JP4267634B2 - Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same - Google Patents

Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same Download PDF

Info

Publication number
JP4267634B2
JP4267634B2 JP2006070017A JP2006070017A JP4267634B2 JP 4267634 B2 JP4267634 B2 JP 4267634B2 JP 2006070017 A JP2006070017 A JP 2006070017A JP 2006070017 A JP2006070017 A JP 2006070017A JP 4267634 B2 JP4267634 B2 JP 4267634B2
Authority
JP
Japan
Prior art keywords
sheet
separator
pore
polyolefin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006070017A
Other languages
Japanese (ja)
Other versions
JP2007119713A (en
Inventor
コ キョウンージン
リー チャン−ヨン
ヤン ジャエ−ウォン
チョイ キ−サン
Original Assignee
ダブル・スコープ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダブル・スコープ 株式会社 filed Critical ダブル・スコープ 株式会社
Publication of JP2007119713A publication Critical patent/JP2007119713A/en
Application granted granted Critical
Publication of JP4267634B2 publication Critical patent/JP4267634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • B29C55/045Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique in a direction which is not parallel or transverse to the direction of feed, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Cell Separators (AREA)

Description

本発明は、3次元延伸特性を有する微多孔性ポリオレフィン隔離膜及びその製造方法に係り、より詳しくは、高性能2次電池に用いられる隔離膜を製造するに際し、ポリオレフィンシートを縦軸と横軸に延伸することはもとより、押出工程中に気孔延伸性化合物を加え、ポリオレフィンシートの厚さ方向にも延伸加工を行うことにより、隔離膜の内部に多量の微孔、すなわち、微多孔が一様に分布されており、その結果、気孔特性と延伸特性に優れているほか、機械的な特性、熱的特性、電気的な特性などが極めて良いとされている微多孔性ポリオレフィン系隔離膜及びその製造方法に関する。   The present invention relates to a microporous polyolefin separator having three-dimensional stretching characteristics and a method for manufacturing the same, and more specifically, in manufacturing a separator used in a high-performance secondary battery, the polyolefin sheet is placed on a vertical axis and a horizontal axis. In addition to adding a pore-stretching compound during the extrusion process and stretching in the thickness direction of the polyolefin sheet, a large number of micropores, that is, micropores are uniformly formed inside the separator. As a result, in addition to being excellent in pore characteristics and stretch characteristics, the microporous polyolefin-based separator having excellent mechanical characteristics, thermal characteristics, electrical characteristics, etc. and its It relates to a manufacturing method.

近年の電子産業の発達には目を見張るものがあり、これに伴い、リチウムイオン電池、リチウムイオンポリマー電池などの高性能2次電池への需要が高まる一方である。例えば、携帯電話、携帯用情報端末機器、PDA、デジタルカメラ、ノート型パソコン、ブルートゥース機器などではいずれも高性能2次電池を電源として用いており、今後、医療用、軍事用など種々の分野へと2次電池の応用分野が広がっていくと見込まれる。   The development of the electronic industry in recent years is remarkable, and along with this, the demand for high performance secondary batteries such as lithium ion batteries and lithium ion polymer batteries is increasing. For example, mobile phones, portable information terminal devices, PDAs, digital cameras, notebook computers, Bluetooth devices, etc. all use high-performance secondary batteries as a power source, and will be used in various fields such as medical use and military use in the future. The application field of secondary batteries is expected to expand.

通常、再充電可能な2次電池は、大きく正極物質と負極物質、電解液及び隔離膜といった4通りの構成要素から構成されている。ここで、隔離膜は、まるでたわしの構造のように膜を貫通する微多孔が数多く分布されており、正極物質と負極物質との間に挿入されて電解液の移動は遮断すると共に、イオン物質を選択的に通過させる役割を果たす。また、正極物質と負極物質が直接的に接触するといった短絡現象を防止して、短絡の発生時には膜の内部の気孔を遮断して昇温による発火あるいは爆発を防止して電池の安定性及び寿命を向上させるという機能をする。   In general, a rechargeable secondary battery is mainly composed of four components such as a positive electrode material, a negative electrode material, an electrolytic solution, and a separator. Here, the separator membrane has many micropores penetrating the membrane like a sword structure, and is inserted between the positive electrode material and the negative electrode material to block the movement of the electrolytic solution, and the ionic material It plays the role of selectively passing through. In addition, it prevents the short circuit phenomenon that the positive electrode material and the negative electrode material are in direct contact with each other, and when the short circuit occurs, the pores inside the film are blocked to prevent ignition or explosion due to the temperature rise, thereby improving the stability and life of the battery. The function of improving.

現在の技術的なレベルに照らしてみるとき、2次電池の構成要素のうち正極及び負極物質、そして電解液に対しては技術的にほとんど安定あるいは最適レベルに達していると認められるが、隔離膜にしてみれば、まだ多くの部分において品質改善が望まれる。この理由から、現在用いられている高性能2次電池の寿命及び品質を決める重要な技術的な要素のひとつが隔離膜であると言え、隔離膜の性能によって電池の品質及び寿命が左右されているのが現状である。   In light of the current technical level, it is recognized that it is almost technically stable or has reached the optimal level for the positive and negative electrode materials and the electrolyte among the components of the secondary battery. In terms of film, quality improvement is still desired in many parts. For this reason, it can be said that one of the important technical factors that determine the life and quality of high-performance secondary batteries currently used is the separator, and the quality and life of the battery depend on the performance of the separator. The current situation is.

従来より、高性能2次電池用隔離膜の主材料として、電解液に対して安定しており、シャットダウン特性及び電気絶縁特性に優れているポリオレフィン系樹脂、中でも、分子量が大となるポリエチレン樹脂が多用されてきた。従来より知られている微多孔性隔離膜の製造方法は、下記の通りである。   Conventionally, as a main material of a separator for a high performance secondary battery, a polyolefin-based resin that is stable against an electrolytic solution and has excellent shutdown characteristics and electrical insulation characteristics, especially a polyethylene resin having a large molecular weight. It has been used a lot. A conventionally known method for producing a microporous separator is as follows.

先ず、主材料、例えば、ポリエチレン樹脂に気孔形成添加物としての可塑剤、ワックス類などを適切な割合に添加する。次に、これをホッパーを介して押出用スクリュー内に仕込んで溶融させた後、Tダイ(T−die)及びキャストロール(Casting roll)などを通過させて所定の幅と厚さを有するシート(Sheet)を形成する。次いで、前記シートを縦軸及び横軸方向にそれぞれ延伸して所望の幅と厚さを有する隔離膜フィルムを得た後、このフィルムを溶剤(Solvent)に沈積させて前記添加物を除去する。これにより、添加物が溶出されながら、その位置に気孔が形成され、その結果、微多孔性構造を有する隔離膜が得られる。前記微多孔性隔離膜は、熱固着及びコロナ(Corona)処理などの工程を経て所定の寸法に切断された後、2次電池用隔離膜として用いられる。   First, a plasticizer, a wax or the like as a pore forming additive is added to a main material, for example, a polyethylene resin in an appropriate ratio. Next, this is charged into an extrusion screw through a hopper and melted, and then passed through a T-die, a casting roll, etc., and a sheet having a predetermined width and thickness ( Sheet) is formed. Next, the sheet is stretched in the vertical and horizontal directions to obtain a separator film having a desired width and thickness, and then the film is deposited in a solvent to remove the additive. Thereby, pores are formed at the positions while the additive is eluted, and as a result, a separator having a microporous structure is obtained. The microporous separator is used as a separator for a secondary battery after being cut into a predetermined size through processes such as heat fixing and corona treatment.

しかしながら、この種の従来方法においては、主材料としてのポリエチレン樹脂物と気孔形成添加物が混合される過程で、極めて低い溶融粘度が生じる。このため、微細な気孔が均一に分布するように形成することには技術的に限界があった。   However, in this type of conventional method, a very low melt viscosity is produced in the process in which the polyethylene resin as the main material and the pore-forming additive are mixed. For this reason, there is a technical limit in forming fine pores so that they are uniformly distributed.

この限界を克服する目的で、本発明者らは、下記特許文献において、ひとつの2次電池用微多孔隔離膜の製造方法を提案している。この方法は、微多孔隔離膜の両端表面に一定の厚さの非晶質層(Amorphous layer)を形成して非晶質層/結晶層/非晶質層の構造を持たせ、前記非晶質層には前記結晶層よりも小さな気孔を形成することを特徴とする。この方法によれば、従来の隔離膜に比べて気孔特性を格段に改善することができる効果がある。しかしながら、この発明が属する技術分野において通常の知識を有する者が上記の如き構造の隔離膜を繰り返し製造できる具体的な方法が確立されておらず、まだ産業的な実施段階には至っていないといえる。しかも、前記隔離膜を2次電池用、特に次世代2次電池として用いるには、気孔特性、延伸特性、特に電池の寿命及び安定性に関わる機械的な特性、熱的特性、電気的な特性などの点から、未だ改善の余地が多大であった。
大韓民国特許公開第2005−39111号(公開日:2005年04月29日)
In order to overcome this limitation, the present inventors have proposed a method for producing a microporous separator for a secondary battery in the following patent document. In this method, an amorphous layer (Amorphous layer) having a constant thickness is formed on both end surfaces of a microporous separator to give an amorphous layer / crystalline layer / amorphous layer structure, and the amorphous layer is formed. The porous layer has pores smaller than the crystal layer. According to this method, there is an effect that the pore characteristics can be remarkably improved as compared with the conventional separator. However, a specific method by which a person having ordinary knowledge in the technical field to which the present invention belongs can repeatedly manufacture the separator having the above structure has not been established, and it can be said that the industrial implementation stage has not yet been reached. . In addition, in order to use the separator for a secondary battery, particularly a next-generation secondary battery, the pore characteristics, the stretching characteristics, especially the mechanical characteristics related to the life and stability of the battery, the thermal characteristics, the electrical characteristics. There was still a lot of room for improvement.
Republic of Korea Patent Publication No. 2005-39111 (Publication Date: April 29, 2005)

そこで、本発明の目的は、次世代高容量及び薄型の2次電池用隔離膜として用いて好適な微多孔性ポリオレフィン系隔離膜及びその製造方法を提供することにある。この隔離膜は、2次電池用ポリオレフィン系隔離膜の内部に微細な気孔が一様に分布されていることから、気孔特性及び延伸特性に優れ、その結果、超薄膜の隔離膜が製造でき、加えて、機械的な特性、熱的な特性、電気的な特性などが極めて良好である。   Therefore, an object of the present invention is to provide a microporous polyolefin-based separator that is suitable for use as a next-generation high-capacity and thin secondary battery separator and a method for producing the same. This separator has a uniform distribution of fine pores inside the polyolefin-based separator for secondary batteries, so it has excellent pore characteristics and stretching characteristics. As a result, an ultra-thin separator can be manufactured. In addition, mechanical characteristics, thermal characteristics, electrical characteristics, etc. are extremely good.

この目的を達成するために、高性能2次電池に用いられる隔離膜において、溶融指数(Melt Index)が0.01以上、0.5以下のポリオレフィン系混合樹脂を含み、厚さが6μm以上、10μm以下、気孔率が50%以上、80%以下であり、その製造過程でシート内部の微細気孔が厚さ方向と縦軸及び横軸方向に3次元延伸されていることを特徴とする。このようにポリオレフィン系隔離膜シートを縦軸と横軸及び厚さ方向に延伸することを、本明細書においては、「3次元延伸」と称する。   In order to achieve this object, the separator used in the high-performance secondary battery includes a polyolefin-based mixed resin having a melt index (Melt Index) of 0.01 or more and 0.5 or less, and a thickness of 6 μm or more. 10 μm or less, and the porosity is 50% or more and 80% or less, and the fine pores in the sheet are three-dimensionally stretched in the thickness direction, the vertical axis, and the horizontal axis in the manufacturing process. In this specification, stretching the polyolefin-based separator sheet in the vertical axis, the horizontal axis, and the thickness direction is referred to as “three-dimensional stretching”.

本発明に係る微多孔性ポリオレフィン系隔離膜は、溶融指数(Melt Index)が0.01以上、0.5以下のポリオレフィン系混合樹脂よりなり、厚さが6以上、10μm以下、気孔率が50%以上、80%以下であり、その製造過程でシートの内部の微細気孔が厚さ方向と縦軸及び横軸方向に3次元延伸されていることを特徴とする。
The microporous polyolefin-based separator according to the present invention is made of a polyolefin-based mixed resin having a melt index of 0.01 or more and 0.5 or less, a thickness of 6 or more and 10 μm or less, and a porosity of 50. % Or more and 80% or less , and the micropores inside the sheet are three-dimensionally stretched in the thickness direction, the vertical axis, and the horizontal axis in the manufacturing process.

本発明において、隔離膜を構成するポリオレフィン系混合樹脂の溶融指数(Melt Index)が0.01以下であれば、流動性にあまりにも劣り過ぎて溶融することが困難になり、工程条件の選択幅が狭過ぎ、これに対し、0.5以上であれば、分子量が低減しすぎて強度特性が悪化するという問題がある。また、厚さが6μm以下である隔離膜は、技術的な限界によりまだ製造が不可能であり、厚さが10μm以上である隔離膜は、電池の高容量化及びスリム化が困難になる。本発明の隔離膜には、まるでたわしの構造のように膜を貫通する微細気孔が数多く分布されているが、このような微細気孔の気孔率(隔離膜の内部の気孔容積/隔離膜の全体の容積)が50%以下となると、イオン物質が隔離膜を円滑に通過できないが故に、隔離膜の機能を果たすことができず、その一方、80%以上であれば、隔離膜の機械的な特性、特に、突刺強度及び引っ張り強度が弱くなるという欠点がある。   In the present invention, if the melting index (Melt Index) of the polyolefin-based mixed resin constituting the separator is 0.01 or less, the fluidity is too inferior and it becomes difficult to melt, and the selection range of process conditions Is too narrow, on the other hand, if it is 0.5 or more, there is a problem that the molecular weight is excessively reduced and the strength characteristics deteriorate. In addition, an isolation film having a thickness of 6 μm or less cannot be manufactured due to technical limitations, and an isolation film having a thickness of 10 μm or more makes it difficult to increase the capacity and slim the battery. The separator of the present invention has a large number of fine pores penetrating through the membrane like a sword structure. The porosity of such fine pores (the pore volume inside the separator / the whole of the separator) If the volume is less than 50%, the ionic substance cannot smoothly pass through the separator, so that the function of the separator cannot be achieved. There is a drawback that the characteristics, in particular, the puncture strength and the tensile strength are weakened.

また、本発明に係る微多孔性ポリオレフィン系隔離膜の製造方法は、主材料としてのポリオレフィン系混合樹脂に気孔形成添加物としてのワックス類あるいは酸化防止剤を加える段階と、前記ポリオレフィン系混合樹脂に対して0.5重量%以上、25重量%以下の気孔延伸性の化合物を混合し、この混合物をシート状に押出しながら膜の内部に含まれている気孔形成添加物をシートの厚さ方向に1次延伸させる段階と、前記シートを40℃以上、90℃以下の温度下、8m/分以上、12m/分以下の速度にてキャスティングロールを通過させた後、縦軸及び横軸方向に2次延伸する段階と、キャストロールを用いて所定の幅と厚さのシートを形成し、このシートを縦軸及び横軸方向に2次延伸させる段階と、延伸されたシートを溶剤に沈積して気孔形成添加物を除去することにより、多孔性フィルムを得る段階と、前記多孔性フィルムを3次延伸及び熱固着する段階と、を含むことを特徴とする。   The method for producing a microporous polyolefin-based separator according to the present invention includes adding a wax or an antioxidant as a pore-forming additive to a polyolefin-based mixed resin as a main material, and adding the polyolefin-based mixed resin to the polyolefin-based mixed resin. On the other hand, 0.5% by weight or more and 25% by weight or less of a pore-stretching compound is mixed, and the pore-forming additive contained in the inside of the membrane is added in the thickness direction of the sheet while extruding the mixture into a sheet shape. A step of primary stretching, and after passing the sheet through a casting roll at a speed of 8 m / min to 12 m / min at a temperature of 40 ° C. or higher and 90 ° C. or lower, Next stretching step, forming a sheet having a predetermined width and thickness by using a cast roll, stretching the sheet secondarily in the vertical and horizontal directions, and sinking the stretched sheet in a solvent. By removing the pore-forming additives and characterized the step of obtaining a porous film, the method comprising the porous film tertiary stretching and thermofixing, to include.

本発明に係る微多孔性ポリオレフィン系隔離膜は、3次元延伸特性を有するものであり、従来より用いられてきた2次元延伸隔離膜に比べて延伸特性及び気孔特性はもとより、機械的な特性が格段に優れていることから、超薄膜型微多孔性隔離膜フィルムが製造可能であり、その結果、2次電池の薄型化及びイオン伝導抵抗の最小化、エネルギー密度の高度化を実現できるといった効果がある。   The microporous polyolefin-based separator according to the present invention has a three-dimensional stretch characteristic, and has mechanical characteristics as well as stretch characteristics and pore characteristics as compared with the two-dimensional stretch separator conventionally used. Since it is extremely superior, it is possible to produce an ultra-thin type microporous separator film. As a result, the secondary battery can be made thinner, the ion conduction resistance minimized, and the energy density advanced. There is.

以下、実施の形態を参照して本発明を説明するが、本発明の範囲がこれに限定されるわけではない。   Hereinafter, the present invention will be described with reference to embodiments, but the scope of the present invention is not limited thereto.

本発明に係る微多孔性ポリオレフィン系隔離膜を製造するためには、先ず、ポリオレフィン系樹脂、好ましくは、ポリエチレン樹脂に気孔形成添加物、すなわち、ワックス類および酸化防止剤を加え、押出機内のスクリューを用いて良く混合する。このとき、主材料として用いられるポリオレフィン系樹脂は、分子量が異なる2種以上の樹脂を混合して得られたものであり、溶融指数が0.01以上、0.5以下の混合樹脂を用いることが好ましい。   In order to produce the microporous polyolefin-based separator according to the present invention, first, pore-forming additives, that is, waxes and antioxidants are added to a polyolefin-based resin, preferably a polyethylene resin, and a screw in an extruder is added. Mix well using. At this time, the polyolefin resin used as the main material is obtained by mixing two or more resins having different molecular weights, and a mixed resin having a melt index of 0.01 or more and 0.5 or less is used. Is preferred.

次いで、前記主材料に対して0.5重量%以上、25重量%以下の気孔延伸性化合物を混合して、気孔形成添加物と気孔延伸性化合物が含まれている主材料をギアポンプ(Gear Pump)及びTダイを介して押出させてシートを得る。これにより、気孔延伸性化合物と気孔形成添加物が反応してその体積が嵩み、このような体積の増大により前記シートを特に厚さ方向に均一に延伸できる。   Next, 0.5% by weight or more and 25% by weight or less of a pore-extensible compound is mixed with the main material, and the main material containing the pore-forming additive and the pore-extensible compound is converted into a gear pump (Gear Pump). ) And a T-die to obtain a sheet. As a result, the pore-stretching compound and the pore-forming additive react to increase the volume, and by increasing the volume, the sheet can be uniformly stretched particularly in the thickness direction.

気孔延伸性化合物としては、エポキシ環を有する化合物、末端基として塩素(Cl)または臭素(Br)を含有する化合物、ケタルラクトン、トリオキサビシクロオクタン、スピロオルト合成物のうちいずれか1種または2種以上を用いることが可能であり、中でも、スピロオルトエステル、スピロオルトカーボネートを用いることができる。   As the pore-stretching compound, any one or two of a compound having an epoxy ring, a compound containing chlorine (Cl) or bromine (Br) as a terminal group, a ketal lactone, trioxabicyclooctane, and a spiro ortho compound The above can be used, and among them, spiro orthoester and spiro ortho carbonate can be used.

上記の如き気孔延伸性化合物が隔離膜シートに含まれている気孔形成添加物を厚さ方向に延伸する原理について説明すると、例えば、スピロオルトカーボネート(Spiro ortho carbonate)などの2つの環構造を有する化合物の場合、シートの押出過程で熱により前記環が開かれる開環反応が起こりながら、その体積が大幅に増大する。この過程で、前記気孔延伸性化合物と混合された気孔形成添加物の体積も嵩み、その結果、隔離膜が特に厚さ方向に盛り上がりながら膜の内部の気孔が活性化する。   The principle of stretching the pore-forming additive contained in the separator sheet in the thickness direction will be described. For example, the pore-stretching compound has two ring structures such as spiro ortho carbonate. In the case of a compound, the volume is greatly increased while a ring-opening reaction occurs in which the ring is opened by heat during the extrusion process of the sheet. In this process, the volume of the pore-forming additive mixed with the pore-stretching compound also increases, and as a result, the pores inside the membrane are activated while the separator membrane rises particularly in the thickness direction.

このとき、前記気孔延伸性化合物の添加量がポリエチレン樹脂に対して0.5重量%よりも低くなると、シートの厚さ方向に対する延伸性に乏しくなる。また、添加量が25重量%を越えると、気孔の径および分布が不揃いとなるために好ましくない。   At this time, if the added amount of the pore stretchable compound is lower than 0.5% by weight with respect to the polyethylene resin, the stretchability in the thickness direction of the sheet becomes poor. On the other hand, when the added amount exceeds 25% by weight, the pore diameter and distribution are not uniform.

このようにして厚さ方向に1次延伸処理の施されたシートは、キャストロール工程を経て所定の幅と厚さを得る。このとき、シートが通過するロールとロールとの速度差及び温度差などの条件によってシートの内部に形成される気孔の形状及び直径が微細に制御されるが、例えば、シートの冷却効率性とシートが受ける張力(Tension)を考慮して40℃以上、90℃以下の温度、8m/分以上、12m/分以下の速度を保持することが効率的である。   Thus, the sheet | seat which performed the primary extending | stretching process in the thickness direction obtains a predetermined | prescribed width and thickness through a cast roll process. At this time, the shape and diameter of pores formed inside the sheet are finely controlled by conditions such as a speed difference and a temperature difference between the roll and the roll through which the sheet passes. For example, the cooling efficiency of the sheet and the sheet It is efficient to maintain a temperature of 40 ° C. or higher and 90 ° C. or lower, and a speed of 8 m / min or higher and 12 m / min or lower in consideration of the tension received by the tension.

次いで、2次延伸されたシートを溶媒に沈積して気孔形成添加物を抽出する。このとき、気孔形成添加物の抽出溶媒としては、イソプロパノール、ヘキサン、ペンタン、塩化メチレン、メチルエチルケトン、ジオキサンなどを使用できる。これにより、シートから気孔形成添加物が除去され、その位置に微細気孔が形成された多孔性フィルムが得られる。   The secondary stretched sheet is then deposited in a solvent to extract the pore forming additive. At this time, isopropanol, hexane, pentane, methylene chloride, methyl ethyl ketone, dioxane, or the like can be used as an extraction solvent for the pore-forming additive. Thereby, the pore-forming additive is removed from the sheet, and a porous film in which fine pores are formed at the position is obtained.

最後に、微細気孔が形成されているフィルムを水とアルコールが混合されている沈積槽に沈積した後、所定の時間後に取り出して、熱固着チャンバ(Chamber)にフィルムを送り込みながら所定の温度及び所定の延伸倍率をもって熱固着及び3次延伸を実施する。こうして、微多孔性ポリオレフィン系隔離膜が完成される。   Finally, after depositing the film in which the fine pores are formed in a sedimentation tank in which water and alcohol are mixed, the film is taken out after a predetermined time, and the film is fed into the heat fixing chamber (Chamber) while being fed at a predetermined temperature and a predetermined temperature. Thermal fixing and tertiary stretching are carried out at a stretching ratio of. Thus, a microporous polyolefin-based separator is completed.

更に、コロナなど表面改質処理を施すことにより、微多孔性ポリオレフィン系隔離膜の用途に応じて求められる特性を与えることもできる。   Furthermore, by performing a surface modification treatment such as corona, it is possible to give the characteristics required according to the use of the microporous polyolefin-based separator.

このようにして得られる微多孔性ポリオレフィン系隔離膜は、溶融指数が0.01以上、0.5以下のポリオレフィン系混合樹脂よりなり、厚さが6μm以上、10μm以下、気孔率が50%以上、80%以下であり、その製造過程においてシートの内部の微細気孔が厚さ方向と縦軸及び横軸方向に3次元延伸されている。   The microporous polyolefin-based separator thus obtained is made of a polyolefin-based mixed resin having a melt index of 0.01 or more and 0.5 or less, a thickness of 6 μm or more and 10 μm or less, and a porosity of 50% or more. 80% or less, and fine pores inside the sheet are three-dimensionally stretched in the thickness direction, the vertical axis, and the horizontal axis in the manufacturing process.

以下、実施例を挙げて説明する。
<実施例>
Hereinafter, an example is given and demonstrated.
<Example>

溶融指数が0.08以上、0.1以下であるポリエチレン混合樹脂に対して、30重量%のワックスおよび酸化防止剤として3重量%のアリン酸エステルを混合して原料混合物を調製した。この原料混合物を押出機内のスクリュー(Screw)において溶融混煉した後、スクリュー末端部のバレル(Barrel)において、ポリエチレン混合樹脂に対して8重量%のスピロオルトエステル化合物を加え、ギアポンプ及びTダイを介して押出してシートを製造した。この押出し過程において、シートは厚さ方向に1次延伸された。   A raw material mixture was prepared by mixing 30% by weight of wax and 3% by weight of an acrylate as an antioxidant to a polyethylene mixed resin having a melt index of 0.08 or more and 0.1 or less. After this raw material mixture is melt-blended in a screw (Screw) in the extruder, 8% by weight of a spiro orthoester compound is added to the polyethylene mixed resin in a barrel (Barrel) at the end of the screw, and a gear pump and a T-die are connected. To produce a sheet. In this extrusion process, the sheet was primarily stretched in the thickness direction.

次いで、前記シートを、80℃以下の温度下で、10m/分の速度で連続してキャストロールを通過させて所定の幅と厚さを有するシートを得た。続いて、110℃以上、120℃以下の温度下で、縦方向に7倍、横方向に12倍の延伸倍率で2次延伸させた。更に、延伸されたシートをイソプロパノール溶剤に沈積して気孔形成添加物を除去して、微多孔性フィルムを得た。   Next, the sheet was passed through a cast roll continuously at a speed of 10 m / min at a temperature of 80 ° C. or lower to obtain a sheet having a predetermined width and thickness. Subsequently, secondary stretching was performed at a stretching ratio of 7 times in the longitudinal direction and 12 times in the transverse direction at a temperature of 110 ° C. or more and 120 ° C. or less. Further, the stretched sheet was deposited in an isopropanol solvent to remove the pore forming additive to obtain a microporous film.

続けて、7:3の割合で混合された水およびアルコールを満たされた沈積槽に、上記微多孔性フィルムを約10分間沈積した後、取り出した後、微多孔性フィルムを熱固着チャンバにおいて3次延伸及び熱固着を実施した。このとき、延伸倍率は25%、熱固着温度は120℃とした。こうして、微多孔性隔離膜が完成された。   Subsequently, after depositing the microporous film in a deposition tank filled with water and alcohol mixed at a ratio of 7: 3 for about 10 minutes, and then removing the microporous film, the microporous film was placed in the heat fixing chamber 3 Next stretching and heat fixing were performed. At this time, the draw ratio was 25%, and the heat fixing temperature was 120 ° C. A microporous separator was thus completed.

前記実施例に従い得られた微多孔性ポリオレフィン系隔離膜に対して気孔特性と機械的な物性及び熱的特性などをそれぞれ測定して、その結果を現在市販中の従来の2次電池用隔離膜(比較例;日本旭化成工業(株)社製のSEシリーズ製品)と比較し、下記表1に示した。

Figure 0004267634
The microporous polyolefin-based separator obtained according to the above-described embodiment was measured for pore characteristics, mechanical properties, thermal characteristics, and the like, and the results were compared with the conventional secondary battery separator currently on the market. (Comparative example: SE series product manufactured by Asahi Kasei Kogyo Co., Ltd.) and shown in Table 1 below.
Figure 0004267634

前記表1から明らかなように、本発明の実施例による微多孔性ポリオレフィン系隔離膜は、従来に用いられていた製品に比べると、先ず、隔離膜の厚さが6μm以上、10μm以下と薄く、気孔率(隔離膜の内部の気孔容積/隔離膜の全体の容積)が50%を上回るといった優れた結果を示して、その他の機械特性、熱的特性なども格段に優れた物性を示した。また、本発明の微多孔性ポリオレフィン系隔離膜は、特に最大の延伸倍率が12倍と卓越であることから、超薄隔離膜が製造可能であり、次世代の高容量及び薄型電池用隔離膜として用いられる可能性が認められた。   As is apparent from Table 1, the microporous polyolefin-based separator according to the embodiment of the present invention has a thickness of 6 μm or more and 10 μm or less as compared with the products conventionally used. , Showing excellent results such as porosity (pore volume inside isolation membrane / total volume of isolation membrane) exceeding 50%, and other mechanical and thermal properties showed much better physical properties . In addition, since the microporous polyolefin-based separator of the present invention has an excellent maximum draw ratio of 12 times, an ultra-thin separator can be manufactured, and the next-generation high-capacity and thin battery separator The possibility of being used as was recognized.

Claims (2)

2次電池に用いられる隔離膜において、
溶融指数(Melt Index)が0.01以上、0.5以下のポリオレフィン系混合樹脂よりなり、厚さが6μm以上、10μm以下、気孔率が50%以上、80%以下であり、その製造過程でシート内部の微細気孔が厚さ方向と縦軸及び横軸方向に3次元延伸されていることを特徴とする微多孔性ポリオレフィン系隔離膜。
In the separator used for the secondary battery,
It consists of a polyolefin-based mixed resin having a melt index of 0.01 or more and 0.5 or less, a thickness of 6 μm or more and 10 μm or less, and a porosity of 50% or more and 80% or less. A microporous polyolefin-based separator, wherein fine pores in a sheet are three-dimensionally stretched in a thickness direction, a vertical axis direction, and a horizontal axis direction.
主材料としてのポリオレフィン系混合樹脂に気孔形成添加物としてのワックス類あるいは酸化防止剤を加える段階と、
前記ポリオレフィン系混合樹脂に対して0.5重量%以上、25重量%以下のエポキシ環を有する化合物、ケタルラクトン、トリオキサビシクロオクタン、スピロオルト合成物のうちいずれか1種あるいは2種以上を混合し、この混合物をシート状に押出しながら膜の内部に含まれている気孔形成添加物をシートの厚さ方向に延伸させる段階と、
前記シートを40℃以上、90℃以下の温度下、8m/分以上、12m/分以下の速度にてキャスティングロール(Casting Roll)を通過させて、所定の幅と厚さのシートを形成した後、縦軸及び横軸方向に延伸する段階と、
延伸されたシートを溶剤に沈積して気孔形成添加物を除去することにより、多孔性フィルムを得る段階と、
前記多孔性フィルムを延伸及び熱固着する段階と
を含むことを特徴とする微多孔性ポリオレフィン系隔離膜の製造方法。
Adding a wax or an antioxidant as a pore-forming additive to a polyolefin-based mixed resin as a main material;
One or two or more of a compound having an epoxy ring of 0.5% by weight or more and 25% by weight or less , ketal lactone, trioxabicyclooctane, or a spiro ortho compound is mixed with the polyolefin-based mixed resin. a step of lengthened extending the pore-forming additive contained the mixture in the interior of the extrusion while the film into a sheet in the thickness direction of the sheet,
The sheet was passed through a casting roll at a speed of 8 m / min to 12 m / min at a temperature of 40 ° C. or higher and 90 ° C. or lower to form a sheet having a predetermined width and thickness . after the steps of extending extension in the vertical axis and the horizontal axis direction,
Obtaining a porous film by depositing the stretched sheet in a solvent to remove pore-forming additives;
Method for producing a microporous polyolefin separator which comprises a step of extending the extension and heat securing said porous film.
JP2006070017A 2005-10-28 2006-03-14 Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same Active JP4267634B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20050102195 2005-10-28

Publications (2)

Publication Number Publication Date
JP2007119713A JP2007119713A (en) 2007-05-17
JP4267634B2 true JP4267634B2 (en) 2009-05-27

Family

ID=38143879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070017A Active JP4267634B2 (en) 2005-10-28 2006-03-14 Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same

Country Status (2)

Country Link
JP (1) JP4267634B2 (en)
KR (1) KR100760303B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2274152T3 (en) * 2008-05-02 2014-06-16 Treofan Germany Gmbh & Co Kg One-layer membrane film with battery decoupling function
KR101522373B1 (en) * 2012-06-26 2015-05-21 주식회사 엘지화학 Method of preparing separator, separator produced by the method, and electrochemical device comprising the separator
KR101512145B1 (en) * 2012-06-26 2015-04-14 주식회사 엘지화학 Method of preparing separator, separator prepared by the method, and electrochemical device comprising the separator
KR20140115275A (en) 2013-03-20 2014-09-30 주식회사 엘지화학 Separator for electrochemical cell and a method of making the same
KR101733015B1 (en) 2016-11-09 2017-05-08 유펙스켐(주) Method of manufacturing battery separator using treatment of modifying surface
CN113871791B (en) * 2021-08-25 2023-07-07 江西省通瑞新能源科技发展有限公司 High-pressure-resistance diaphragm for lithium ion battery and preparation method thereof
CN113904059A (en) * 2021-09-26 2022-01-07 上海恩捷新材料科技有限公司 High-pore-uniformity microporous membrane, preparation method thereof and battery

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674625B2 (en) * 1987-07-04 1997-11-12 東レ株式会社 Polyolefin microporous film
KR100536341B1 (en) 1999-01-20 2005-12-12 에스케이 주식회사 Microporous Polypropylene film for battery separator and Method of preparing the same
JP4606532B2 (en) 1999-09-17 2011-01-05 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR100637629B1 (en) * 2005-01-11 2006-10-23 도레이새한 주식회사 Method of manufacturing polyethylene microporous film for rechargeable battery separator and polyethylene microporous film thereby

Also Published As

Publication number Publication date
JP2007119713A (en) 2007-05-17
KR20070045889A (en) 2007-05-02
KR100760303B1 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
JP4267634B2 (en) Microporous polyolefin separator having three-dimensional stretching characteristics and method for producing the same
JP4384630B2 (en) Polyethylene microporous membrane for secondary battery separator and method for producing the same
Wu et al. Progresses in manufacturing techniques of lithium‐ion battery separators in China
US10658640B2 (en) Polyolefin microporous membrane, production method thereof, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR101042931B1 (en) Method for producing polyolefine microporous membrane
JP2012038655A (en) Microporous film and battery separator
JP6659755B2 (en) Wound body
JP2012102199A (en) Polyolefin microporous film, and electricity storage device
JP2004323820A (en) Polyolefin microporous membrane and method for producing the same
KR101674985B1 (en) Composition for separator, separator formed by using the composition, and battery using the separator
JP5592745B2 (en) Polyolefin microporous membrane
JP5295857B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
JP4351673B2 (en) Method for producing microporous polyolefin diaphragm
JP2007262203A (en) Microporous film made of polyolefin
JP2012087223A (en) Microporous film, and battery separator
JP4369921B2 (en) Microporous polyolefin diaphragm for secondary battery and method for producing the same
JP2019029232A (en) Non-aqueous electrolyte secondary battery
JP2016044184A (en) Wound body
KR101765817B1 (en) Separator for Secondary Battery with Improved Safety at High Temperature and Method of Making the Same
KR20080020742A (en) Polyethylene microporous films for separator of secondary battery
JP2011081995A (en) Separator for oven resistant property storage device
JP6596270B2 (en) Method for producing polyolefin microporous membrane
JP7152435B2 (en) Polyolefin microporous membrane
KR100776029B1 (en) Fine porous polyolefin separator for secondary battery and its manufacturing method
JP2000348706A (en) Separator for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Ref document number: 4267634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250