもわかる。
【0017】
〔別実施の形態〕
前記ガス検知素子としては、このような常温駆動型の一酸化炭素ガス検知素子に限らず、種々の素子を用いることが出来る。また、前記待機時間は、そのガス検知素子毎に決定することが出来る。
【図面の簡単な説明】
【図1】ガス検知装置の概念図
【図2】ガス検知素子の概略図
【図3】第一通電状態における温度、出力経過グラフ
【図4】第二通電状態における温度、出力経過グラフ
【符号の説明】
1 ガス検知素子
2 ガス検知回路
3 制御装置
4 警報装置
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a semiconductor type gas detection element, energizes the gas detection element to obtain an output from the gas detection element, and also provides a gas detection circuit that allows the gas detection element to be electrically heated. The present invention relates to a gas detection device provided with an alarm device that issues an alarm based on an output from a gas detection element, and a gas detection method using the gas detection device.
[0002]
[Prior art]
Conventionally, as this type of gas detection device, a first energization state in which the gas detection element is purge-heated and a second energization state in which the gas detection element is maintained in an adsorption state in which atmospheric gas is adsorbed are alternately repeated. While performing the heating control, the stable output (base output) from the gas detection element in the second energization state in clean air where the concentration of the gas to be detected is less than negligible is the first output, and the second energization A second output from the gas detection element with respect to the gas to be detected at the end of the state is obtained, and the difference is calculated as an output based on the gas to be detected.
However, according to such a method, fluctuations in the first output due to deterioration of the gas detection element or the like cannot be offset, and there is a possibility that an accurate gas concentration cannot be obtained gradually. Further, in order to prevent the influence due to the fluctuation of the first output, the fluctuation of the base output in the second energization state is measured with time, and the average value is taken as the first output, and the second output and It is considered that the gas concentration can be obtained more accurately over a long period of time, and a gas detection device capable of performing these controls is considered.
[0003]
[Problems to be solved by the invention]
However, for example, when the measurement of the gas concentration is performed for the purpose of issuing an alarm, even if the gas detection method as described above is adopted, the gas to be detected is detected in the space to be detected. When the gas to be detected is present in a small amount in advance below the alarm level, or when it becomes a characteristic that the gas is sensitively detected due to deterioration over time, the base output gradually increases over time. Thus, there was a situation in which the output was greatly different at the start and end of the second energized state. Therefore, in such a case, the amount of gas to be measured to be measured is calculated based on the average value of the fluctuating base output, so that the first output serving as a reference for assuming that the gas concentration is 0 is accurately obtained. In other words, it was a factor that fluctuated, and the reliability in concentration measurement was still not sufficient.
In particular, when it is desired to detect a high concentration gas, the base output of the gas detection element rapidly rises in a short period of time. Even if the gas detection element is not deteriorated, the base output is stable. In many cases, it is difficult to obtain the state, and it is difficult to accurately obtain the first output, and it is not possible to obtain an accurate gas concentration, and the reliability in concentration measurement is still not sufficient. It was.
[0004]
Accordingly, an object of the present invention is to provide a technique capable of measuring the concentration of a gas to be detected with higher reliability even when detecting a gas having a high concentration, in view of the above-described drawbacks. is there.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the characteristic means of the gas detection method of the present invention includes:
A semiconductor type gas detection element is provided, and a current is supplied to the gas detection element to obtain an output from the gas detection element, and a gas detection circuit is provided for making the gas detection element freely energized and heated. A gas detection method using a gas detection device provided with an alarm device for issuing an alarm based on the output of
Conducting heating control for alternately repeating a first energized state in which the gas detecting element is purge-heated and a second energized state in which the gas detecting element is adsorbed to adsorb atmospheric gas,
In a state where the gas detection element is disposed in the detected gas atmosphere, after the gas detection element is switched from the second energized state to the first energized state, at least the gas detecting element detects the detected gas. Obtain the standby time until the temperature rises to disappear, maintaining the first energized state over the standby time ,
After obtaining the first output from the gas detection element after the standby time has elapsed after starting the first energized state,
Obtain the second output from the gas detection element in the second energized state,
The difference between the first and second outputs is the output from the gas detection element to the gas to be detected.
[0006]
In addition, the characteristic configuration of the gas detection device of the present invention for achieving the above object is as follows:
A semiconductor type gas detection element is provided, and a current is supplied to the gas detection element to obtain an output from the gas detection element, and a gas detection circuit is provided for making the gas detection element freely energized and heated. A gas detection device provided with an alarm device for issuing an alarm based on the output of
Conducting heating control for alternately repeating a first energized state in which the gas detecting element is purge-heated and a second energized state in which the gas detecting element is allowed to adsorb atmospheric gas is performed, and the gas detecting element is After the gas detecting element is switched from the second energized state to the first energized state in a state where the gas detecting element is arranged in the detected gas atmosphere, the gas detecting element rises to a temperature at which the detected gas is no longer detected. to previously obtain the time advance, as the waiting time the time, after the start first energized state, the obtaining a first output from the gas sensing element in said first energized state at the time elapsed the waiting time, the second A control device is provided that calculates a difference between the first and second outputs by obtaining a second output from the gas detection element in a two-energized state.
[0007]
[Function and effect]
In other words, when the energization heating control is performed in which the first energization state in which the gas detection element is purge-heated and the second energization state in which the gas detection element is adsorbed to hold the atmospheric gas are alternately performed, the gas detection is performed. Even if the element tends to deteriorate due to long-term use or the like, in the first energized state, the gas detection element is exposed to a high temperature, and deposits adhering to the surface thereof are oxidized and removed, and the gas detection is performed. It becomes easy to maintain the amount of moisture adhering to the surface of the element itself in a constant state. Further, in the second heating state, when the gas detection element adsorbs the gas to be detected in the atmosphere and an output detection voltage is applied, the gas detection element is caused by an oxidation reaction of the gas to be detected on the surface of the gas detection element. Since the change in the electronic state is reflected in the current, an output corresponding to the concentration of the gas to be detected is exhibited and high gas selectivity can be exhibited. Therefore, in this way, the gas to be detected can be detected stably, and a highly reliable detection result can be provided over a long period of time.
[0008]
In this case, when the output of the gas detection element in a state where the gas detection element is arranged in clean air is obtained, the gas detection element from the gas detection element when the concentration of the gas to be detected is 0 You can know the output. Here, immediately after the gas detection element is switched from the first energized state to the second energized state, the output is unstable, and an output corresponding to a detected gas concentration of 0 is obtained. It's hard to say. In addition, when the detected gas is present at a high concentration in the atmosphere in the second energized state, the base output rapidly rises and it is difficult to obtain an output with respect to the detected gas concentration of 0. Therefore, the present inventors stabilize the output from the gas detection element in the purge state where the temperature of the gas detection element rises until the detection gas is no longer detected regardless of the presence or absence of the detection gas. We came up with the point of being in a state and completed the present invention.
[0009]
That is, according to the present invention, if the gas detection element is heated to a temperature at which the detected gas is not detected in the first energized state, the first output obtained at that temperature is detected. Since it can be regarded as corresponding to a gas concentration of 0, if a second output as an output for the gas to be measured is obtained while the gas detection element is maintained in the second energized state, the detected object The output based on the gas is added to the base output, and the difference between the first and second outputs becomes the output by the detected gas. When obtaining the difference between the first output and the second output, if the difference between the first output and the second output obtained in one cycle of the first and second energized states is obtained, it is for the convenience of control. Either may be obtained first.
[0010]
Therefore, the difference between the first and second outputs is obtained in a state where the base output does not depend on the concentration of the detected gas in the atmosphere, and is precisely adapted to the concentration of the detected gas. It can be said that. Therefore, accurate determination can be made even when determining the concentration of the gas to be detected.
[0011]
When the gas detection element is heated to the purge state, the gas detection element is heated to about 300 ° C. to 450 ° C., and when the gas detection element is maintained in the adsorption state, the gas detection element is heated to room temperature to about 300 ° C. Depending on the characteristics of the gas sensing element, it has a unique temperature range.
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, the gas detection device of the present invention is provided with a semiconductor type gas detection element 1, energizes the gas detection element 1 to obtain an output from the gas detection element 1, and the gas detection device. A control device 3 is provided that includes a gas detection circuit 2 including a bridge circuit that allows the element 1 to be heated and energized, and determines whether or not an alarm is required based on an output from the gas detection element 1. And an alarm device 4 for generating an alarm are provided.
[0012]
The control device 3 alternately repeats a first energization state in which a voltage is applied to the gas detection element 1 to perform purge heating and a second energization state in which the gas detection element 1 is maintained in an adsorption state in which atmospheric gas is adsorbed. An energization heating control unit 31 is provided.
[0013]
After the gas detection element is placed in the gas to be detected and the gas detection element is switched from the second energized state to the first energized state, the temperature of the gas detection element detects the detected gas. Find the waiting time until it rises until it runs out,
After obtaining the first output from the gas detection element after the standby time has elapsed after starting the first energized state,
A timer 32 and an output unit 33 for obtaining a second output from the gas detection element in the second energized state are provided, and a calculation unit 34 for calculating a difference between the first and second outputs is provided.
[0014]
Specifically, the first energized state lasts for 5 seconds at 2.0 V, and the second energized state continues for 5 seconds without applying voltage. Here, the first output is obtained as the base output from 2.8 seconds (standby time) to 5 seconds after the start of the first energized state. Further, the second output is obtained in the second energization state.
A difference between the first and second outputs is obtained from the obtained output by the arithmetic unit 33. Further, based on the difference, judgment of an alarm is performed, and when an alarm needs to be issued, an alarm output is output to the alarm device 4 to issue an alarm such as an alarm sound.
[0015]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
Covering a platinum wire coil 11 having a diameter of about 30 μm as the gas detection element 1, a tin oxide semiconductor is provided in a diameter of 0.5 mm, and the tin oxide semiconductor is baked at 600 ° C. for 1 hour to form a gas sensitive portion 12. In addition, a hot-wire semiconductor gas detection element having a normal temperature operation type, in which 0.05 mol% of palladium is added to the gas sensitive part 12 and having a carbon monoxide gas (detected gas) selectivity, is provided (see FIG. 2). When the first energization state was performed, the output progress as shown in FIG. 3 was shown in clean air and in the gas to be detected. This gas detection element 1 is found to be heated to 300 ° C. or higher after 2.8 seconds (standby time), and this gas detection element exhibits an output only near room temperature and produces a gas output at 300 ° C. or higher. Therefore, it can be seen that the output at the concentration 0 of the detected gas can be obtained accurately. It can be seen that the first output decreases as the temperature of the gas sensing element rises, and reaches the output of clean air (Air) and stabilizes after 2.8 seconds while drawing an attenuation curve. Therefore, the standby time is set to 2.8 seconds, and the first output can be determined with the output from the start of the first energization state to 5 seconds later.
[0016]
Further, when the output progress of the gas detection element after the start of the second energization state is obtained, it is as shown in FIG. 4, and the temperature of the gas detection element returns to room temperature in about 3 seconds, and the second output can be measured. As a result, the output progress for the gas to be detected was obtained by applying a pulsed voltage for several milliseconds, and after 3 seconds, an output capable of determining the concentration of the gas to be detected having a sufficiently high concentration was obtained. You can see that
[0017]
[Another embodiment]
The gas detection element is not limited to such a room temperature drive type carbon monoxide gas detection element, and various elements can be used. The standby time can be determined for each gas detection element.
[Brief description of the drawings]
[Fig. 1] Conceptual diagram of a gas detection device [Fig. 2] Schematic diagram of a gas detection element [Fig. 3] Temperature and output progress graph in a first energization state [Fig. Explanation of]
1 Gas detection element 2 Gas detection circuit 3 Control device 4 Alarm device

Claims (2)

半導体式のガス検知素子を設け、前記ガス検知素子に通電して、そのガス検知素子からの出力を得るとともに、前記ガス検知素子を通電加熱自在にするガス検知回路を設け、前記ガス検知素子からの出力を基に、警報を発する警報装置を設けたガス検知装置によるガス検知方法であって、
前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うとともに、
前記ガス検知素子を被検知ガス雰囲気中に配置した状態で、前記ガス検知素子が前記第二通電状態から前記第一通電状態に切り替えられた後、少なくとも前記ガス検知素子が被検知ガスを検知しなくなる温度に上昇するまでの待機時間をあらかじめ求め、当該待機時間にわたって前記第一通電状態を維持し、
前記第一通電状態開始後、前記待機時間経過時の前記ガス検知素子からの第一出力を求めるとともに、
前記第二通電状態時における前記ガス検知素子からの第二出力を求め、
前記第一、第二出力の差を前記ガス検知素子による、前記被検知ガスに対する出力とするガス検知方法。
A semiconductor type gas detection element is provided, and a current is supplied to the gas detection element to obtain an output from the gas detection element, and a gas detection circuit is provided for making the gas detection element freely energized and heated. A gas detection method using a gas detection device provided with an alarm device for issuing an alarm based on the output of
Conducting heating control for alternately repeating a first energized state in which the gas detecting element is purge-heated and a second energized state in which the gas detecting element is adsorbed to adsorb atmospheric gas,
In a state where the gas detection element is disposed in the detected gas atmosphere, after the gas detection element is switched from the second energized state to the first energized state, at least the gas detecting element detects the detected gas. Obtain the standby time until the temperature rises to disappear, maintaining the first energized state over the standby time ,
After obtaining the first output from the gas detection element after the standby time has elapsed after starting the first energized state,
Obtain the second output from the gas detection element in the second energized state,
A gas detection method in which the difference between the first and second outputs is output to the detected gas by the gas detection element.
半導体式のガス検知素子を設け、前記ガス検知素子に通電して、そのガス検知素子からの出力を得るとともに、前記ガス検知素子を通電加熱自在にするガス検知回路を設け、前記ガス検知素子からの出力を基に、警報を発する警報装置を設けたガス検知装置であって、
前記ガス検知素子をパージ加熱する第一通電状態と、前記ガス検知素子に雰囲気ガスを吸着させる吸着状態に維持する第二通電状態とを交互に繰り返す通電加熱制御を行うとともに、前記ガス検知素子を被検知ガス雰囲気中に配置した状態で、前記ガス検知素子が前記第二通電状態から前記第一通電状態に切り替えられた後、前記ガス検知素子が被検知ガスを検知しなくなる温度に上昇するまでの時間をあらかじめ求めておき、当該時間を待機時間として、前記第一通電状態開始後、前記待機時間経過時の前記第一通電状態における前記ガス検知素子からの第一出力を求めるとともに、前記第二通電状態時における前記ガス検知素子からの第二出力を求め、前記第一、第二出力の差を算出する制御装置を設けたガス検知装置。
A semiconductor type gas detection element is provided, and a current is supplied to the gas detection element to obtain an output from the gas detection element, and a gas detection circuit is provided for making the gas detection element freely energized and heated. A gas detection device provided with an alarm device for issuing an alarm based on the output of
Conducting heating control for alternately repeating a first energized state in which the gas detecting element is purge-heated and a second energized state in which the gas detecting element is allowed to adsorb atmospheric gas is performed, and the gas detecting element is After the gas detecting element is switched from the second energized state to the first energized state in a state where the gas detecting element is arranged in the detected gas atmosphere, the gas detecting element rises to a temperature at which the detected gas is no longer detected. to previously obtain the time advance, as the waiting time the time, after the start first energized state, the obtaining a first output from the gas sensing element in said first energized state at the time elapsed the waiting time, the second A gas detection device provided with a control device for obtaining a second output from the gas detection element in a two-energized state and calculating a difference between the first and second outputs.
JP2000116563A 2000-04-18 2000-04-18 Gas detection method and apparatus Expired - Lifetime JP4270712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000116563A JP4270712B2 (en) 2000-04-18 2000-04-18 Gas detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000116563A JP4270712B2 (en) 2000-04-18 2000-04-18 Gas detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2001296266A JP2001296266A (en) 2001-10-26
JP4270712B2 true JP4270712B2 (en) 2009-06-03

Family

ID=18628011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000116563A Expired - Lifetime JP4270712B2 (en) 2000-04-18 2000-04-18 Gas detection method and apparatus

Country Status (1)

Country Link
JP (1) JP4270712B2 (en)

Also Published As

Publication number Publication date
JP2001296266A (en) 2001-10-26

Similar Documents

Publication Publication Date Title
JP4585756B2 (en) Semiconductor gas sensor and gas monitoring method using semiconductor gas sensor
JPWO2012105639A1 (en) Gas detection device and gas detection method
JP4270712B2 (en) Gas detection method and apparatus
JP4270711B2 (en) Gas detection method and apparatus
JP4222710B2 (en) Gas detection method and apparatus
JP2004069465A (en) Gas detection method and device using adsorption combustion gas sensor
JP3723073B2 (en) Gas detection device and gas detection method
JP2011027752A (en) Thin film gas sensor
JP2017053786A (en) Gas detection device
JP4497676B2 (en) Gas detection device and operation method thereof
JP4497658B2 (en) Gas detection method and apparatus
JP4791644B2 (en) Gas detection output correction method and gas detection device
JP6300203B2 (en) Gas detector
JP4408553B2 (en) Gas detection device and gas detection method
JP5320314B2 (en) Gas detector
JP6863102B2 (en) Gas sensors, gas alarms, control devices, and control methods
JP6912348B2 (en) Gas detector
JP4704591B2 (en) Fire detection device
JP2010066009A (en) Thin film gas sensor
JP4197823B2 (en) Gas detection method and apparatus
JP3868736B2 (en) Gas detection device and gas detection method
JP3998367B2 (en) Deterioration judgment method and apparatus for gas detector
JP6108516B2 (en) Gas detector
JP5903353B2 (en) Gas detector
JP3549322B2 (en) Gas detection method and gas detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090212

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4270712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term