JP4269537B2 - Light scatterer and light scattering pattern and display using the same - Google Patents

Light scatterer and light scattering pattern and display using the same Download PDF

Info

Publication number
JP4269537B2
JP4269537B2 JP2001135863A JP2001135863A JP4269537B2 JP 4269537 B2 JP4269537 B2 JP 4269537B2 JP 2001135863 A JP2001135863 A JP 2001135863A JP 2001135863 A JP2001135863 A JP 2001135863A JP 4269537 B2 JP4269537 B2 JP 4269537B2
Authority
JP
Japan
Prior art keywords
light
light scattering
scatterer
pattern
scattering element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001135863A
Other languages
Japanese (ja)
Other versions
JP2002333854A (en
Inventor
敏貴 戸田
彰 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2001135863A priority Critical patent/JP4269537B2/en
Publication of JP2002333854A publication Critical patent/JP2002333854A/en
Application granted granted Critical
Publication of JP4269537B2 publication Critical patent/JP4269537B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光散乱による特定の装飾画像を表示することが可能な散乱体、およびこの散乱体を用いた散乱パターンに関する。
特に、一層高度な偽造防止効果と共に、デザインの自由度の向上した光散乱パターンとそれを有する表示体に関する。
【0002】
【従来の技術】
光散乱に基づいて表示されるパターン(以下、光散乱パターンと称する)は、通常、基材の表面を凹凸形状に加工することで実現される。
その加工方法として、エッチングによる方法や表面部を薬品等で荒らす方法、EB描画装置により凹凸を形成する方法等がある。
【0003】
前述のエッチングや薬品による方法では、表面部の各微小領域において形成する各々の凹凸の比率を変えることにより散乱の度合いを変えることは困難である。
一方、EB描画装置を用いれば、微小領域に形成する各々の凹凸の比率,凹部や凸部の形状などを任意に制御し、基材表面にパターニングすることが可能である。
【0004】
ここで、凹凸で形成された回折格子パターンと、凹凸で形成されて光を散乱する光散乱パターンとの組み合わせにより構成されるディスプレイに関しては、特開平5−273500号公報(特許2751721号)に記載されている。
前述の特許は、回折格子パターンに上記光散乱パターンを組み合わせることにより、
(a)回折光のみによる表示でないため、観察条件の制約が少ない。
(b)きらきらとした印象を与える画像表現だけではない。
(c)双方のパターンが凹凸で形成されるため、作製工程が増えない(エンボス成形のみで良い)と共に、双方のパターンの位置合わせが容易となる。
などの効果を奏する。
【0005】
【発明が解決しようとする課題】
本発明の目的は、前述の特許の凹凸により形成される光散乱パターンの改良に関し、精巧で多彩な表現を可能とし、一層高度な偽造防止効果を向上させると共に、デザインの自由度を向上させることにある。
特に、光散乱パターンの視域(表示像の観察可能な範囲)の連続性を確保しつつ、視点位置による観察色の変化を抑えると共に、光散乱パターン内(光散乱体内)の光散乱要素(凹部または凸部)の数を減らすことが可能な光散乱パターンを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、表面に形成した凹部または凸部を光散乱要素として、入射光について光散乱を生じせしめる光散乱体において、大きさの異なる前記光散乱要素を複数種類配列したことを特徴とする光散乱体である。
前述の散乱体の配列は、規則性を持たせてもよいし、不規則にしてもよい。
【0007】
請求項2に記載の発明は、前記光散乱要素の形状が、全て相似形であることを特徴とする請求項1記載の光散乱体である。
【0008】
請求項3に記載の発明は、前記複数種類配列した光散乱要素の大きさの差が、最大値と最小値とで0.5μm以上であることを特徴とする請求項1または2に記載の光散乱体である。
【0009】
請求項4に記載の発明は、前記光散乱要素の大きさが5μm以下であることを特徴とする請求項1〜3の何れかに記載の光散乱体である。
【0010】
請求項5に記載の発明は、請求項1〜4の何れかに記載の光散乱体の内部で、前記光散乱要素の形状もしくは深さ(高さ)を変えることにより、それぞれの光散乱性を任意に変化させてなる前記光散乱体を、基材表面に複数配置することにより構成されることを特徴とする光散乱パターンである。
このように光散乱要素の形状もしくは深さ(高さ)を変えることにより、階調を有する光散乱パターンが構成される。
【0011】
請求項6に記載の発明は、請求項1〜4の何れかに記載の光散乱体の内部で、前記光散乱要素を形成する密度を変えることにより、それぞれの光散乱性を任意に変化させてなる前記光散乱体を、基材表面に複数配置することにより構成されることを特徴とする光散乱パターンである。
このように光散乱要素の密度を変えることにより、階調を有する光散乱パターンが構成される。
【0012】
請求項7に記載の発明は、請求項5または6に記載の光散乱パターンを形成する基材の表面に、凹凸で形成された回折格子によるパターンを設けたことを特徴とする表示体である。
【0013】
このように本発明では、 光散乱を生じせしめる最小構成単位が「光散乱要素」であり、 前記光散乱要素を所定領域内に複数配置して、「光散乱体」が構成される。
前記光散乱体を画素とし、画素毎に光散乱性を適宜に設定しながら、基材表面に配置することによって、「光散乱パターン」が構成する。
【0014】
また、光散乱要素(凹凸)による光散乱パターンのみならず、光散乱パターンを形成する基材の表面に凹凸の回折格子からなるパターンを混在させることにより、バラエティに富んだ表現で興味ある視覚効果を一層高めたパターンの形成が可能となる。
【0015】
<作用>
光散乱体を構成する光散乱要素により散乱される光の広がりは、光散乱要素を開口として回折現象を扱うことにより得られる回折光の分布と等しいと見なせる。
従って、光散乱要素の大きさが大きければ散乱光は広がらず、大きさが小さければ散乱光は大きく広がることとなる。
【0016】
ここで、図9に示した光散乱体を用いて説明すると、ランダムに配置された複数の光散乱要素(単一の大きさ)による散乱光分布の包絡線は、1つの光散乱要素の散乱光分布と相似形になる。一方、単一の大きさの光散乱要素による散乱光分布はほぼsinc関数の2乗として表せるため、散乱光の射出角度により光強度が振動することになる。
【0017】
ここで、例として、矩形形状の光散乱要素について挙動を詳述する。矩形の光散乱要素からの光の広がりを矩形開口からのフラウンホーファー回折として取り扱うと、光強度分布は下記式で表される(簡単のため、単波長のコヒーレント光による回折とする)。
【0018】
【数1】

Figure 0004269537
【0019】
上式で、Iは観測面(x、y)における光強度分布、dx, dyは長方形のそれぞれ横、縦の辺の長さ、λは光の波長、Rは観測面との距離(測定距離)であり、sinc関数はsinc(x)=sin(πx)/πxである。Aは光の振幅に関わる変数であるが、ここでは定数と考えて良い。
すなわち、光強度は、x、yの各方向において、矩形の各辺の長さに応じたsinc関数の2乗に比例する。
【0020】
なお、ここでの単波長のコヒーレント光による議論は、通常の照明条件下(蛍光灯や太陽光、白熱灯などの白色光源による照明)において、波長や光源の大きさ等を考慮して、光強度分布I(x、y)を波長や光源の大きさに応じてそれぞれ積分すれば良い。
すなわち、基本的な傾向は、上述の単波長のコヒーレント光の場合、光強度分布から推測できる。
【0021】
従って、単一の大きさの矩形形状光散乱要素から成る光散乱体では、光の強度分布が振動成分を持ち、光の波長毎に射出方向に対して光の強度変化が異なるため、白色での照明による通常の照明条件下において、観察位置による急激な明暗の変化や色づき(虹色の変化)が発生する。
【0022】
一方、本発明では、大きさが異なる光散乱要素をランダムに配置することにより、それぞれの大きさの光散乱要素に対する光強度分布を積分した結果が実際の光強度分布となる。
従って、広い範囲に亘って連続的な(なだらかな)分布を持った散乱光が得られ、観察位置による明暗の変化の少なく、安定した白色を呈することが可能となる。
【0023】
もちろん、以上の議論は矩形形状以外の任意形状の光散乱要素について、同様に成り立つものである。
【0024】
なお、光散乱要素の大きさを極めて小さくすれば、散乱光分布の中心極大(射出角度=0#を中心とした極大)を広げることができるが、そのような光散乱要素を単位面積当たりに多数形成しなければ十分な散乱光は得られない。また、その場合、中心極大と隣接する極大の境目ではやはり色変化が観察されることになる。
【0025】
本発明では、光散乱要素をある程度の大きさの範囲に留めておくことができるため、単位面積当たりの光散乱要素の数を少なくすることができる。これにより、工程の簡略化、取り扱うデータ量の減少など、簡便な作製が可能となる。
【0026】
なお、光散乱要素の大きさの範囲は、0.5μm以上あることが望ましい。これは、光散乱要素の大きさが1μm程度のときに、0.5μmの差があれば最小の大きさの光散乱要素の散乱光強度分布の極小位置と、別の大きさの光散乱要素の極大の位置が重複する条件が含まれるようになり、散乱光分布のなだらかさと観察色の不変性が実際上問題にならなくなる。
従って、光散乱要素の大きさの範囲に留意するだけで、光散乱特性の詳細な物理的解析を行う必要なく、容易に効果的な光散乱特性を得ることが可能となる。
【0027】
また、光散乱要素の大きさが5μmを超える場合、中心極大が大きく、しかもその範囲は狭く成りすぎるため、散乱としては実用的でなくなる場合が多いため、光散乱要素の大きさは5μm以下であることが望ましい。
【0028】
光散乱体による散乱光の強度は、光散乱体内にある光散乱要素の密度、もしくは光散乱体の凹凸の深さ(高さ)により変化させることができる。前者は密度が50%程度のときが最大の散乱光強度を得ることができ、密度がこの値を離れるほど散乱光強度が弱くなる。従って、密度により正確な階調表現等が可能となる。後者は光散乱体内の光散乱要素の構成を全く変えずに、その深さや高さを変更するだけで良いため、光散乱体がただ一種類定義されていればよく、工程が簡略化され、作製が容易である。
【0029】
このような光散乱体を画素として表示された画像においては、散乱光の分布範囲が表示体の視域となるため、視域内では視点の移動による色変化が少なく、急激な明暗の変化もない安定した表示を実現できる。
【0030】
【発明の実施の形態】
上記の原理に基づいて、光散乱パターンの構成単位として、図9に示す散乱体において、表面に形成する凹部または凸部を光散乱要素とする際、大きさの異なる複数の前記光散乱要素をランダムに配列した実施形態を説明する。
【0031】
具体的に、3×3μm、2×2μm、1×1μm,の矩形開口に、633nmおよび488nmの波長の光が入射した場合の(回折による)光強度分布について試算した結果を、図1〜図6のグラフに示す。
図1は、3×3μmの矩形開口に、633nmの波長の光が、
図2は、2×2μmの矩形開口に、633nmの波長の光が、
図3は、1×1μmの矩形開口に、633nmの波長の光が、
図4は、3×3μmの矩形開口に、488nmの波長の光が、
図5は、2×2μmの矩形開口に、488nmの波長の光が、
図6は、1×1μmの矩形開口に、488nmの波長の光が、
それぞれ入射した場合、正反射光の光強度に対する相対光強度を、射出角度について示したグラフである。
これらのグラフでは、正反射光の角度を0#とし、プラス側の角度について光強度分布を示している(マイナス側は対称形)。
【0032】
このように、単一の大きさの矩形では、光の強度分布は大きさや波長によって射出角度に対する強度変化が異なるため、白色光での照明による通常の照明条件下において、観察位置による急激な明暗の変化や色づき(虹色の変化)の原因となる。
【0033】
本発明では、例えば、1〜3μmの範囲の矩形をランダムに配置すると、これらのグラフに代表される光強度分布を積分した結果が、実際の光強度分布となる。
従って、広い範囲に亘って連続的な(なだらかな)分布を持った散乱光が得られ、観察位置による明暗の変化の少なく、安定した白色を呈することが可能となる。
【0034】
図7のグラフは、633nmおよび図8のグラフは、488nmの波長の光に対して、それぞれ開口サイズが1〜3μmの範囲にある場合の、上記と同様の試算結果である。これらのグラフから、観察位置(射出角度に対応)の変化に対し、連続的な(なだらかな)明るさの変化と、観察色の安定性が得られることがわかる。
【0035】
なお、光散乱要素の大きさを極めて小さくすれば、散乱光分布の中心極大(射出角度=0#を中心とした極大)を広げることができるが、そのような光散乱要素を単位面積当たりに多数形成しなければ十分な散乱光は得られない。また、その場合、中心極大と隣接する極大の境目ではやはり色変化が観察されることになる。
【0036】
本発明では、光散乱要素をある程度の大きさの範囲に留めておくことができるため、単位面積当たりの光散乱要素の数を少なくすることができる。
すなわち、光散乱要素が単位面積当たりに占める割合を一定(例えば、50%)にする際に、0.1μmの矩形だけで構成するときと、0.1〜5μmの範囲の様々な大きさの矩形で構成するときでは矩形の個数に飛躍的な差があるのは明らかである。これは、1つ1つの光散乱要素を形成する際に、工程の簡略化、取り扱うデータ量の減少など、簡便な作製が可能ということになる。
【0037】
なお、光散乱要素の大きさの範囲は0.5μm以上あることが望ましい。これは、光散乱要素の大きさが1μm程度のときに、0.5μmの差があれば最小の大きさの光散乱要素の散乱光強度分布の極小位置と、別の大きさの光散乱要素の極大の位置が重複する条件が含まれるようになり、散乱光分布のなだらかさと観察色の不変性がある程度保証される。
【0038】
また、光散乱要素の大きさが5μmを超える場合、中心極大が大きく、しかもその範囲は狭く成りすぎるため、散乱としては実用的でなくなる場合が多いため、光散乱要素の大きさは5μm以下であることが望ましい。
【0039】
光散乱体による散乱光の強度は、光散乱体内にある光散乱要素の密度、もしくは光散乱体の凹凸の深さ(高さ)により変化させることができる。
前者は密度が50%程度のときが最大の散乱光強度を得ることができ、密度がこの値を離れるほど散乱光強度が弱くなる。従って、密度により正確な階調表現等が可能となる。
後者は光散乱体内の光散乱要素の構成を全く変えずに、その深さや高さを変更するだけで良いため、光散乱体がただ一種類定義されていればよく、工程が簡略化され、作製が容易である。
【0040】
このような光散乱体を画素として構成された光散乱パターンは、散乱光の分布範囲が表示体の視域となるため、視域内では視点の移動による色変化が少なく、急激な明暗の変化もない安定した表示を実現できる。
【0041】
【発明の効果】
光散乱体による光の散乱の空間的広がり範囲を連続的にできると共に、光散乱要素の数を減らすことができ、視点による観察色の変化が極めて少なく、視点による明るさの変化をなだらかにした効果的な散乱特性を得、散乱体作製を容易にすることができる。
特に、個々の光散乱要素をEB描画によって作製する場合などは、光散乱体を定義するためのデータ量を激減させることができ、簡便な描画が実現できる。
【0042】
【図面の簡単な説明】
【図1】3×3μmの矩形開口に、633nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図2】2×2μmの矩形開口に、633nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図3】1×1μmの矩形開口に、633nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図4】3×3μmの矩形開口に、488nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図5】2×2μmの矩形開口に、488nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図6】1×1μmの矩形開口に、488nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図7】サイズが1〜3μmの範囲にある複数のサイズを持つ矩形開口に、633nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図8】サイズが1〜3μmの範囲にある複数のサイズを持つ矩形開口に、488nmの波長の光が入射した場合の回折光の強度分布を示すグラフ。
【図9】本発明の光散乱体の一例を示す説明図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a scatterer capable of displaying a specific decorative image by light scattering, and a scattering pattern using the scatterer.
In particular, the present invention relates to a light scattering pattern having a higher degree of design freedom as well as a more advanced anti-counterfeit effect and a display body having the light scattering pattern.
[0002]
[Prior art]
A pattern displayed on the basis of light scattering (hereinafter referred to as a light scattering pattern) is usually realized by processing the surface of a base material into an uneven shape.
As the processing method, there are a method by etching, a method of roughening the surface portion with chemicals, a method of forming irregularities by an EB drawing apparatus, and the like.
[0003]
In the above-described method using etching or chemicals, it is difficult to change the degree of scattering by changing the ratio of the unevenness formed in each minute region of the surface portion.
On the other hand, if the EB drawing apparatus is used, it is possible to arbitrarily control the ratio of each unevenness formed in a minute region, the shape of the concave portion or the convex portion, and pattern the substrate surface.
[0004]
Here, regarding a display constituted by a combination of a diffraction grating pattern formed by unevenness and a light scattering pattern formed by unevenness to scatter light, it is described in JP-A-5-273500 (Japanese Patent No. 2751721). Has been.
The aforementioned patent combines the above light scattering pattern with a diffraction grating pattern,
(A) Since the display is not based on only diffracted light, there are few restrictions on the observation conditions.
(B) Not only image expression that gives a brilliant impression.
(C) Since both patterns are formed with projections and depressions, the number of manufacturing steps does not increase (only embossing is sufficient), and the alignment of both patterns becomes easy.
There are effects such as.
[0005]
[Problems to be solved by the invention]
The object of the present invention relates to the improvement of the light scattering pattern formed by the irregularities of the above-mentioned patents, which enables elaborate and diverse expression, improves the further anti-counterfeiting effect, and improves the degree of freedom of design. It is in.
In particular, while ensuring the continuity of the viewing area of the light scattering pattern (the range in which the display image can be observed), while suppressing the change in the observation color depending on the viewpoint position, the light scattering element within the light scattering pattern (within the light scattering body) An object is to provide a light scattering pattern capable of reducing the number of concave portions or convex portions).
[0006]
[Means for Solving the Problems]
The present invention provides a light scatterer that causes light scattering with respect to incident light by using a concave portion or a convex portion formed on the surface as a light scattering element, and a plurality of types of the light scattering elements having different sizes are arranged. It is a scatterer.
The above-described scatterer arrangement may be regular or irregular.
[0007]
The invention according to claim 2 is the light scatterer according to claim 1, wherein the light scattering elements are all similar in shape.
[0008]
The invention according to claim 3 is characterized in that the difference in size of the light scattering elements arranged in plural types is 0.5 μm or more between the maximum value and the minimum value. It is a light scatterer.
[0009]
The invention according to claim 4 is the light scatterer according to any one of claims 1 to 3, wherein the size of the light scattering element is 5 μm or less.
[0010]
The invention according to claim 5 is the light scattering property by changing the shape or depth (height) of the light scattering element inside the light scattering body according to any one of claims 1 to 4. A light scattering pattern comprising a plurality of the light scatterers obtained by arbitrarily changing the number of the light scatterers arranged on the substrate surface.
By changing the shape or depth (height) of the light scattering element in this way, a light scattering pattern having a gradation is formed.
[0011]
The invention according to claim 6 can change each light scattering property arbitrarily by changing the density at which the light scattering element is formed inside the light scattering body according to any one of claims 1 to 4. The light scattering pattern is formed by arranging a plurality of the light scattering bodies on the substrate surface.
By changing the density of the light scattering elements in this way, a light scattering pattern having gradation is configured.
[0012]
The invention according to claim 7 is a display body characterized in that a pattern by a diffraction grating formed by unevenness is provided on the surface of a base material on which the light scattering pattern according to claim 5 or 6 is formed. .
[0013]
Thus, in the present invention, the minimum structural unit that causes light scattering is the “light scattering element”, and a plurality of the light scattering elements are arranged in a predetermined region to constitute the “light scattering body”.
A “light scattering pattern” is formed by using the light scatterer as a pixel and arranging the light scatterer on the surface of the substrate while appropriately setting the light scattering property for each pixel.
[0014]
In addition to the light scattering pattern due to light scattering elements (irregularities), by combining the surface of the substrate on which the light scattering pattern is formed with a pattern consisting of uneven diffraction gratings, a variety of visual effects that are of interest Therefore, it is possible to form a pattern with a higher height.
[0015]
<Action>
The spread of light scattered by the light scattering element constituting the light scatterer can be regarded as being equal to the distribution of diffracted light obtained by handling the diffraction phenomenon with the light scattering element as an aperture.
Therefore, if the size of the light scattering element is large, the scattered light does not spread, and if the size is small, the scattered light spreads greatly.
[0016]
Here, using the light scatterer shown in FIG. 9, the envelope of the scattered light distribution by a plurality of light scattering elements (single size) arranged at random is the scattering of one light scattering element. Similar to light distribution. On the other hand, since the scattered light distribution due to the light scattering element of a single size can be expressed as the square of the sinc function, the light intensity vibrates depending on the emission angle of the scattered light.
[0017]
Here, as an example, the behavior of a rectangular light scattering element will be described in detail. When the spread of light from a rectangular light scattering element is treated as Fraunhofer diffraction from a rectangular aperture, the light intensity distribution is expressed by the following formula (for simplicity, it is diffraction by single-wavelength coherent light).
[0018]
[Expression 1]
Figure 0004269537
[0019]
Where I is the light intensity distribution on the observation plane (x, y), d x and dy are the lengths of the horizontal and vertical sides of the rectangle, λ is the wavelength of light, and R is the distance to the observation plane ( Measurement distance), and the sinc function is sinc (x) = sin (πx) / πx. A is a variable related to the amplitude of light, but can be considered as a constant here.
That is, the light intensity is proportional to the square of the sinc function according to the length of each side of the rectangle in each of the x and y directions.
[0020]
It should be noted that the discussion using single-wavelength coherent light here takes into account the wavelength and the size of the light source under normal lighting conditions (illumination with a white light source such as a fluorescent lamp, sunlight, or incandescent lamp). The intensity distribution I (x, y) may be integrated according to the wavelength and the size of the light source.
That is, the basic tendency can be estimated from the light intensity distribution in the case of the above-described single-wavelength coherent light.
[0021]
Therefore, in a light scatterer composed of a rectangular light scattering element of a single size, the light intensity distribution has a vibration component, and the change in light intensity varies with the emission direction for each wavelength of light. Under normal illumination conditions due to illumination, sudden changes in brightness and color (rainbow color change) occur depending on the observation position.
[0022]
On the other hand, in the present invention, light scattering elements having different sizes are arranged randomly, and the result of integrating the light intensity distribution for each size of light scattering element is the actual light intensity distribution.
Therefore, scattered light having a continuous (smooth) distribution over a wide range can be obtained, and a stable white color can be obtained with little change in brightness depending on the observation position.
[0023]
Of course, the above discussion holds true for light scattering elements having any shape other than the rectangular shape.
[0024]
In addition, if the size of the light scattering element is made extremely small, the central maximum of the scattered light distribution (the maximum with the emission angle = 0 # as the center) can be expanded. If many are not formed, sufficient scattered light cannot be obtained. In that case, a color change is also observed at the boundary between the central maximum and the adjacent maximum.
[0025]
In the present invention, since the light scattering elements can be kept within a certain size range, the number of light scattering elements per unit area can be reduced. As a result, simple production such as simplification of the process and reduction of the amount of data to be handled becomes possible.
[0026]
The range of the size of the light scattering element is desirably 0.5 μm or more. This is because when the size of the light scattering element is about 1 μm, if there is a difference of 0.5 μm, the minimum position of the scattered light intensity distribution of the light scattering element of the smallest size and the light scattering element of another size The condition that the maximum positions of the two overlap each other is included, and the gentleness of the scattered light distribution and the invariance of the observation color do not become a problem in practice.
Therefore, only by paying attention to the size range of the light scattering element, it is possible to easily obtain effective light scattering characteristics without the need for detailed physical analysis of the light scattering characteristics.
[0027]
In addition, when the size of the light scattering element exceeds 5 μm, the central maximum is large and the range becomes too narrow, so that it is often impractical as scattering. Therefore, the size of the light scattering element is 5 μm or less. It is desirable to be.
[0028]
The intensity of the scattered light by the light scatterer can be changed by the density of the light scattering elements in the light scatterer or the depth (height) of the unevenness of the light scatterer. The former can obtain the maximum scattered light intensity when the density is about 50%, and the scattered light intensity becomes weaker as the density goes away from this value. Therefore, accurate gradation expression and the like can be performed depending on the density. In the latter case, it is only necessary to change the depth and height without changing the configuration of the light scattering element in the light scattering body, so only one type of light scattering body needs to be defined, the process is simplified, Easy to manufacture.
[0029]
In an image displayed with such a light scatterer as a pixel, the distribution range of scattered light is the viewing area of the display body, so that there is little color change due to the movement of the viewpoint within the viewing area, and there is no sudden change in brightness. A stable display can be realized.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Based on the above principle, as a light scattering pattern constituent unit, in the scatterer shown in FIG. 9, when a concave or convex portion formed on the surface is used as a light scattering element, a plurality of light scattering elements having different sizes are used. A randomly arranged embodiment will be described.
[0031]
Specifically, the results of trial calculation of the light intensity distribution (due to diffraction) when light having wavelengths of 633 nm and 488 nm are incident on rectangular openings of 3 × 3 μm, 2 × 2 μm, and 1 × 1 μm are shown in FIG. This is shown in the graph of FIG.
In FIG. 1, light having a wavelength of 633 nm is projected on a 3 × 3 μm rectangular aperture.
In FIG. 2, light having a wavelength of 633 nm is projected into a 2 × 2 μm rectangular aperture.
In FIG. 3, light having a wavelength of 633 nm is inputted to a rectangular opening of 1 × 1 μm.
In FIG. 4, light having a wavelength of 488 nm is projected on a 3 × 3 μm rectangular aperture.
In FIG. 5, light having a wavelength of 488 nm is projected to a 2 × 2 μm rectangular aperture.
In FIG. 6, light having a wavelength of 488 nm is projected on a rectangular opening of 1 × 1 μm.
It is the graph which showed the relative light intensity with respect to the light intensity of specular reflected light about the emission angle when each incident.
In these graphs, the angle of specularly reflected light is 0 #, and the light intensity distribution is shown for the plus side angle (the minus side is symmetrical).
[0032]
In this way, in a single size rectangle, the intensity distribution of light differs depending on the size and wavelength, so that the intensity change with respect to the emission angle varies. Cause change and coloring (rainbow color change).
[0033]
In the present invention, for example, when rectangles in the range of 1 to 3 μm are randomly arranged, the result of integrating the light intensity distribution represented by these graphs is the actual light intensity distribution.
Therefore, scattered light having a continuous (smooth) distribution over a wide range can be obtained, and a stable white color can be obtained with little change in brightness depending on the observation position.
[0034]
The graph of FIG. 7 is the same calculation result as the above when the aperture size is in the range of 1 to 3 μm for light having a wavelength of 633 nm and that of FIG. 8, respectively. From these graphs, it can be seen that continuous (smooth) changes in brightness and observation color stability can be obtained with respect to changes in the observation position (corresponding to the emission angle).
[0035]
In addition, if the size of the light scattering element is made extremely small, the central maximum of the scattered light distribution (the maximum with the emission angle = 0 # as the center) can be expanded. If many are not formed, sufficient scattered light cannot be obtained. In that case, a color change is also observed at the boundary between the central maximum and the adjacent maximum.
[0036]
In the present invention, since the light scattering elements can be kept within a certain size range, the number of light scattering elements per unit area can be reduced.
That is, when the ratio of the light scattering element per unit area is constant (for example, 50%), the light scattering element is composed of only a 0.1 μm rectangle and various sizes in the range of 0.1 to 5 μm. It is clear that there is a dramatic difference in the number of rectangles when they are made up of rectangles. This means that when forming each light scattering element, simple production such as simplification of the process and reduction of the amount of data to be handled is possible.
[0037]
The range of the light scattering element size is desirably 0.5 μm or more. This is because when the size of the light scattering element is about 1 μm, if there is a difference of 0.5 μm, the minimum position of the scattered light intensity distribution of the light scattering element of the minimum size and the light scattering element of another size The condition where the maximum positions of the images overlap is included, and the gentleness of the scattered light distribution and the invariance of the observation color are guaranteed to some extent.
[0038]
In addition, when the size of the light scattering element exceeds 5 μm, the central maximum is large, and the range becomes too narrow, so that it is often impractical as scattering. Therefore, the size of the light scattering element is 5 μm or less. It is desirable to be.
[0039]
The intensity of the scattered light by the light scatterer can be changed by the density of the light scattering elements in the light scatterer or the depth (height) of the unevenness of the light scatterer.
The former can obtain the maximum scattered light intensity when the density is about 50%, and the scattered light intensity becomes weaker as the density goes away from this value. Therefore, accurate gradation expression and the like can be performed depending on the density.
In the latter case, it is only necessary to change the depth and height without changing the configuration of the light scattering element in the light scattering body, so only one type of light scattering body needs to be defined, the process is simplified, Easy to manufacture.
[0040]
In the light scattering pattern configured with such light scatterers as pixels, the distribution range of scattered light is the viewing zone of the display body, so there is little color change due to the movement of the viewpoint within the viewing zone, and sudden changes in brightness and darkness are also possible. A stable display can be realized.
[0041]
【The invention's effect】
The spatial spread range of light scattering by the light scatterer can be made continuously, the number of light scattering elements can be reduced, the change in observation color from the viewpoint is extremely small, and the brightness change from the viewpoint is smoothed. Effective scattering characteristics can be obtained, and scatterer fabrication can be facilitated.
In particular, when individual light scattering elements are produced by EB drawing, the amount of data for defining a light scatterer can be drastically reduced, and simple drawing can be realized.
[0042]
[Brief description of the drawings]
FIG. 1 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 633 nm is incident on a 3 × 3 μm rectangular aperture.
FIG. 2 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 633 nm is incident on a rectangular opening of 2 × 2 μm.
FIG. 3 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 633 nm is incident on a rectangular opening of 1 × 1 μm.
FIG. 4 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 488 nm is incident on a 3 × 3 μm rectangular aperture.
FIG. 5 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 488 nm is incident on a 2 × 2 μm rectangular aperture.
FIG. 6 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 488 nm is incident on a rectangular opening of 1 × 1 μm.
FIG. 7 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 633 nm is incident on a rectangular aperture having a plurality of sizes in a size range of 1 to 3 μm.
FIG. 8 is a graph showing the intensity distribution of diffracted light when light having a wavelength of 488 nm is incident on a rectangular aperture having a plurality of sizes in the range of 1 to 3 μm.
FIG. 9 is an explanatory view showing an example of a light scatterer of the present invention.

Claims (5)

表面に形成した凹部または凸部を光散乱要素として、入射光について光散乱を生じせしめる光散乱体において観測面のx、yの各方向において矩形の各辺の長さの異なる前記光散乱要素を複数種類配列し、かつ前記光散乱体の内部で、前記光散乱要素の形状を変えることにより、それぞれの光散乱性を任意に変化させてなる前記光散乱体を、基材表面に複数配置することにより構成されることを特徴とする特定の装飾画像を表示する散乱体を用いた光散乱パターン。The light scattering element in which the length of each side of the rectangle is different in each of the x and y directions of the observation surface in a light scatterer that causes light scattering with respect to incident light using the concave or convex portion formed on the surface as a light scattering element. Arranging a plurality of types of light scatterers on the surface of the substrate by arranging a plurality of types and changing the shape of the light scattering element inside the light scatterer to arbitrarily change each light scattering property The light-scattering pattern using the scatterer which displays the specific decoration image characterized by comprising. 表面に形成した凹部または凸部を光散乱要素として、入射光について光散乱を生じせしめる光散乱体において観測面のx、yの各方向において矩形の各辺の長さの異なる前記光散乱要素を複数種類配列し、かつ、前記光散乱体の内部で、前記光散乱要素を形成する密度を変えることにより、それぞれの光散乱性を任意に変化させてなる前記光散乱体を、基材表面に複数配置することにより構成されることを特徴とする特定の装飾画像を表示する散乱体を用いた光散乱パターン。The light scattering element in which the length of each side of the rectangle is different in each of the x and y directions of the observation surface in a light scatterer that causes light scattering with respect to incident light using the concave or convex portion formed on the surface as a light scattering element. A plurality of types of light scatterers, each of which has a light scattering property arbitrarily changed by changing the density at which the light scattering elements are formed inside the light scatterer, are formed on the substrate surface. The light-scattering pattern using the scatterer which displays the specific decoration image characterized by comprising by arranging multiple. 前記光散乱要素の形状が、全て相似形であることを特徴とする請求項1〜2の何れかに記載の光散乱体。3. The light scatterer according to claim 1, wherein all of the shapes of the light scattering elements are similar. 4. 前記光散乱要素の大きさが5μm以下であることを特徴とする請求項1〜2の何れかに記載の光散乱体。The light scatterer according to claim 1, wherein a size of the light scattering element is 5 μm or less. 請求項1または2に記載の光散乱パターンを形成する基材の表面に、凹凸で形成された回折格子によるパターンを設けたことを特徴とする表示体。3. A display body comprising a substrate having a light-scattering pattern according to claim 1 provided with a pattern made of a diffractive grating formed on an uneven surface.
JP2001135863A 2001-05-07 2001-05-07 Light scatterer and light scattering pattern and display using the same Expired - Fee Related JP4269537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001135863A JP4269537B2 (en) 2001-05-07 2001-05-07 Light scatterer and light scattering pattern and display using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001135863A JP4269537B2 (en) 2001-05-07 2001-05-07 Light scatterer and light scattering pattern and display using the same

Publications (2)

Publication Number Publication Date
JP2002333854A JP2002333854A (en) 2002-11-22
JP4269537B2 true JP4269537B2 (en) 2009-05-27

Family

ID=18983253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001135863A Expired - Fee Related JP4269537B2 (en) 2001-05-07 2001-05-07 Light scatterer and light scattering pattern and display using the same

Country Status (1)

Country Link
JP (1) JP4269537B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083599A (en) * 2006-09-28 2008-04-10 Toppan Printing Co Ltd Optical element and display body using the same
EP3040747B1 (en) 2008-04-18 2022-06-22 Toppan Printing Co., Ltd. Display and labeled article
JP2010256450A (en) * 2009-04-22 2010-11-11 Toppan Printing Co Ltd Light-scattering device, light-scattering material, image-displaying medium, and package
JP5609096B2 (en) * 2009-12-15 2014-10-22 凸版印刷株式会社 Blank media and transfer foil
KR101680852B1 (en) * 2010-05-11 2016-12-13 삼성전자주식회사 Semiconductor Light Emitting Device and Manufacturing Method Thereof

Also Published As

Publication number Publication date
JP2002333854A (en) 2002-11-22

Similar Documents

Publication Publication Date Title
JP5157121B2 (en) Display and printed matter
US10473831B2 (en) Display having light-scattering property
CN100526091C (en) Optically variable element
JP6246348B2 (en) Method for marking gemstones and gemstones including diamond and gemstones marked according to the method
US11427025B2 (en) Display, article with display, and method of observing display
JP2010204348A (en) Display body and article with label
JP4269537B2 (en) Light scatterer and light scattering pattern and display using the same
JP2017207593A (en) Display body and authenticity determination method thereof
JP3454371B2 (en) Multiple display using diffraction grating assembly
JP2002328210A (en) Light scattering body and display body using the same
JP4013405B2 (en) Diffraction grating pattern
JP2000121815A (en) Diffraction grating pattern and article applied with same diffraction grating pattern
JP2007316517A (en) Diffraction grating
JP3982200B2 (en) Display with light scattering pattern
CN105158830B (en) Display body and labeled article
Andrulevičius et al. Formation and analysis of dot-matrix holograms
CA3223481A1 (en) Optically variable security element, and value document containing the optically variable security element
JP4725547B2 (en) Diffraction grating pattern
JP6834344B2 (en) Display
JP2002182023A (en) Diffraction grating pattern
JP2002040218A (en) Display
JP2004302026A (en) Image display body having diffraction grating pattern
JP4752808B2 (en) Display consisting of light scattering pattern and diffraction grating pattern
BG2665U1 (en) Embossed optical element for forming images with non-spectral colors
DE202008018619U1 (en) Display and tagged item

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080522

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees