JP4269686B2 - Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude - Google Patents

Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude Download PDF

Info

Publication number
JP4269686B2
JP4269686B2 JP2003002726A JP2003002726A JP4269686B2 JP 4269686 B2 JP4269686 B2 JP 4269686B2 JP 2003002726 A JP2003002726 A JP 2003002726A JP 2003002726 A JP2003002726 A JP 2003002726A JP 4269686 B2 JP4269686 B2 JP 4269686B2
Authority
JP
Japan
Prior art keywords
phase
synchronous motor
speed
short
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003002726A
Other languages
Japanese (ja)
Other versions
JP2004215466A (en
Inventor
康弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2003002726A priority Critical patent/JP4269686B2/en
Publication of JP2004215466A publication Critical patent/JP2004215466A/en
Application granted granted Critical
Publication of JP4269686B2 publication Critical patent/JP4269686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、永久磁石を界磁源とする同期電動機の回転子位置・速度・電圧振幅をセンサを使用することなく計測する位置・速度・電圧振幅のセンサレス計測方法およびこの計測を利用した同期電動機のセンサレス可変速装置に関する。
【0002】
【従来の技術】
永久磁石を界磁源とする同期電動機は空転中の場合は、同期電動機端子に速度起電力が発生する。そのため、インバータなどで起動する場合には、零電圧をインバータが出力すると、同期電動機端子の短絡状態と同じ状態となり、空転速度が高い場合には過大な電流が発生する。
【0003】
これを抑制するためには、速度誘起起電力と同一振幅で同一位相の電圧をインバータから継続して出力する必要がある。しかし、電動機に位置センサや速度センサを設けない場合には、この電圧振幅や位相をインバータ出力として設定することができない。
【0004】
そこで、従来の起動法では、インバータの出力状態を短時間だけ短絡状態に設定し、そのとき発生するパルス状の短絡電流が誘起起電力の位相とちょうど逆の位相に発生する原理を利用し、これを時間間隔をあけて2回実行し、その時間差と位相差より速度を推定、さらには位置(位相)を推定する起動法が提案されている(例えば、非特許文献1参照)。
【0005】
図5、図6にインバータを使用して、同期電動機の端子を短絡する状態の電流の流れを示し、図5ではインバータの下アーム全相をゲートONさせ、図6ではインバータの上アーム全相をゲートONさせてパルス状短絡電流を流す。また、図7にそのとき発生した短絡電流のベクトルの位相から、速度を検出する原理をタイムチャートで示す。電動機の回転角速度ωestは2回のパルスで計測した位相差θa(=θ0−θ1)と時間差Taから次式で計算する。また、回転角速度ωestの積分で回転子位置(位相)を知ることができ、回転角速度ωestの符号から回転方向を知ることができる。
【0006】
【数1】
ωest=θa/Ta
【0007】
【非特許文献1】
平成9年電気学会産業応用部門全国大会 No.135 鳥羽・藍原・柳瀬:“位置・速度・電圧センサレスPMモータ駆動システムの回転状態からの起動法”
【0008】
【発明が解決しようとする課題】
上記の従来手法による計測が可能となる条件は、2回の短絡パルス電流の発生間隔は空転している回転子が電気角で180°未満である必要がある。これは、短絡パルス法による位相計測は、電気角の−180°〜+180°区間しか計測できないためである。
【0009】
そのため、2回のパルス発生の間に、電気角で180°以上回転してしまうと回転方向の判別ができなくなる。また、回転方向が他の方法で判別できたとしても、360°以上に多回転する場合には多回転の数までは計測することができない。
【0010】
しかも、多極の同期電動機の場合には、周波数が高くなってくる傾向がある。また、インダクタンスの大きな同期電動機の場合には、短絡をしても電流の変化が少なく、ある程度の時間以上短絡しないと正確な位相を計算できる程度の電流振幅が発生しない。
【0011】
そうすると、200Hzを超えるような比較的周波数の高い同期電動機については、パルス電流を発生させて、かつそれが一旦零に戻るまでの時間の間に、回転子は180°以上回転してしまうことがある。このような同期電動機については、高速回転中は前記の従来手法が適用できない。
【0012】
上記のように、回転速度が高く短絡パルスの発生期間中に回転子が電気角で180°以上回転してしまう条件の場合には、多回転してその位相に移動したのか、1回転以内なのかの判別ができない。また、回転方向についても正転してその位相に達したのか、逆転して達したのかが不明である。そのため、正確な速度を計測することができなかった。
【0013】
本発明の目的は、永久磁石を界磁源とする同期電動機の空転状態で、同期電動機に発生させる短絡パルス電流の時間差と位相差を基に同期電動機の回転子位置・速度を計測する方法において、短絡パルス電流の発生期間中に回転子が電気角で180°以上回転してしまう場合にも回転子の位置・速度、さらには電圧振幅を精度よく計測できる同期電動機の位置・速度・電圧振幅のセンサレス計測方法を提供することにある。さらに、本発明はこの計測方法を利用した同期電動機のセンサレス可変速装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明は、前記の課題を解決するため、従来の位置・速度のセンサレス計測方法において、短絡パルス電流は互いに異なる時間間隔で3回以上発生させ、これら短絡パルス電流の各計測期間の時間差と位相差を求め、さらにその差分をそれぞれ取った結果より速度および位相を計測するものである。
【0015】
また、本発明は、速度計測結果より各計測期間の位相進み角を演算で推定し、これを基に計測位相が多回転している場合の位相差を補正するものである。
【0016】
さらに、本発明は、同期電動機の誘起起電力が三相の巻線軸に対して30°ずれた位相上に存在するときに短絡パルス電流を発生させ、そのときの電流増加の微分成分と、短絡終了直後の電流減少の微分成分を計測し、インバータの直流電源電圧を定数として誘起起電力の振幅成分を求めるものである。
【0017】
したがって、本発明は、以下のセンサレス計測方法およびセンサレス可変速装置を特徴とする。
【0018】
(センサレス計測方法の発明)
(1)永久磁石を界磁源とする同期電動機の空転状態で、インバータのゲート制御で同期電動機に発生させる短絡パルス電流の時間差と位相差を基に同期電動機の回転子位置・速度・電圧振幅を計測する同期電動機の位置・速度・電圧振幅のセンサレス計測方法であって、
前記短絡パルス電流は互いに異なる時間t0、t1、t2の間隔で3回以上発生させて短絡パルス電流の位相θ0、θ1、θ2を検出し、且つ各時間間隔の時間差Ta(=t1−t0)、Tb(=t2−t1)と位相差θa(=θ1−θ0)、θb( = θ2−θ1)を求めると共に、各計測時間における前記時間差と位相差からさらにその差分の時間差△T(=Ta−Tb)と位相差△θ(=θa−θb)を求め、これら差分の比△θ/△Tから求めた前記同期電動機の回転子角速度ω est から速度および位相を計測することを特徴とする。
【0019】
(2) 前記時間差信号Taと回転子角速度ω est の積、及び時間差信号Tbと回転子角速度ω est の積から各計測期間の位相変化量Θa’、Θb’を推定し、且つ前記位相差θa、θbから計測位相が多回転している場合の位相変化量Θa’、Θb’に最も近い位相差に補正して速度および位相を求めることを特徴とする。
【0020】
(3)前記短絡パルス電流は、同期電動機の誘起起電力が三相の巻線軸に対して30°ずれた位相上に存在するときに発生させ、そのときの電流増加の微分成分と、短絡終了直後の電流減少の微分成分を計測し、前記インバータの直流電源電圧を定数として誘起起電力の振幅成分を求めることを特徴とする。
【0021】
(センサレス可変速度装置の発明)
(4) 永久磁石を界磁源とする同期電動機の空転状態で、インバータのゲート制御で同期電動機に発生させる短絡パルス電流の時間差と位相差を基に同期電動機の回転子位置・速度・電圧振幅を計測し、これら計測結果を基に同期電動機を起動および可変速制御する同期電動機のセンサレス可変速装置であって、
前記インバータの制御装置に、前記短絡パルス電流の位相がt0、t1、t2の異なる時間間隔で3回以上の位相信号θ0、θ1、θ2を検出する位相検出部と、回転子角速度信号を算出する速度演算部、及びこの速度演算部により算出された角速度信号を積分して位相を求める演算手段を設けると共に、速度演算部は、前記計測時間からTa(=t1−t0)、Tb(=t2−t1)の時間差と前記位相信号からθa(=θ1−θ0)、θb( = θ2−θ1)の位相差を求める手段と、求めた時間差と位相差から更に各差分△T(=Ta−Tb)と位相差△θ(=θa−θb)を求め、これら差分の比△θ/△Tから回転子角速度ω est を求める手段を備えたことを特徴とする
【0022】
(5)前記速度演算部により求まった時間差信号Ta、Tbと回転子角速度ω est を入力し、時間差信号Taと回転子角速度ω est の積、及び時間差信号Tbと回転子角速度ω est の積から各計測期間の位相変化量Θa’、Θb’を推定し、且つ前記位相差θa、θbから計測位相が多回転している場合の位相変化量Θa’、Θb’に最も近い前記速度計測結果より各計測期間の位相進み角を演算で推定し、これを基に計測位相が多回転している場合の位相差補正を算出して前記速度演算部に出力する位相差補正部を備えたことを特徴とする
【0023】
(6)前記インバータは、同期電動機の誘起起電力が三相の巻線軸に対して30°ずれた位相上に存在するときに前記短絡パルス電流を発生させ、
前記演算手段は、各短絡パルス電流の電流増加の微分成分と、短絡終了直後の電流減少の微分成分を計測し、前記インバータの直流電源電圧を定数として誘起起電力の振幅成分を求める手段を備えたことを特徴とする。
【0024】
【発明の実施の形態】
(実施形態1)
従来の方法は、回転速度が高く短絡パルスの発生期間中に回転子が電気角の180°以上回転してしまう条件の場合には、多回転してその位相に移動したのか、1回転以内なのかの判別ができない。また、回転方向についても正転してその位相に達したのか、逆転して達したのかが不明である。そのため、正確な速度や回転方向を計測することができなかった。
【0025】
本実施形態では、2つの短絡パルス間の位相を直接使用するのではなく、3つの短絡パルスを異なる時間差をもたせて発生させ、それらのパルス時間差および位相差から速度および位置を計測し、これら計測値を基に同期電動機を起動さらには可変速制御を可能とする。
【0026】
図1の(a)は、本実施形態の位置・速度センサレスの可変速装置の要部構成を示し、同図の(b)には速度計測の要部タイムチャートを示す。
【0027】
可変速装置は、電圧型インバータ1と制御装置2及びディジタル化電流検出手段としての電流検出器3とA/D変換器4で構成され、制御装置2には電流制御系および回転子位相を基にした座標変換系を有して同期電動機5を起動および可変速制御する。この構成の可変速制御は、公知のものであるが、装置構成を適宜変更したものもある。
【0028】
ここで、本実施形態に係る位置・速度計測方法を実現する手段として、電流位相検出部6と速度演算部7と積分部8を設ける。
【0029】
電流位相検出部6は、同期電動機5に発生させる3回の短絡パルス電流の位相θ0,θ1,θ2を検出するためのもので、同期電動機5の2相の電流検出信号から2相/3相変換で3相電流を検出し、これらをα軸成分とβ軸成分に変換することで各短絡パルス電流の位相を求める。
【0030】
この短絡パルス電流の位相の検出に際して、制御装置2は従来の計測方法と同様に、電動機の回転子が空転中である状態で、インバータ1のゲート信号を短期間だけ電圧が零の期間を時間間隔をもたせて発生させるが、本実施形態では短絡パルス電流の発生を時刻t0,t1,t2の3回繰り返し、しかもそれらの時間間隔の時間差(t1−t0,t2−t1)を異なるようにしたゲート信号制御をする。
【0031】
これら制御により、電流位相検出部6には時間間隔の差が異なる時刻t0,t1,t2での3回の短絡パルス電流位相θ0、θ1、θ2を検出することができる。
【0032】
速度演算部7は、図1の(b)に示すように、各計測期間の時間差Ta(t1−t0)とTb(t2−t1)と位相差θa(=θ1−θ0),θb(=θ2−θ1)を求め、さらにそれらの差分をそれぞれ取った結果より速度ωestを求める。積分部8は、速度ωestを積分することで位相(回転子位置)を検出する。
【0033】
速度演算部7における演算をより詳しく説明すると、異なる時間間隔で3回のパルス状の短絡電流を発生され、これらの電流ベクトルの位相を計測で、各計測パルスの時間間隔Ta,Tbと計測した位相間隔θa,θbは以下の式になる。
【0034】
【数2】
Ta=t1−t0
Tb=t2−t1
【0035】
【数3】
θa=θ1一θ0
θb=θ2−θ1
そして、これらの時間差と位相差のさらに差分ΔT,Δθを取ると、次式のようになる。
【0036】
【数4】
ΔT=Ta−Tb
Δθ=θa一θb
そして、これら差分の比Δθ/ΔTから、次式で回転子角速度ωestを求めることができる。
【0037】
ωest=Δθ/ΔT
ただし、制限としてΔTの時間差は、この時間差の間に回転子が180°以上空転しない程度に設定する。パルスの間隔自体は短くできなくても、時間差に関しては自由に設定できるため、計測する2つの時間差についてさらに差分をとったものについては、短い時間差に設定することができる。本実施形態は、この特徴を利用したものである。
【0038】
従来法では2つの計測区間の時間差が、回転子が電気角の180°未満である条件が存在したのに対し、本実施形態の計測方法では、回転子が電気角で180°以上回転してしまう場合にも回転子の位置・速度を計測することができる。また、この時間制限がないことは高速回転している場合に計測期間を短くする必要もなくなり、ひいては、短絡期間を長く取ることができるため、計測するパルス状の電流振幅を大きくとれ、電流検出誤差などの影響を低減した精度良い計測が可能となるし、ひいては精度良い可変速制御が可能となる。
【0039】
なお、短絡パルス電流の発生回数は、互いに異なる時間間隔で3回以上とし、それらの平均化処理等から速度・位相を求めることができる。
【0040】
(実施形態2)
実施形態1では、単純に位相差の差分を取ることにより速度・位相検出を行ったが、最終的な速度さらには位相を検出するために利用する位相差Δθには180°以内という制限が存在しているため、位相検出誤差の影響を受けやすく、検出された速度の精度が低くなる。
【0041】
ここで、実施形態1の速度検出法によって、概略の速度と回転方向が判ったのであれば、360°以上に多回転した位相であってもその多回転の回数を推定することが可能になる。こうすると、速度の計測に使用する位相差を大きくとることができるため、推定速度・位相の精度が大幅に向上する。
【0042】
そこで、本実施形態では、実施形態1の方法で計測した速度と計測期間から、Ta,Tbの期間の位相変化量Θa’,Θb’を以下の式から推定する。
【0043】
【数5】
Θa’=ωest*Ta
Θb’=ωest*Tb
また、計測した位相差θa,θbから多回転した場合の位相差を推定する。ここでは、θaを補正する例で示す。
【0044】
電気角で1回転以下:θa’=θa+0*360°
電気角で1〜2回転以内:θa’=θa+1*360°
電気角で2〜3回転以内:θa’=θa+2*360°
そして、上記の多回転を想定した位相差の中から、速度から推定した位相差Θa’およびΘb’に最も近いものを選定することにより、多回転であり360°以上回転する場合であっても位相差を補正することができる。この多回転補正された位相差と時間差より速度を計算すると、より正確な速度検出が可能になる。
【0045】
本実施形態では、上記の推定と位相差補正は、図1の(a)に示す位相差補正部9によって実現する。そして、速度演算部7は、補正された位相差θa’,θb’を使用して補正した速度ωestを求める。
【0046】
(実施形態3)
永久磁石を界磁源とする同期電動機が空転中の速度推定は、実施形態1や実施形態2を使用すればよい。また、速度だけでなく位相とその時刻がわかっているため、インバータを起動して運転を開始する時刻の位相も計算により予測することも可能である。しかし、空転中の電動機を始動する場合には、さらに電圧の振幅情報も必要になる。
【0047】
実施形態1や2で速度が検出できており、かつ、永久磁石の磁束が既知であれば速度誘起起電力を計算することは容易である。しかし、永久磁石の残留磁束は磁石の温度によって変動してしまう。そのため、同期電動機の温度によって磁束が変化することになり、正確な速度誘起起電力を計算することができない。そのため、速度と磁束から間接的に誘起起電力を計算するよりも、直接電圧を計測できる方がより安定な始動が可能になる。
【0048】
そこで、本実施形態では、同期電動機に短絡パルス電流を発生させた期間の電流変化の計測データの他に、短絡を解除したときにインダクタンスの電流が減衰するときの電流の変化も利用して同期電動機の端子電圧(電圧振幅)を推定する計測方法およびこれを利用した可変速装置を提案するものである。
【0049】
ここで、図1におけるインバータ1の直流電源電圧Vdcは他の電圧センサにより既知であるものとする。実際には3相電動機を対象としているが、簡単のために1相のモデルで計測原理を以下に説明する。
【0050】
図2の(a)に示すように、インバータのゲート制御により、空転中の同期電動機の端子を短期間だけ短絡状態にすることで、同期電動機には短絡パルス電流を発生させることができる。
【0051】
このときの等価回路は、図2の(b)のように、単相モデルでの下アームのゲートをONすると誘起起電力E0の電圧が同期電動機のインダクタンスLに加わるため、E0に比例した電流変化が発生する。その後に下アームのゲートをOFFして短絡を止めると、今度は図2の(c)のように、インバータの上アームのダイオードを通して電源に回生を行う電流ループに転流する。
【0052】
したがって、インダクタンスLに流れる電流の変化量は、短絡時と短絡後にダイオードを通して電源に回生するときでは、直流電源電圧Vdcと誘起起電力E0を使った次式の関係が成立する。
【0053】
【数6】
−E0=(diL/dt)L
(Vdc−E0)=(diH/dt)L
ここで、(diL/dt)は図2(b)の期間の短絡時の電流微分、(diH/dt)は図2(c)の期間の短絡後の電流微分を示す。
【0054】
これら電流微分はインダクタンスLに印加させる電圧に比例しているため、電流変化量(電流微分値)を計測すれば同期電動機の端子電圧と誘起起電力の比率を推定することができ、ひいては端子電圧を求めることができる。
【0055】
したがって、下記のように、電流の変化量の比Kを使用し、次式の関係式から誘起起電力E0を導出することができる。
【0056】
【数7】
K=(diL/dt)/(diH/dt)
K=−E0/(Vdc−E0)
K(Vdc−E0)=−E0
K・Vdc=K・E0−E0
E0=K・Vdc/(K−1)
したがって、同期電動機の短絡時とその直後の電流微分成分および電源電圧Vdcから、電圧を直接計測することが可能になる。
【0057】
ここで、3相の同期電動機の場合には、誘起起電力は3相交流波形となるため、回転子の位相によって3相の電圧が変化する。短絡期間では、それぞれの相の誘起起電力に比例して電流は変化するが、短絡後のインダクタンスのエネルギーを直流電源に回生する期間は直流電源のPとNの両端子の2種類の電位のみがインダクタンスの電流極性に応じて端子に印加されているため、3相の端子電圧は誘起起電力の比率とは異なってしまう。したがって、短絡期間の電流の立ち上がりとその直後の回生期間での電流の立下りの比は3相とも異なるため、上の式を適用することができない。
【0058】
そこで、誘起起電力が3相の巻線の軸と一致したときに計測を行うことにする。図3で示した誘起起電力の3相交流皮形eu,ev,ewのうち、2相の成分が一致するタイミングでは、3相の誘起起電力も2値しか存在しないため、ちょうど単相と同じモデルを適用できる。
【0059】
この位相になったときに計測を実行するためには、実施形態1や実施形態2の計測位相θ0,θ1,θ2と時刻t0,t1,t2および計算した速度ωest、さらには補正した速度ωestより回転位相が予測されることから、この予測から2相の成分が一致するタイミングで誘起起電力の振幅成分を計測することが可能となる。
【0060】
(実施形態4)
実施形態3では、誘起起電力計測には3相のうち2相の成分が一致する条件としたが、これ以外にも1相だけ電流が流れない条件で計測しても同様な結果が得られる。
【0061】
そこで、本実施形態では、図4のように、1相の電圧が零の時刻で計測することを提案する。
【0062】
ちょうど、誘起起電力が零の相は、他の2相の中間電圧に相当する。そのため、電流も入出力の成分がつりあって零のままとなる。そうすると、単相モデルと等価な計測を実施でき、誘起起電力の振幅成分を計測することができる。
【0063】
なお、本実施形態および実施形態3における計測タイミングは、誘起起電力が三相の巻線軸に対してちょうど30°ずれた位相上に存在するときになる。
【0064】
【発明の効果】
永久磁石を界磁源とする同期電動機が空転中である場合には、回転子の誘起起電力の振幅・位相・速度が既知であれば、空転中に運転を開始するときにその誘起起電力とつりあった電圧から出力を開始することができ、電流の急変が無く安定な起動が可能になる。
【0065】
そのうち位相と速度を計測するためにインバータを電圧零の条件で短期間ゲートをONすることにより、同期電動機の誘起起電力によって生じる電流成分を計測する。この計測電流の空間ベクトルはちょうど誘起起電力のベクトルとは180°反対の位相に存在することを利用して、誘起起電力の位相と速度を計測する。このとき、従来法では2つの短絡パルス電流の時間差が、回転子が電気各の180°未満である条件が存在した。
【0066】
これに対し、本発明の実施形態1・実施形態2の計測方法および可変速装置によれば、計測の時間的な制限が無くなり、高速回転している場合に計測期間を短くする必要もなくなる。ひいては、短絡期間を長く取ることができることから、計測する短絡パルス電流の振幅を大きくとれるため、電流検出誤差などの影響を低減することができる。
【0067】
また、従来法では、速度と位相は計測できるものの、誘起起電力の振幅までは計測できなかった。インダクタンス値が既知であれば電流の微分より電圧を推定することができる。また、残留磁束が既知であれば速度より誘起起電力を演算することもできる。これらのどちらの方法も同期電動機の定数が必要である問題がある。したがって、温度によって定数が変化したり、同期電動機の個別のばらつきが大きな場合には、誘起起電力の推定値も誤差が発生してしまう。
【0068】
これに対して、本発明の実施形態3・実施形態4の計測方法および可変速装置では、実施形態1・2の計測方法を基に、電流の微分成分と直流電圧より直接電圧振幅成分を推定することができ、精度の良い電圧振幅の計測および可変速制御が可能になる。
【図面の簡単な説明】
【図1】本発明の実施形態1、2の可変速装置と速度・位相計測のタイムチャート。
【図2】本発明の実施形態3の計測原理説明図。
【図3】実施形態3における誘起起電力の計測タイミングの説明図。
【図4】実施形態4における誘起起電力の計測タイミングの説明図。
【図5】短絡パルス電流発生に下アーム全相をゲートONする状態の短絡モード。
【図6】短絡パルス電流発生に上アーム全相をゲートONする状態の短絡モード。
【図7】従来手法における短絡電流の発生タイミングと計測位相から速度計測を行う原理説明図。
【符号の説明】
1…インバータ
2…制御装置
3…電流検出器
4…A/D変換器
5…同期電動機
6…電流位相検出部
7…速度演算部
8…積分部
9…位相差補正部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sensorless measurement method of position, speed, and voltage amplitude for measuring the rotor position, speed, and voltage amplitude of a synchronous motor using a permanent magnet as a field source without using a sensor, and a synchronous motor using this measurement. This relates to a sensorless variable speed device.
[0002]
[Prior art]
When a synchronous motor using a permanent magnet as a field source is idling, a speed electromotive force is generated at the synchronous motor terminal. Therefore, when starting with an inverter or the like, if the inverter outputs a zero voltage, the state becomes the same as the short circuit state of the synchronous motor terminal, and an excessive current is generated when the idling speed is high.
[0003]
In order to suppress this, it is necessary to continuously output a voltage having the same amplitude and the same phase as the speed-induced electromotive force from the inverter. However, if the electric motor is not provided with a position sensor or speed sensor, the voltage amplitude and phase cannot be set as the inverter output.
[0004]
Therefore, in the conventional start-up method, the output state of the inverter is set to a short-circuit state for a short time, and the pulse-like short-circuit current generated at that time is used in a phase that is exactly opposite to the phase of the induced electromotive force, An activation method has been proposed in which this is executed twice with a time interval, the speed is estimated from the time difference and the phase difference, and further the position (phase) is estimated (for example, see Non-Patent Document 1).
[0005]
5 and 6 show the current flow in a state where the terminals of the synchronous motor are short-circuited using the inverter. In FIG. 5, all the lower arm phases of the inverter are turned on, and in FIG. Is turned on and a pulsed short-circuit current flows. FIG. 7 is a time chart showing the principle of detecting the speed from the phase of the short-circuit current vector generated at that time. The rotational angular velocity ω est of the motor is calculated from the phase difference θa (= θ0−θ1) measured with two pulses and the time difference Ta by the following equation. Further, it is possible to know the rotor position by the integral of the rotational angular velocity omega est (phase), it is possible to know the rotational direction from the sign of the rotational angular velocity omega est.
[0006]
[Expression 1]
ω est = θa / Ta
[0007]
[Non-Patent Document 1]
1997 IEEJ Industrial Application Division National Conference No.135 Toba, Aihara, Yanase: “Position / Speed / Voltage Sensorless PM Motor Drive System Startup Method from Rotating State”
[0008]
[Problems to be solved by the invention]
The condition that enables measurement by the above-described conventional method is that the generation interval of the two short-circuit pulse currents is such that the idling rotor is less than 180 ° in electrical angle. This is because the phase measurement by the short-circuit pulse method can measure only the section of electric angle from −180 ° to + 180 °.
[0009]
Therefore, if the electric angle is rotated by 180 ° or more between two generations of pulses, the direction of rotation cannot be determined. Even if the rotation direction can be determined by another method, when the rotation is 360 ° or more, the number of rotations cannot be measured.
[0010]
Moreover, in the case of a multipolar synchronous motor, the frequency tends to increase. Further, in the case of a synchronous motor having a large inductance, there is little change in current even if a short circuit occurs, and a current amplitude sufficient to calculate an accurate phase will not occur unless the short circuit is performed for a certain period of time.
[0011]
Then, for a synchronous motor with a relatively high frequency exceeding 200 Hz, the rotor may rotate 180 ° or more during the time until a pulse current is generated and it once returns to zero. is there. For such a synchronous motor, the conventional method cannot be applied during high-speed rotation.
[0012]
As described above, in the condition where the rotational speed is high and the rotor rotates 180 degrees or more in electrical angle during the generation of the short-circuit pulse, it has been moved to its phase by multiple rotations or within one rotation. Cannot be determined. In addition, it is unclear whether the rotation direction has reached its phase by rotating forward or reverse. Therefore, an accurate speed could not be measured.
[0013]
An object of the present invention is to provide a method for measuring the rotor position and speed of a synchronous motor based on the time difference and phase difference of a short-circuit pulse current generated in the synchronous motor in the idling state of the synchronous motor using a permanent magnet as a field source. The position, speed, and voltage amplitude of a synchronous motor that can accurately measure the rotor position, speed, and voltage amplitude even when the rotor rotates 180 degrees or more in electrical angle during the occurrence of a short-circuit pulse current It is to provide a sensorless measurement method. Furthermore, this invention is providing the sensorless variable speed apparatus of the synchronous motor using this measuring method.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a conventional sensorless measurement method for position / velocity, in which a short-circuit pulse current is generated three or more times at different time intervals, and the time difference and position of each measurement period of the short-circuit pulse current are measured. The phase difference is obtained, and the speed and phase are measured from the results of obtaining the differences.
[0015]
Further, according to the present invention, the phase advance angle of each measurement period is estimated by calculation from the speed measurement result, and based on this, the phase difference when the measurement phase is rotated multiple times is corrected.
[0016]
Furthermore, the present invention generates a short-circuit pulse current when the induced electromotive force of the synchronous motor exists on a phase shifted by 30 ° with respect to the three-phase winding axis, and the differential component of the current increase at that time, The differential component of the current decrease immediately after the end is measured, and the amplitude component of the induced electromotive force is obtained with the DC power supply voltage of the inverter as a constant.
[0017]
Therefore, the present invention is characterized by the following sensorless measurement method and sensorless variable speed apparatus.
[0018]
(Invention of sensorless measurement method)
(1) Rotor position / speed / voltage amplitude of synchronous motor based on time difference and phase difference of short-circuit pulse current generated in synchronous motor by gate control of inverter in synchronous motor with permanent magnet as field source A sensorless measurement method for the position, speed, and voltage amplitude of a synchronous motor that measures
The short-circuit pulse current is generated three or more times at intervals of different times t0, t1, and t2, and the phases θ0, θ1, and θ2 of the short-circuit pulse current are detected, and the time difference Ta (= t1−t0) of each time interval, Tb (= t2−t1) and phase differences θa (= θ1−θ0) and θb ( = θ2−θ1) are obtained, and the time difference ΔT (= Ta−) is further calculated from the time difference and the phase difference at each measurement time. Tb) and a phase difference Δθ (= θa−θb) are obtained, and the speed and phase are measured from the rotor angular velocity ω est of the synchronous motor obtained from the ratio Δθ / ΔT of these differences .
[0019]
(2) Estimating phase change amounts Θa ′ and Θb ′ in each measurement period from the product of the time difference signal Ta and the rotor angular velocity ω est and the product of the time difference signal Tb and the rotor angular velocity ω est , and the phase difference θa , Θb, the phase difference is corrected to a phase difference closest to Θa ′ and Θb ′ when the measurement phase is rotated many times , and the speed and phase are obtained.
[0020]
(3) The short-circuit pulse current is generated when the induced electromotive force of the synchronous motor is present on a phase shifted by 30 ° with respect to the three-phase winding axis. The differential component of the current decrease immediately after is measured, and the amplitude component of the induced electromotive force is obtained by using the DC power supply voltage of the inverter as a constant.
[0021]
(Invention of sensorless variable speed device)
(4) Rotor position / speed / voltage amplitude of the synchronous motor based on the time difference and phase difference of the short-circuit pulse current generated in the synchronous motor by gate control of the inverter in the idling state of the synchronous motor using the permanent magnet as the field source Is a sensorless variable speed device of a synchronous motor for starting and variable speed control of a synchronous motor based on these measurement results,
The inverter control device calculates a phase detector for detecting the phase signals θ0, θ1, and θ2 at least three times at different time intervals of t0, t1, and t2, and a rotor angular velocity signal. A speed calculation unit and calculation means for integrating the angular velocity signal calculated by the speed calculation unit to obtain a phase are provided, and the speed calculation unit calculates Ta (= t1-t0), Tb (= t2-) from the measurement time. Means for obtaining the phase difference of θa (= θ1-θ0), θb ( = θ2-θ1) from the time difference of t1) and the phase signal, and further each difference ΔT (= Ta−Tb) from the obtained time difference and phase difference And a phase difference Δθ (= θa−θb), and a means for obtaining the rotor angular velocity ω est from the difference ratio Δθ / ΔT.
(5) the speed calculating section by Motoma' time difference signal Ta, enter the Tb and rotor angular velocity omega est, the time difference signal Ta and the rotor angular velocity omega est product, and the product of the time difference signal Tb and the rotor angular velocity omega est phase variation Θa of each measurement period ',? b' estimates the, and the phase difference .theta.a, phase variation Θa when measured phase from θb is multi-rotation ',? b' before Symbol rate measurement result closest to A phase difference correction unit that estimates the phase advance angle of each measurement period by calculation, calculates phase difference correction when the measurement phase is multi-rotation based on this, and outputs it to the speed calculation unit [0023]
(6) The inverter generates the short-circuit pulse current when the induced electromotive force of the synchronous motor exists on a phase shifted by 30 ° with respect to the three-phase winding axis,
The arithmetic means comprises means for measuring a differential component of current increase of each short-circuit pulse current and a differential component of current decrease immediately after the end of the short circuit, and obtaining an amplitude component of the induced electromotive force using the DC power supply voltage of the inverter as a constant. It is characterized by that.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
In the conventional method, when the rotation speed is high and the rotor rotates by 180 ° or more of the electrical angle during the generation period of the short-circuit pulse, it has been rotated multiple times and moved to the phase or within one rotation. Cannot be determined. In addition, it is unclear whether the rotation direction has reached its phase by rotating forward or reverse. Therefore, it was not possible to measure an accurate speed and rotation direction.
[0025]
In this embodiment, the phase between two short-circuit pulses is not directly used, but three short-circuit pulses are generated with different time differences, and the velocity and position are measured from these pulse time differences and phase differences, and these measurements are performed. The synchronous motor is started based on the value, and variable speed control is enabled.
[0026]
FIG. 1A shows the configuration of the main part of the position / speed sensorless variable speed device of this embodiment, and FIG. 1B shows the time chart of the main part of speed measurement.
[0027]
The variable speed device comprises a voltage type inverter 1, a control device 2, a current detector 3 as a digitized current detection means, and an A / D converter 4. The control device 2 is based on a current control system and a rotor phase. The synchronous motor 5 is activated and controlled at a variable speed with the coordinate conversion system. The variable speed control of this configuration is a known one, but there is also a configuration in which the device configuration is appropriately changed.
[0028]
Here, as means for realizing the position / velocity measurement method according to the present embodiment, a current phase detection unit 6, a speed calculation unit 7, and an integration unit 8 are provided.
[0029]
The current phase detector 6 is for detecting the phases θ0, θ1, and θ2 of the three short-circuit pulse currents to be generated in the synchronous motor 5, and the two-phase / 3-phase from the two-phase current detection signals of the synchronous motor 5 The three-phase current is detected by the conversion, and these are converted into an α-axis component and a β-axis component to obtain the phase of each short-circuit pulse current.
[0030]
When detecting the phase of the short-circuit pulse current, the control device 2 sets the gate signal of the inverter 1 for a short period of time during which the voltage is zero for a short period of time while the rotor of the motor is idling. In this embodiment, the generation of the short-circuit pulse current is repeated three times at times t0, t1, and t2, and the time difference between these time intervals (t1-t0, t2-t1) is made different. Perform gate signal control.
[0031]
With these controls, the current phase detector 6 can detect the three short-circuit pulse current phases θ0, θ1, and θ2 at times t0, t1, and t2 having different time intervals.
[0032]
As shown in FIG. 1 (b), the speed calculation unit 7 includes time differences Ta (t1-t0) and Tb (t2-t1) and phase differences θa (= θ1-θ0), θb (= θ2) in each measurement period. -Θ1) is obtained, and the speed ω est is obtained from the result of taking the difference between them. The integrator 8 detects the phase (rotor position) by integrating the speed ω est .
[0033]
The calculation in the speed calculation unit 7 will be described in more detail. Three short pulse currents are generated at different time intervals, and the phases of these current vectors are measured to measure the time intervals Ta and Tb of each measurement pulse. The phase intervals θa and θb are as follows.
[0034]
[Expression 2]
Ta = t1-t0
Tb = t2-t1
[0035]
[Equation 3]
θa = θ1 θ1
θb = θ2−θ1
Then, when the difference ΔT, Δθ between these time difference and phase difference is taken, the following equation is obtained.
[0036]
[Expression 4]
ΔT = Ta-Tb
Δθ = θa and θb
The rotor angular velocity ω est can be obtained from the difference ratio Δθ / ΔT by the following equation.
[0037]
ω est = Δθ / ΔT
However, as a restriction, the time difference of ΔT is set to such an extent that the rotor does not idle more than 180 ° during this time difference. Even if the pulse interval itself cannot be shortened, the time difference can be set freely. Therefore, the difference between the two time differences to be measured can be set to a short time difference. The present embodiment utilizes this feature.
[0038]
In the conventional method, there is a condition that the time difference between the two measurement sections is less than 180 ° of the electrical angle of the rotor. In the measurement method of the present embodiment, the rotor is rotated by 180 ° or more of the electrical angle. In this case, the rotor position / speed can be measured. In addition, the absence of this time limit eliminates the need for shortening the measurement period when rotating at high speed, and in turn, the short-circuit period can be lengthened, so that the pulsed current amplitude to be measured can be increased, and current detection is performed. Accurate measurement with reduced influence of errors and the like is possible, and as a result, variable speed control with high accuracy becomes possible.
[0039]
Note that the number of occurrences of the short-circuit pulse current is three or more at different time intervals, and the speed and phase can be obtained from the averaging process or the like.
[0040]
(Embodiment 2)
In the first embodiment, the speed / phase detection is performed by simply taking the phase difference difference. However, the phase difference Δθ used for detecting the final speed and the phase is limited to 180 ° or less. Therefore, it is easily affected by the phase detection error, and the accuracy of the detected speed is lowered.
[0041]
Here, if the approximate speed and direction of rotation are known by the speed detection method of the first embodiment, it is possible to estimate the number of times of multi-rotation even for a phase that has undergone multiple rotations of 360 ° or more. . In this way, the phase difference used for speed measurement can be increased, and the accuracy of the estimated speed and phase is greatly improved.
[0042]
Therefore, in the present embodiment, the phase change amounts Θa ′ and Θb ′ in the periods of Ta and Tb are estimated from the following equations from the speed and the measurement period measured by the method of the first embodiment.
[0043]
[Equation 5]
Θa '= ω est * Ta
Θb ′ = ω est * Tb
Further, the phase difference in the case of multiple rotations is estimated from the measured phase differences θa and θb. Here, an example of correcting θa is shown.
[0044]
One electrical rotation or less: θa ′ = θa + 0 * 360 °
Within 1 to 2 rotations in electrical angle: θa ′ = θa + 1 * 360 °
Within 2 to 3 rotations in electrical angle: θa ′ = θa + 2 * 360 °
Even if the rotation is 360 degrees or more by selecting the one closest to the phase differences Θa ′ and Θb ′ estimated from the speed from the phase differences assuming the above multiple rotations. The phase difference can be corrected. If the speed is calculated from the phase difference and time difference corrected for multiple rotations, more accurate speed detection is possible.
[0045]
In the present embodiment, the above estimation and phase difference correction are realized by the phase difference correction unit 9 shown in FIG. Then, the speed calculation unit 7 obtains a corrected speed ω est using the corrected phase differences θa ′ and θb ′.
[0046]
(Embodiment 3)
The speed estimation during the idling of the synchronous motor using the permanent magnet as the field source may use the first or second embodiment. Further, since not only the speed but also the phase and its time are known, the phase of the time at which the inverter is started and the operation is started can be predicted by calculation. However, when starting an idling motor, voltage amplitude information is also required.
[0047]
If the speed can be detected in the first and second embodiments and the magnetic flux of the permanent magnet is known, it is easy to calculate the speed-induced electromotive force. However, the residual magnetic flux of the permanent magnet varies depending on the temperature of the magnet. For this reason, the magnetic flux changes depending on the temperature of the synchronous motor, and an accurate speed-induced electromotive force cannot be calculated. Therefore, it is possible to start more stably when the voltage can be directly measured than when the induced electromotive force is indirectly calculated from the speed and the magnetic flux.
[0048]
Therefore, in this embodiment, in addition to the measurement data of the current change during the period in which the short-circuit pulse current is generated in the synchronous motor, the change in current when the inductance current attenuates when the short-circuit is released is also used for synchronization. The present invention proposes a measurement method for estimating the terminal voltage (voltage amplitude) of an electric motor and a variable speed device using the same.
[0049]
Here, it is assumed that the DC power supply voltage Vdc of the inverter 1 in FIG. 1 is known by other voltage sensors. Actually, it is intended for a three-phase motor, but for the sake of simplicity, the measurement principle will be described below using a one-phase model.
[0050]
As shown in FIG. 2 (a), a short-circuit pulse current can be generated in the synchronous motor by short-circuiting the terminal of the idle synchronous motor only for a short period by gate control of the inverter.
[0051]
The equivalent circuit at this time is a current proportional to E0 because the voltage of the induced electromotive force E0 is added to the inductance L of the synchronous motor when the gate of the lower arm in the single-phase model is turned on as shown in FIG. Change occurs. Thereafter, when the gate of the lower arm is turned OFF to stop the short circuit, this time, as shown in FIG. 2C, the current is commutated to the current loop for regenerating the power source through the diode of the upper arm of the inverter.
[0052]
Accordingly, the amount of change in the current flowing through the inductance L satisfies the following relationship using the DC power supply voltage Vdc and the induced electromotive force E0 when the power is regenerated through the diode after the short circuit and after the short circuit.
[0053]
[Formula 6]
−E0 = (di L / dt) L
(Vdc−E0) = (di H / dt) L
Here, (di L / dt) represents the current differentiation at the time of short circuit in the period of FIG. 2B, and (di H / dt) represents the current differentiation after the short circuit in the period of FIG.
[0054]
Since these current differentials are proportional to the voltage applied to the inductance L, the ratio of the terminal voltage of the synchronous motor to the induced electromotive force can be estimated by measuring the amount of current change (current differential value). Can be requested.
[0055]
Therefore, as shown below, the induced electromotive force E0 can be derived from the following relational expression using the current change amount ratio K.
[0056]
[Expression 7]
K = (di L / dt) / (di H / dt)
K = −E0 / (Vdc−E0)
K (Vdc−E 0 ) = − E0
K ・ Vdc = K ・ E0−E0
E0 = K · Vdc / (K−1)
Therefore, it is possible to directly measure the voltage from the current differential component and the power supply voltage Vdc when the synchronous motor is short-circuited and immediately after that.
[0057]
Here, in the case of a three-phase synchronous motor, the induced electromotive force has a three-phase AC waveform, and therefore the three-phase voltage varies depending on the phase of the rotor. In the short-circuit period, the current changes in proportion to the induced electromotive force of each phase, but only two potentials at both the P and N terminals of the DC power supply are used to regenerate the inductance energy after the short-circuit to the DC power supply. Is applied to the terminal according to the current polarity of the inductance, the three-phase terminal voltage is different from the ratio of the induced electromotive force. Therefore, since the ratio of the current rise in the short-circuit period and the current fall in the regeneration period immediately after that is different for all three phases, the above equation cannot be applied.
[0058]
Therefore, measurement is performed when the induced electromotive force coincides with the axis of the three-phase winding. Induced electromotive force of the three-phase alternating current skin type e u shown in FIG. 3, e v, of e w, at the timing when the two-phase components are identical, since only the induced electromotive force also binary three phases does not exist, just The same model as single phase can be applied.
[0059]
In order to perform measurement when this phase is reached, the measurement phases θ0, θ1, θ2 and times t0, t1, t2 and the calculated speed ω est of Embodiment 1 and Embodiment 2, and the corrected speed ω Since the rotational phase is predicted from est, it is possible to measure the amplitude component of the induced electromotive force at the timing when the two-phase components match from this prediction.
[0060]
(Embodiment 4)
In the third embodiment, the induced electromotive force measurement is performed under the condition that the components of the two phases out of the three phases coincide with each other. However, the same result can be obtained even if measurement is performed under the condition where only one phase does not flow current. .
[0061]
Therefore, in this embodiment, as shown in FIG. 4, it is proposed to measure at the time when the voltage of one phase is zero.
[0062]
The phase where the induced electromotive force is zero corresponds to the intermediate voltage of the other two phases. For this reason, the current also remains zero due to the balanced input and output components. If it does so, the measurement equivalent to a single phase model can be implemented, and the amplitude component of an induced electromotive force can be measured.
[0063]
Note that the measurement timing in the present embodiment and the third embodiment is when the induced electromotive force exists on a phase shifted by exactly 30 ° with respect to the three-phase winding axis.
[0064]
【The invention's effect】
When a synchronous motor using a permanent magnet as a field source is idling, if the amplitude, phase, and speed of the induced electromotive force of the rotor are known, the induced electromotive force is generated when starting operation during idling. The output can be started from the balanced voltage, and stable start-up is possible without a sudden change in current.
[0065]
Among them, in order to measure the phase and speed, the current component generated by the induced electromotive force of the synchronous motor is measured by turning on the gate of the inverter for a short period of time under the condition of zero voltage. The phase and speed of the induced electromotive force are measured by utilizing the fact that the space vector of the measured current exists in a phase opposite to the induced electromotive force vector by 180 °. At this time, in the conventional method, there is a condition that the time difference between the two short-circuit pulse currents is less than 180 ° of each rotor.
[0066]
On the other hand, according to the measurement method and the variable speed device of the first and second embodiments of the present invention, there is no time limit for measurement, and it is not necessary to shorten the measurement period when rotating at high speed. As a result, since the short-circuit period can be made longer, the amplitude of the short-circuit pulse current to be measured can be increased, so that the influence of current detection error and the like can be reduced.
[0067]
In the conventional method, the speed and phase can be measured, but the amplitude of the induced electromotive force cannot be measured. If the inductance value is known, the voltage can be estimated from the differentiation of the current. If the residual magnetic flux is known, the induced electromotive force can be calculated from the speed. Both of these methods have the problem of requiring a constant for the synchronous motor. Therefore, when the constant changes depending on the temperature, or when the individual variations of the synchronous motors are large, an error occurs in the estimated value of the induced electromotive force.
[0068]
On the other hand, in the measurement method and the variable speed device of the third and fourth embodiments of the present invention, the voltage amplitude component is directly estimated from the differential component of the current and the DC voltage based on the measurement method of the first and second embodiments. Therefore, accurate voltage amplitude measurement and variable speed control are possible.
[Brief description of the drawings]
FIG. 1 is a time chart of a variable speed device and speed / phase measurement according to first and second embodiments of the present invention.
FIG. 2 is a diagram illustrating a measurement principle according to a third embodiment of the present invention.
FIG. 3 is an explanatory diagram of the measurement timing of the induced electromotive force in the third embodiment.
FIG. 4 is an explanatory diagram of measurement timing of induced electromotive force in the fourth embodiment.
FIG. 5 is a short-circuit mode in which all lower arm gates are turned ON when a short-circuit pulse current is generated.
FIG. 6 is a short-circuit mode in which all upper arms are gated ON when a short-circuit pulse current is generated.
FIG. 7 is a diagram illustrating the principle of performing speed measurement from the generation timing and measurement phase of a short-circuit current in a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter 2 ... Control apparatus 3 ... Current detector 4 ... A / D converter 5 ... Synchronous motor 6 ... Current phase detection part 7 ... Speed calculation part 8 ... Integration part 9 ... Phase difference correction part

Claims (6)

永久磁石を界磁源とする同期電動機の空転状態で、インバータのゲート制御で同期電動機に発生させる短絡パルス電流の時間差と位相差を基に同期電動機の回転子位置・速度・電圧振幅を計測する同期電動機の位置・速度・電圧振幅のセンサレス計測方法であって、
前記短絡パルス電流は互いに異なる時間t0、t1、t2の間隔で3回以上発生させて短絡パルス電流の位相θ0、θ1、θ2を検出し、且つ各時間間隔の時間差Ta(=t1−t0)、Tb(=t2−t1)と位相差θa(=θ1−θ0)、θb( = θ2−θ1)を求めると共に、各計測時間における前記時間差と位相差からさらにその差分の時間差△T(=Ta−Tb)と位相差△θ(=θa−θb)を求め、これら差分の比△θ/△Tから求めた前記同期電動機の回転子角速度ω est から速度および位相を計測することを特徴とする同期電動機の位置・速度・電圧振幅のセンサレス計測方法。
In the idling state of a synchronous motor with a permanent magnet as a field source, the rotor position, speed, and voltage amplitude of the synchronous motor are measured based on the time difference and phase difference of the short circuit pulse current generated in the synchronous motor by gate control of the inverter. A sensorless measurement method for the position, speed, and voltage amplitude of a synchronous motor,
The short-circuit pulse current is generated three or more times at intervals of different times t0, t1, and t2, and the phases θ0, θ1, and θ2 of the short-circuit pulse current are detected, and the time difference Ta (= t1−t0) of each time interval, Tb (= t2−t1) and phase differences θa (= θ1−θ0) and θb ( = θ2−θ1) are obtained, and the time difference ΔT (= Ta−) is further calculated from the time difference and the phase difference at each measurement time. Tb) and a phase difference Δθ (= θa−θb) are obtained, and the speed and phase are measured from the rotor angular velocity ω est of the synchronous motor obtained from the ratio Δθ / ΔT of these differences. Sensorless measurement method for motor position, speed, and voltage amplitude.
前記時間差信号Taと回転子角速度ω est の積、及び時間差信号Tbと回転子角速度ω est の積から各計測期間の位相変化量Θa’、Θb’を推定し、且つ前記位相差θa、θbから計測位相が多回転している場合の位相変化量Θa’、Θb’に最も近い位相差に補正して速度および位相を求めることを特徴とする請求項1に記載の同期電動機の位置・速度・電圧振幅のセンサレス計測方法。 Phase change amounts Θa ′ and Θb ′ in each measurement period are estimated from the product of the time difference signal Ta and the rotor angular velocity ω est , and the product of the time difference signal Tb and the rotor angular velocity ω est , and from the phase differences θa and θb. The position / speed / position of the synchronous motor according to claim 1, wherein the speed and phase are obtained by correcting to a phase difference closest to the phase change amounts Θa ′ and Θb ′ when the measurement phase is rotated many times. Sensorless measurement method of voltage amplitude. 前記短絡パルス電流は、同期電動機の誘起起電力が三相の巻線軸に対して30°ずれた位相上に存在するときに発生させ、そのときの電流増加の微分成分と、短絡終了直後の電流減少の微分成分を計測し、前記インバータの直流電源電圧を定数として誘起起電力の振幅成分を求めることを特徴とする請求項1または2に記載の同期電動機の位置・速度・電圧振幅のセンサレス計測方法。  The short-circuit pulse current is generated when the induced electromotive force of the synchronous motor exists on a phase shifted by 30 ° with respect to the three-phase winding axis, and the differential component of the current increase at that time and the current immediately after the end of the short-circuit 3. The sensorless measurement of the position / speed / voltage amplitude of the synchronous motor according to claim 1, wherein a differential component of the decrease is measured, and an amplitude component of the induced electromotive force is obtained by using a DC power supply voltage of the inverter as a constant. Method. 永久磁石を界磁源とする同期電動機の空転状態で、インバータのゲート制御で同期電動機に発生させる短絡パルス電流の時間差と位相差を基に同期電動機の回転子位置・速度・電圧振幅を計測し、これら計測結果を基に同期電動機を起動および可変速制御する同期電動機のセンサレス可変速装置であって、前記インバータの制御装置に、前記短絡パルス電流の位相がt0、t1、t2の異なる時間間隔で3回以上の位相信号θ0、θ1、θ2を検出する位相検出部と、回転子角速度信号を算出する速度演算部、及びこの速度演算部により算出された角速度信号を積分して位相を求める演算手段を設けると共に、速度演算部は、前記計測時間からTa(=t1−t0)、Tb(=t2−t1)の時間差と前記位相信号からθa(=θ1−θ0)、θb( = θ2−θ1)の位相差を求める手段と、求めた時間差と位相差から更に各差分△T(=Ta−Tb)と位相差△θ(=θa−θb)を求め、これら差分の比△θ/△Tから回転子角速度ω est を求める手段を備えたことを特徴とする同期電動機のセンサレス可変速装置。In the idling state of a synchronous motor using a permanent magnet as a field source, the rotor position, speed, and voltage amplitude of the synchronous motor are measured based on the time difference and phase difference of the short circuit pulse current generated in the synchronous motor by gate control of the inverter. , A sensorless variable speed device of a synchronous motor for starting and variable speed control of the synchronous motor based on these measurement results, wherein the inverter control device includes a time interval in which the phases of the short-circuit pulse currents are different at t0, t1, and t2. The phase detector that detects the phase signals θ0, θ1, and θ2 three times or more, the speed calculator that calculates the rotor angular velocity signal, and the calculation that obtains the phase by integrating the angular velocity signals calculated by the velocity calculator In addition to providing the means, the speed calculation unit calculates the time difference of Ta (= t1−t0) and Tb (= t2−t1) from the measurement time and θa (= θ1−θ0), θ from the phase signal. Means for determining a phase difference (= θ2-θ1), further from the determined time difference and the phase difference each difference △ T (= Ta-Tb) and phase difference △ theta seeking (= θa-θb), the ratio of these differences A sensorless variable speed device for a synchronous motor, comprising means for obtaining a rotor angular velocity ω est from Δθ / ΔT . 前記速度演算部により求まった時間差信号Ta、Tbと回転子角速度ω est を入力し、時間差信号Taと回転子角速度ω est の積、及び時間差信号Tbと回転子角速度ω est の積から各計測期間の位相変化量Θa’、Θb’を推定し、且つ前記位相差θa、θbから計測位相が多回転している場合の位相変化量Θa’、Θb’に最も近い前記速度計測結果より各計測期間の位相進み角を演算で推定し、これを基に計測位相が多回転している場合の位相差補正を算出して前記速度演算部に出力する位相差補正部を備えたことを特徴とする請求項4に記載の同期電動機のセンサレス可変速装置。 The time difference signals Ta and Tb obtained by the speed calculation unit and the rotor angular velocity ω est are input , and each measurement period is calculated from the product of the time difference signal Ta and the rotor angular velocity ω est and the product of the time difference signal Tb and the rotor angular velocity ω est. phase variation Θa of ',? b' estimates the, and the phase difference .theta.a, phase variation Θa when measured phase from θb is multi-rotation ',? b' each measurement from the result closest prior Symbol rate measured A phase difference correction unit that estimates a phase advance angle of a period by calculation, calculates a phase difference correction when the measurement phase is rotated multiple times based on this, and outputs the phase difference correction unit to the speed calculation unit is provided. A sensorless variable speed device for a synchronous motor according to claim 4. 前記インバータは、同期電動機の誘起起電力が三相の巻線軸に対して30°ずれた位相上に存在するときに前記短絡パルス電流を発生させ、
前記演算手段は、各短絡パルス電流の電流増加の微分成分と、短絡終了直後の電流減少の微分成分を計測し、前記インバータの直流電源電圧を定数として誘起起電力の振幅成分を求める手段を備えたことを特徴とする請求項4または5に記載の同期電動機のセンサレス可変速装置。
The inverter generates the short-circuit pulse current when the induced electromotive force of the synchronous motor exists on a phase shifted by 30 ° with respect to the three-phase winding axis,
The arithmetic means comprises means for measuring a differential component of current increase of each short-circuit pulse current and a differential component of current decrease immediately after the end of the short circuit, and obtaining an amplitude component of the induced electromotive force using the DC power supply voltage of the inverter as a constant. 6. The sensorless variable speed device for a synchronous motor according to claim 4, wherein the variable speed device is a synchronous motor.
JP2003002726A 2003-01-09 2003-01-09 Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude Expired - Fee Related JP4269686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002726A JP4269686B2 (en) 2003-01-09 2003-01-09 Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002726A JP4269686B2 (en) 2003-01-09 2003-01-09 Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude

Publications (2)

Publication Number Publication Date
JP2004215466A JP2004215466A (en) 2004-07-29
JP4269686B2 true JP4269686B2 (en) 2009-05-27

Family

ID=32820376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002726A Expired - Fee Related JP4269686B2 (en) 2003-01-09 2003-01-09 Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude

Country Status (1)

Country Link
JP (1) JP4269686B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850543B2 (en) * 2006-03-14 2012-01-11 公益財団法人鉄道総合技術研究所 Line rotation speed estimation device and line rotation speed estimation method
GB2436902B (en) * 2006-04-07 2011-03-02 Siemens Plc Motor drive feedback
DE502006009108D1 (en) * 2006-08-14 2011-04-28 Abb Schweiz Ag Method for determining the rotor angle position of a rotating electrical machine
JP5212594B2 (en) * 2007-02-16 2013-06-19 富士電機株式会社 Control device for permanent magnet type synchronous motor
DE102007060877A1 (en) * 2007-12-18 2009-06-25 Robert Bosch Gmbh Method for sensorless operation of an electric, electronically commutating machine
CN101771378A (en) * 2010-03-05 2010-07-07 北京清能华福风电技术有限公司 Quick start-up method of synchronous motor zero-velocity sensor
KR101091745B1 (en) * 2010-04-22 2011-12-08 엘지전자 주식회사 Motor controlling apparatus and controlling method of the same
CN103197244A (en) * 2013-03-26 2013-07-10 广州飞机维修工程有限公司 General testing system of airplane direct-current generator
CN104132993A (en) * 2014-07-24 2014-11-05 苏州南新电机有限公司 Cast-aluminum rotor die-casting performance test method
EP3351456B1 (en) 2015-09-18 2020-03-04 NSK Ltd. Electric power steering device
EP3736967B1 (en) * 2019-05-06 2022-06-29 Melexis Technologies NV Lead angle detection for bldc motor control
DE112019007652T5 (en) * 2019-08-23 2022-06-15 Mitsubishi Electric Corporation ESTIMATION DEVICE AND AC MOTOR DRIVE DEVICE
CN111030054B (en) * 2019-11-19 2021-11-12 积成电子股份有限公司 Amplitude abrupt change starting method based on two-point product construction method

Also Published As

Publication number Publication date
JP2004215466A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP6692605B2 (en) Method for determining the position of the rotor of a polyphase motor
JP4191172B2 (en) Hall sensor alignment of brushless DC motor
JP6220941B2 (en) Induction motor parameter estimation method
JP4269686B2 (en) Sensorless measurement method and position sensorless variable speed device for synchronous motor position, speed and voltage amplitude
US20010030517A1 (en) Detection of rotor angle in a permanent magnet synchronous motor at zero speed
Li et al. High-stability position-sensorless control method for brushless DC motors at low speed
EP3040690A1 (en) Angle error correction device and angle error correction method for position detector
JP5321792B2 (en) Control device for permanent magnet type synchronous motor
JP5109790B2 (en) Control device for permanent magnet type synchronous motor
CN114826074A (en) Method for acquiring speed and electric angle of permanent magnet synchronous motor based on Hall sensor
JP5396741B2 (en) Control device for permanent magnet type synchronous motor
TW201125279A (en) Control circuit for motor drive
Jarzębowicz Sensorless IPMSM drive with rotor position estimator based on analysis of phase current derivatives
JP5618854B2 (en) Synchronous motor drive system
JP4051833B2 (en) Vector controller for permanent magnet synchronous motor
JP2014110755A (en) Motor drive control device, motor drive control method, and motor using the same
JP4735439B2 (en) Initial magnetic pole position estimation device for permanent magnet type synchronous motor
JP2019033582A (en) Control device and control method
Kraemer et al. Sensorless vector control of PMSM with observer-based phase current reconstruction using only a DC-link current sensor
JP2002272195A (en) Synchronous motor control device
Wilson et al. Real-time thermal management of permanent magnet synchronous motors by resistance estimation
JP4172563B2 (en) Control method of synchronous motor
Guan et al. Sensorless control interior permanent-magnet synchronous motor drive over wide speed range operation based on the current derivative method
JP4127000B2 (en) Motor control device
Won et al. Position sensorless control method of IPMSM applying three shunt sensing PWM inverter using predictive current

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees