JP4267257B2 - Metallized film capacitors - Google Patents

Metallized film capacitors Download PDF

Info

Publication number
JP4267257B2
JP4267257B2 JP2002147411A JP2002147411A JP4267257B2 JP 4267257 B2 JP4267257 B2 JP 4267257B2 JP 2002147411 A JP2002147411 A JP 2002147411A JP 2002147411 A JP2002147411 A JP 2002147411A JP 4267257 B2 JP4267257 B2 JP 4267257B2
Authority
JP
Japan
Prior art keywords
electrode
film
width direction
metallized film
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002147411A
Other languages
Japanese (ja)
Other versions
JP2003338422A (en
Inventor
茂男 奥野
和弘 中坪
聡 細川
誠 冨田
隆 神本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002147411A priority Critical patent/JP4267257B2/en
Publication of JP2003338422A publication Critical patent/JP2003338422A/en
Application granted granted Critical
Publication of JP4267257B2 publication Critical patent/JP4267257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は力率改善用の電力用、電気機器用、各種電源回路用及び通信機器等、また、直流用途の平滑用、フィルター用等高周波領域や車輌駆動用モータの駆動回路等に使用される金属化フィルムコンデンサに関するものである。
【0002】
【従来の技術】
従来から、金属化フィルムコンデンサの保安機構パターンとして蒸着電極をフィルムの長手方向及び幅方向に分割した複数個の分割電極を設けたものが知られている。例えば、特開平10−144563号公報や特開平10−149939号公報等である。
【0003】
以下、従来の金属化フィルムコンデンサについて説明する。
【0004】
図7は、従来の金属化フィルムコンデンサの金属化フィルムでのパターン形状を示す図であり、1は金属蒸着電極に設けられ自己回復作用では回復しきれない破壊に対してその破壊点に流れ込む電流によって微小ブロックをコンデンサから切り離す目的のヒューズ部、6は電極引出部からの電流供給側のヒューズ部、5はマージン部である。
【0005】
概ね、金属蒸着電極を長手方向、幅方向で複数個の微小ブロック部に分割する分割電極形状は格子状であった。
【0006】
【発明が解決しようとする課題】
ところが、このような従来の金属化フィルムコンデンサの場合、種々の難点があった。
【0007】
従来より、金属蒸着膜を微小ブロックに分割して保安機構付の金属化フィルムコンデンサとした場合には、格子状の分割ブロック形状が用いられてきたが、この場合、1ブロックの面積を小さくすることで誘電体中の破壊に対する自己保安機構動作による静電容量の容量減少を抑制している。この場合、微小ブロックの面積を小さくするということは格子状ブロック数が増え、微小ブロック間の連結ヒューズ部が増えることになる。ところが、この連結ヒューズ部が増えれば増えるほど、コンデンサの温度上昇が増すといった課題があった。
【0008】
周知のようにヒューズ部を介してコンデンサ電流が流れるため、ヒューズ部はヒューズのない部分に比べ、大きな発熱を生じさせる。これによりこの種の金属化フィルムコンデンサは大電流仕様や高温仕様等の熱的に厳しい条件下では不向きでコンデンサの小型化が困難で経済的ロスも大きくなるといった課題がある。
【0009】
本発明は、上記問題点を解決するものであり、金属化フィルムコンデンサの特性向上を図ることを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明の金属化フィルムコンデンサの第1手段は、誘電体フィルムの両面または片面に設けられたヒューズ部と非金属部分に囲まれた略菱形形状の金属部で構成される分割電極と、前記略菱形形状の分割電極の辺上にヒューズ部を設けたパターン形状を形成して金属蒸着された金属化フィルムを巻回又は積層されたコンデンサ素子を有する金属化フィルムコンデンサとしたものである。
【0011】
また、本発明の金属化フィルムコンデンサの第2手段は、誘電体フィルムの両面または片面に設けられたヒューズ部と非金属部分に囲まれた金属部を有するパターン形状を形成して金属蒸着された金属化フィルムを巻回または積層されてなる金属化フィルムコンデンサであって、前記パターン形状は、前記金属蒸着膜の両端に頂点を有するとともにフィルム幅方向に頂点を共有して並べた複数個の略菱形の分割電極と、前記複数個の略菱形の分割電極の内、端部にある略菱形の分割電極の2辺を共有し長手方向に隣接する2個の略2等辺三角形と、前記端部にある略菱形の分割電極の他の2辺を共有し長手方向に隣接する2個の略菱形の分割電極とを形成し、前記略菱形の分割電極および前記略2等辺三角形の分割電極の辺上にヒューズ部が設けられており、前記略菱形の分割電極はフィルム幅方向の長対角線を前記フィルム長手方向の短対角線よりも長くすることにより格子状分割電極と比較してフィルム幅方向のヒューズ本数が少なくなるようにした金属化フィルムコンデンサとしたものである。また、フィルム幅方向に頂点を共有して並べた略菱形の分割電極が2個または3個である金属化フィルムコンデンサである。
【0012】
また、本発明の金属化フィルムコンデンサの第3手段は、第1手段、第2手段に加え、パターン形状は、1つの分割電極の電極面積を全電極面積の0.0001〜0.001%に形成した金属化フィルムコンデンサとしたものである。
【0013】
【発明の実施の形態】
(実施の形態1)
以下本発明の実施の形態1について、図1、2、3を用いて説明する。
【0014】
図1は本発明の実施の形態1における金属化フィルムコンデンサの模式図である。図1において、厚み4μm、幅80mmのポリプロピレンフィルムの片面にAL(アルミニウム)を蒸着電極として形成し、分割電極2を菱形形状とし、その各辺にヒューズ部1を設けたものである。菱形は長対角線を25.3mm、短対角線を9.1mmとし、幅方向で3個分の菱形を形成する形状である。この金属化フィルムを巻回又は積層して金属化フィルムコンデンサとした。
【0015】
図2は上記金属化フィルムコンデンサの断面模式図である。4は誘電体フィルムであるポリプロピレンフィルム、3は金属蒸着膜であるAL蒸着膜である。図中上部が上記分割電極2を施した金属化フィルムであり、下部が分割電極2を有しない金属化フィルムである。
【0016】
また、比較用として、図7に示す従来のヒューズ付の格子状分割電極を施した金属化フィルムと分割電極を施さない金属化フィルムを巻回積層したコンデンサを作製した。格子状分割電極面積を図1の実施の形態1と概略同一とするため対角線を15.2mmとした。この場合、分割電極2は正方形形状で45°の傾きを持たせ、幅方向で5個分の格子が併設される形状であり、格子の各辺にヒューズ部1を1箇所設けている形状としている。
【0017】
図1の実施の形態1と比較例のコンデンサに電流を通電し、温度上昇試験を実施したのでその結果を表1に示す。試験は、通電する電流を、周波数10kHzで10A、20A、30Aの各電流値にして通電している。
【0018】
【表1】

Figure 0004267257
表1に示す様に、実施の形態1と比較例を比較すると、電流値の小さな10Aでは絶対値温度上昇差は小さいものの、大電流になるに従い、温度差が大きくなり、実施の形態1が比較例に比べ温度上昇値が小さいことがわかる。これは1kHzの高周波tanδ値と略比例傾向を示す結果である。
【0019】
この結果の理由について説明する。すなわち、実施の形態1では菱形分割電極に付加されたヒューズ本数が幅方向で6個であるのに対し、比較例では10個のヒューズ部が形成されていることになる。このヒューズ部は、フィルムコンデンサ特有の自己回復作用で回復しきれない大きな絶縁破壊が発生した時にその破壊部分に流れ込む短絡電流によりヒューズ部を動作させ、破壊部分を含む分割電極をコンデンサから切り離す役割を行うが、ヒューズ部は通常、コンデンサとして見た場合、高抵抗部分になるため、電流通電時には発熱部となる。従って、コンデンサ中の幅方向のヒューズ本数が多いことはコンデンサの発熱が大きいことにつながると言える。
【0020】
(実施の形態2)
次に実施の形態2として図3のような菱形形状の分割電極2をフィルム幅方向に2個形成する形状とし、実施の形態1と同様にコンデンサを作製した。フィルム幅は80mm幅同一で分割電極面積が実施の形態1と概略同一になるような面積とするために、長対角線を38mm、短対角線を6.1mmとした。
【0021】
この場合、1kHztanδが実施の形態1より小さく、0.08%となった。幅方向のヒューズ本数が発明例1の6個に比べ4個に低減したためである。実施の形態1と同様に温度上昇試験を実施した結果を上記表1に示している。
【0022】
表1で示す様に、温度上昇試験結果では実施の形態1よりさらに温度上昇を低減できた。
【0023】
ここで比較のため比較例2として幅方向の菱形分割電極個数を1個としたコンデンサを作製したがこの場合、上記発明例と同一面積を確保しようとすると、菱形形状の鋭角部の角度がさらに鋭角となり、パターンを形成するためのロス部分が大きくなりコンデンサとしては得策とはいえない結果となった。
【0024】
次に菱形形状の1分割電極面積のコンデンサ全電極面積に占める比率であるが面積比率を0.002%、0.001%、0.0001%、0.00005%となるサンプルを作製してコンデンサ評価を下記のように実施した。
【0025】
実施の形態1、2の結果から幅方向のヒューズ本数を極力低減するのが温度上昇に良好な結果を与えることから幅方向の菱形分割電極個数を2個としてコンデンサを作製した。評価は実施の形態1、2と同様に温度上昇試験を20Aで行った。試験結果を図4に示す。この場合、面積比率が大きい程温度上昇値は小さい結果となった。これはコンデンサ内の総ヒューズ本数が少ないために発熱が低減されたといえる。とりわけ0.00005%品の温度上昇値が大きいが0.0001%より小さくなると発熱部分の温度干渉影響が顕著になったためである。従って、温度上昇面からは面積比率の下限は0.0001%程度にするのが望ましい。
【0026】
また、上記面積比率別試作品でステップアップ耐電圧試験を行った。
【0027】
試験は0Vから100V/分の昇圧スピードで昇圧し、静電容量の変化率で−10%に到達した電圧で評価した。結果を図5に示す。面積比率が小さい程、耐電圧値が高い結果であるが、これは、誘電体フィルム中の1度の絶縁破壊に対するコンデンサ切り離し面積が少なくて済むことによるが0.002%の試作品は耐電圧値が極端に小さい結果となった。この結果は1度の絶縁破壊に対するコンデンサ切り離し面積が大きいことを意味し、実設計では好ましくない。上記温度上昇試験結果と耐電圧試験結果から言えることは各々の最適値を選定するとどちらかの特性が好ましくない結果となることから双方を満足できる最適値を選定する必要があることがわかる。本試験結果から面積比率0.0001%〜0.001%の範囲が温度上昇、耐電圧双方の特性を満足できる領域といえる。
【0028】
なお、本実施例では誘電体フィルムにポリプロピレンを用いたが、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド等のプラスチックフィルムでも同等の効果であった。
【0029】
また、蒸着金属はアルミニウムを用いたが亜鉛やアルミ亜鉛の合金でも同様の効果が得られる。
【0030】
また、本実施例では、作りやすさの面で分割電極形状を菱形としたが、その他の多角形形状であっても、ヒューズ位置や数量を適宜設定することにより、発熱を抑えることができるので、四角形や六角形などの多角形形状であってもよい。さらに、分割電極形状を多角形にしたときも面積比率を0.0001%〜0.001%の範囲に設定することで、温度上昇、耐電圧双方の面で菱形形状にしたときと同様の効果を奏する。
【0031】
また、図6は、本発明のコンデンサを、車輌駆動用モータを駆動するインバータ回路の平滑用として用いた例を示す図であり、21は電池などの直流電源、22は本実施の形態のコンデンサ、23はインバータ回路、24はモータ、25は自動車を示す。
【0032】
本実施の形態で示したコンデンサは、インバータ回路を用いてモータ駆動する自動車で使用するようなコンデンサにおいて、上記で示したように、ヒューズ発熱を低減でき、小型・軽量化できることから、図6で示すように、車両駆動用モータ24を駆動するインバータ回路23に接続し、数百ヘルツから数十キロヘルツの高周波電流のリップル電流等を平滑する平滑用として用い、自動車25に搭載するのに適している。
【0033】
【発明の効果】
以上のように、本発明の金属化フィルムコンデンサによれば、パターン形状は、金属蒸着膜の両端に頂点を有するとともにフィルム幅方向に頂点を共有して並べた複数個の略菱形の分割電極と、前記複数個の略菱形の分割電極の内、端部にある略菱形の分割電極の2辺を共有し長手方向に隣接する2個の略2等辺三角形と、前記端部にある略菱形の分割電極の他の2辺を共有し長手方向に隣接する2個の略菱形の分割電極とを形成し、前記略菱形の分割電極および前記略2等辺三角形の分割電極の辺上にヒューズ部が設けられており、前記略菱形の分割電極はフィルム幅方向の長対角線を前記フィルム長手方向の短対角線よりも長くすることにより格子状分割電極と比較してフィルム幅方向のヒューズ本数が少なくなるようにして形成しているので、ヒューズ発熱を低減し、コンデンサの小型・軽量化さらには安定したコンデンサ品質特性を確保できる。
【0034】
また、本発明の金属化フィルムコンデンサによれば、パターン形状は、1つの分割電極の電極面積を全電極面積の0.001〜0.0001%に形成しているので温度上昇の低減と耐電圧性の確保が達成され、コンデンサの小型・軽量化さらには安定したコンデンサ品質特性を確保できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における金属化フィルムのパターン形状を示す図
【図2】 本発明における金属化フィルムコンデンサの模式図
【図3】 本発明の実施の形態2における金属化フィルムのパターン形状を示す図
【図4】 1分割電極面積のコンデンサ面積の全電極に占める比率と、温度上昇との関係を示す図
【図5】 1分割電極面積のコンデンサ面積の全電極に占める比率と、耐電圧値の関係を示す図
【図6】 本実施の形態のコンデンサを車輌駆動用モータを駆動するインバータ回路の平滑用として用いた構成を示す図
【図7】 従来例の金属化フィルムの模式図
【符号の説明】
1、6 ヒューズ部
2 分割電極
3 金属蒸着膜
4 誘電体フィルム
23 インバータ回路
24 モータ
25 自動車[0001]
BACKGROUND OF THE INVENTION
The present invention is used for power, electric equipment, various power supply circuits, communication equipment, etc. for power factor improvement, high frequency areas such as smoothing for DC applications, filters, etc., and driving circuits for motors for vehicle driving. The present invention relates to a metallized film capacitor.
[0002]
[Prior art]
Conventionally, what provided the some division | segmentation electrode which divided | segmented the vapor deposition electrode into the longitudinal direction and the width direction of the film as a security mechanism pattern of a metallized film capacitor is known. For example, JP-A-10-144563 and JP-A-10-149939.
[0003]
A conventional metalized film capacitor will be described below.
[0004]
FIG. 7 is a diagram showing a pattern shape of a metallized film of a conventional metallized film capacitor, where 1 is a current that flows into the breakdown point for a breakdown that is provided on a metal vapor deposition electrode and cannot be recovered by self-healing action. The fuse portion intended to separate the minute block from the capacitor by the above, 6 is a fuse portion on the current supply side from the electrode lead-out portion, and 5 is a margin portion.
[0005]
In general, the shape of the divided electrode that divides the metal vapor deposition electrode into a plurality of minute block portions in the longitudinal direction and the width direction is a lattice shape.
[0006]
[Problems to be solved by the invention]
However, such conventional metallized film capacitors have various drawbacks.
[0007]
Conventionally, when a metallized film capacitor is divided into fine blocks to form a metallized film capacitor with a security mechanism, a grid-like divided block shape has been used. In this case, the area of one block is reduced. This suppresses the decrease in capacitance due to the self-protection mechanism operation against breakdown in the dielectric. In this case, reducing the area of the minute blocks increases the number of lattice blocks and increases the number of connecting fuse portions between the minute blocks. However, there is a problem that the temperature increase of the capacitor increases as the number of the connecting fuse portions increases.
[0008]
As is well known, since the capacitor current flows through the fuse portion, the fuse portion generates a larger amount of heat than the portion without the fuse. As a result, this type of metallized film capacitor is unsuitable under thermally severe conditions such as high current specifications and high temperature specifications, and there is a problem that it is difficult to reduce the size of the capacitor and the economic loss increases.
[0009]
The present invention solves the above-described problems, and an object thereof is to improve the characteristics of a metallized film capacitor.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the first means of the metallized film capacitor of the present invention comprises a fuse portion provided on both surfaces or one surface of the dielectric film and a substantially rhombus-shaped metal portion surrounded by a non-metal portion. And a metallized film capacitor having a capacitor element in which a metallized film is formed by laminating a metallized film by forming a pattern shape having a fuse portion on a side of the substantially rhombic-shaped divided electrode. It is what.
[0011]
In addition, the second means of the metallized film capacitor of the present invention was metallized by forming a pattern shape having a metal part surrounded by a fuse part and a non-metal part provided on both or one side of the dielectric film. A metallized film capacitor formed by winding or laminating a metallized film, wherein the pattern shape has a plurality of abbreviations having apexes at both ends of the metal vapor deposition film and sharing the apexes in the film width direction. And two substantially isosceles triangles adjacent to each other in the longitudinal direction sharing two sides of the substantially rhombic segmented electrode at the end of the plurality of approximately rhombic segmented electrodes, and the end portion Forming two substantially rhombus-shaped divided electrodes that are adjacent to each other in the longitudinal direction and share the other two sides of the approximately rhombus-shaped divided electrode, and the sides of the substantially rhombus-shaped divided electrode and the substantially isosceles-shaped divided electrode. fuse portion to top The substantially rhombic segmented electrode has a longer diagonal line in the film width direction than a short diagonal line in the film longitudinal direction so that the number of fuses in the film width direction is reduced as compared with the grid segmented electrode. This is a metallized film capacitor. Moreover, it is a metallized film capacitor having two or three substantially rhombic divided electrodes arranged in common in the film width direction.
[0012]
In addition to the first means and the second means, the third means of the metallized film capacitor of the present invention has a pattern shape in which the electrode area of one divided electrode is 0.0001 to 0.001% of the total electrode area. This is a metallized film capacitor formed.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Embodiment 1 of the present invention will be described below with reference to FIGS.
[0014]
FIG. 1 is a schematic diagram of a metallized film capacitor according to Embodiment 1 of the present invention. In FIG. 1, AL (aluminum) is formed as a vapor deposition electrode on one side of a polypropylene film having a thickness of 4 μm and a width of 80 mm, the divided electrode 2 is formed in a rhombus shape, and a fuse portion 1 is provided on each side thereof. The rhombus has a long diagonal of 25.3 mm and a short diagonal of 9.1 mm, and forms three rhombuses in the width direction. This metallized film was wound or laminated to obtain a metallized film capacitor.
[0015]
FIG. 2 is a schematic cross-sectional view of the metallized film capacitor. 4 is a polypropylene film as a dielectric film, and 3 is an AL vapor deposition film as a metal vapor deposition film. In the figure, the upper part is a metallized film provided with the divided electrodes 2, and the lower part is a metallized film without the divided electrodes 2.
[0016]
For comparison, a capacitor was manufactured by winding and laminating a metallized film with a grid-like divided electrode with a fuse shown in FIG. 7 and a metallized film without a divided electrode. In order to make the grid-like divided electrode area approximately the same as that of the first embodiment shown in FIG. 1, the diagonal line is 15.2 mm. In this case, the divided electrode 2 has a square shape with an inclination of 45 °, and has a shape in which five grids are provided in the width direction, and one fuse portion 1 is provided on each side of the grid. Yes.
[0017]
Table 1 shows the results of conducting a temperature rise test by passing a current through the capacitors of the first embodiment and the comparative example of FIG. In the test, the current to be energized is 10 A, 20 A, and 30 A at a frequency of 10 kHz.
[0018]
[Table 1]
Figure 0004267257
As shown in Table 1, when the comparative example is compared with the first embodiment, the temperature difference becomes larger as the current increases, although the absolute temperature rise difference is small at 10A where the current value is small. It can be seen that the temperature rise value is small compared to the comparative example. This is a result showing a tendency proportional to the high frequency tan δ value of 1 kHz.
[0019]
The reason for this result will be described. That is, in the first embodiment, the number of fuses added to the diamond-shaped divided electrode is six in the width direction, whereas in the comparative example, ten fuse portions are formed. This fuse part plays a role of operating the fuse part by a short-circuit current that flows into the broken part when a large dielectric breakdown that cannot be recovered due to the self-healing action peculiar to the film capacitor occurs, and separating the divided electrode including the broken part from the capacitor. However, since the fuse portion is usually a high resistance portion when viewed as a capacitor, it becomes a heat generating portion when a current is applied. Therefore, it can be said that the large number of fuses in the width direction in the capacitor leads to large heat generation of the capacitor.
[0020]
(Embodiment 2)
Next, as Embodiment 2, a shape in which two rhombic segmented electrodes 2 as shown in FIG. 3 were formed in the film width direction was formed, and a capacitor was produced in the same manner as in Embodiment 1. The long diagonal was 38 mm and the short diagonal was 6.1 mm so that the film width was 80 mm and the divided electrode area was approximately the same as that of the first embodiment.
[0021]
In this case, 1 kHz tan δ was smaller than that in the first embodiment, which was 0.08%. This is because the number of fuses in the width direction is reduced to 4 compared to 6 in the first invention example. The results of conducting the temperature rise test in the same manner as in the first embodiment are shown in Table 1 above.
[0022]
As shown in Table 1, in the temperature rise test result, the temperature rise could be further reduced than in the first embodiment.
[0023]
Here, for comparison, a capacitor in which the number of rhombus segmented electrodes in the width direction is one was produced as Comparative Example 2. In this case, if the same area as that of the above-described invention example is to be secured, the angle of the rhomboid acute angle portion is further increased. As a result of the sharp angle, the loss for forming the pattern increased, and this was not a good solution for a capacitor.
[0024]
Next, samples with rhombus-shaped one-segment electrode area occupying the total electrode area of the capacitor, but with area ratios of 0.002%, 0.001%, 0.0001%, and 0.00005%, were prepared. Evaluation was performed as follows.
[0025]
Since reducing the number of fuses in the width direction as much as possible from the results of Embodiments 1 and 2 gives a good result in increasing the temperature, a capacitor was manufactured with two diamond-shaped divided electrodes in the width direction. In the evaluation, a temperature rise test was performed at 20 A as in the first and second embodiments. The test results are shown in FIG. In this case, the larger the area ratio, the smaller the temperature increase value. It can be said that heat generation was reduced because the total number of fuses in the capacitor was small. This is because, in particular, the temperature rise value of the 0.00005% product is large, but when it is less than 0.0001%, the temperature interference effect of the heat generation portion becomes significant. Therefore, it is desirable that the lower limit of the area ratio is about 0.0001% in terms of temperature rise.
[0026]
In addition, a step-up withstand voltage test was conducted with the above-mentioned prototypes by area ratio.
[0027]
In the test, the voltage was increased from 0 V at a voltage increase speed of 100 V / min, and the evaluation was performed at a voltage that reached −10% at the rate of change in capacitance. The results are shown in FIG. The smaller the area ratio, the higher the withstand voltage value. This is because the capacitor separation area for one dielectric breakdown in the dielectric film is small, but the prototype of 0.002% has the withstand voltage. The result was extremely small. This result means that the capacitor separation area for a single dielectric breakdown is large, which is not preferable in an actual design. What can be said from the temperature rise test results and the withstand voltage test results shows that when each optimum value is selected, either characteristic is unfavorable, so it is necessary to select an optimum value that satisfies both. From this test result, the area ratio of 0.0001% to 0.001% can be said to be a region where both the temperature rise and withstand voltage characteristics can be satisfied.
[0028]
In this example, polypropylene was used for the dielectric film, but the same effect was obtained with plastic films such as polyethylene terephthalate, polyethylene naphthalate, and polyphenylene sulfide.
[0029]
In addition, although aluminum is used as the vapor deposition metal, the same effect can be obtained by using zinc or an alloy of aluminum zinc.
[0030]
In this embodiment, the shape of the divided electrode is rhombus in terms of ease of manufacture, but even with other polygonal shapes, heat generation can be suppressed by appropriately setting the fuse position and quantity. Further, it may be a polygonal shape such as a square or a hexagon. Furthermore, even when the divided electrode shape is polygonal, by setting the area ratio in the range of 0.0001% to 0.001%, the same effect as when the diamond shape is formed in terms of both temperature rise and withstand voltage Play.
[0031]
FIG. 6 is a diagram showing an example in which the capacitor according to the present invention is used for smoothing an inverter circuit that drives a vehicle driving motor, 21 is a DC power source such as a battery, and 22 is a capacitor according to the present embodiment. , 23 is an inverter circuit, 24 is a motor, and 25 is an automobile.
[0032]
The capacitor shown in this embodiment is a capacitor used in an automobile driven by a motor using an inverter circuit. As shown above, the heat generated by the fuse can be reduced, and the size and weight can be reduced. As shown in the figure, it is connected to an inverter circuit 23 for driving a vehicle driving motor 24 and is used for smoothing a ripple current of a high frequency current of several hundred hertz to several tens of kilohertz. Yes.
[0033]
【The invention's effect】
As described above, according to the metallized film capacitor of the present invention, the pattern shape has a plurality of substantially rhombus-shaped divided electrodes arranged with the apexes at both ends of the metal vapor deposition film and sharing the apexes in the film width direction. , Of the plurality of substantially rhombus split electrodes, two substantially isosceles triangles that share two sides of the approximately rhombus split electrode at the end and are adjacent in the longitudinal direction, and the approximately rhombus at the end Two substantially rhombus-shaped divided electrodes that share the other two sides of the divided electrode and are adjacent to each other in the longitudinal direction are formed, and a fuse portion is disposed on the sides of the substantially rhombic divided electrode and the substantially isosceles-shaped divided electrode. The substantially rhombic segmented electrode has a longer diagonal line in the film width direction than a short diagonal line in the film longitudinal direction so that the number of fuses in the film width direction is reduced as compared with the grid segmented electrode. to have formed So reduce fuse fever, further size and weight of the capacitor can be ensured a stable capacitor quality characteristics.
[0034]
Moreover, according to the metallized film capacitor of the present invention, the pattern shape is such that the electrode area of one divided electrode is formed to 0.001 to 0.0001% of the total electrode area, so the temperature rise is reduced and the withstand voltage is increased. Performance can be ensured, the capacitor can be made smaller and lighter, and stable capacitor quality characteristics can be secured.
[Brief description of the drawings]
FIG. 1 is a diagram showing a pattern shape of a metallized film according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram of a metallized film capacitor according to the present invention. Fig. 4 is a diagram showing the pattern shape of Fig. 4. Fig. 4 is a diagram showing the relationship between the ratio of the divided electrode area to the total electrode of the capacitor and the temperature rise. Fig. 5 is the ratio of the divided electrode area to the total electrode of the capacitor area. And FIG. 6 is a diagram showing a relationship between withstand voltage values. FIG. 6 is a diagram showing a configuration in which the capacitor according to the present embodiment is used for smoothing an inverter circuit for driving a vehicle drive motor. Schematic diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 6 Fuse part 2 Divided electrode 3 Metal vapor deposition film 4 Dielectric film 23 Inverter circuit 24 Motor 25 Automobile

Claims (4)

誘電体フィルムの両面または片面に、ヒューズ部と非金属部分に囲まれた金属部を有するパターン形状の分割電極を金属蒸着すると共に、フィルム幅方向の一端側に前記分割電極と接続された電極引出部を、他端側にマージン部を設けた金属化フィルムを巻回又は積層してなる金属化フィルムコンデンサであって、
前記パターン形状は、前記金属蒸着膜の両端に頂点を有するとともにフィルム幅方向に頂点を共有して並べた複数個の略菱形の分割電極と、前記複数個の略菱形の分割電極の内、端部にある略菱形の分割電極の2辺を共有し長手方向に隣接する2個の略2等辺三角形と、前記端部にある略菱形の分割電極の他の2辺を共有し長手方向に隣接する2個の略菱形の分割電極とを形成し、前記略菱形の分割電極および前記略2等辺三角形の分割電極の辺上にヒューズ部が設けられており、前記略菱形の分割電極はフィルム幅方向の長対角線を前記フィルム長手方向の短対角線よりも長くすることにより格子状分割電極と比較してフィルム幅方向のヒューズ本数が少なくなるようにした金属化フィルムコンデンサ。
A pattern-shaped divided electrode having a metal part surrounded by a fuse part and a non-metal part is deposited on both sides or one side of the dielectric film, and an electrode lead connected to the divided electrode on one end side in the film width direction Part, a metallized film capacitor formed by winding or laminating a metallized film provided with a margin part on the other end side,
The pattern shape, and the divided electrodes of the double several substantially diamond-shaped arranged to share a vertex in the film width direction and having an apex at both ends of the metal evaporated film, among the divided electrodes of the plurality of substantially rhombic, Two substantially isosceles triangles that share two sides of the substantially rhombic split electrode at the end and are adjacent in the longitudinal direction, and the other two sides of the roughly rhomboid split electrode at the end share the longitudinal direction Two adjacent diamond-shaped divided electrodes are formed, and fuse portions are provided on the sides of the substantially diamond-shaped divided electrode and the substantially isosceles-shaped divided electrode, and the substantially diamond-shaped divided electrode is a film. A metallized film capacitor in which the number of fuses in the film width direction is reduced by making the long diagonal in the width direction longer than the short diagonal in the film longitudinal direction compared to the grid-like divided electrodes .
フィルム幅方向に頂点を共有して並べた略菱形の分割電極が3個である請求項1記載の金属化フィルムコンデンサ。  2. The metallized film capacitor according to claim 1, wherein there are three substantially rhombic divided electrodes arranged in common in the film width direction. フィルム幅方向に頂点を共有して並べた略菱形の分割電極が2個である請求項1記載の金属化フィルムコンデンサ。  2. The metallized film capacitor according to claim 1, wherein there are two substantially rhombus-shaped divided electrodes arranged in common in the film width direction. パターン形状は、1つの分割電極の電極面積を全電極面積の0.001〜0.0001%に形成した請求項1から3のいずれかに記載の金属化フィルムコンデンサ。  The metallized film capacitor according to any one of claims 1 to 3, wherein the pattern shape is such that the electrode area of one divided electrode is 0.001 to 0.0001% of the total electrode area.
JP2002147411A 2002-05-22 2002-05-22 Metallized film capacitors Expired - Fee Related JP4267257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147411A JP4267257B2 (en) 2002-05-22 2002-05-22 Metallized film capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147411A JP4267257B2 (en) 2002-05-22 2002-05-22 Metallized film capacitors

Publications (2)

Publication Number Publication Date
JP2003338422A JP2003338422A (en) 2003-11-28
JP4267257B2 true JP4267257B2 (en) 2009-05-27

Family

ID=29705988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147411A Expired - Fee Related JP4267257B2 (en) 2002-05-22 2002-05-22 Metallized film capacitors

Country Status (1)

Country Link
JP (1) JP4267257B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100564669B1 (en) 2004-07-30 2006-03-31 주식회사 뉴인텍 Condenser of evaporation film and method for making same
JP4704951B2 (en) * 2006-04-28 2011-06-22 ニチコン株式会社 Metallized film capacitors
CA2751544C (en) 2009-02-05 2016-08-23 Nichicon Corporation Metalized film capacitor

Also Published As

Publication number Publication date
JP2003338422A (en) 2003-11-28

Similar Documents

Publication Publication Date Title
JP3914854B2 (en) Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
JP4906111B2 (en) Metallized film capacitors
JP3870932B2 (en) Metallized film capacitors
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
WO2010090245A1 (en) Metalized film capacitor
WO2019082929A1 (en) Film capacitor, connection-type capacitor, and inverter and electric vehicle in which said capacitors are used
JP4267257B2 (en) Metallized film capacitors
JP2007103534A (en) Metallization film capacitor
JP2006286988A (en) Metallization film capacitor
JP5647400B2 (en) Metallized film capacitors
JP5012515B2 (en) Metallized film capacitors
JP4366930B2 (en) Metallized film capacitors
JP2004363431A (en) Metalized film capacitor
JP2014067793A (en) Film capacitor
JP2005093516A (en) Metallized film capacitor and inverter power source circuit
JP3922138B2 (en) METALIZED FILM CAPACITOR, ITS MANUFACTURING METHOD, AND INVERTER DEVICE USING METALIZED FILM CAPACITOR
JP2009259931A (en) Metallized film capacitor
JP5647402B2 (en) Metallized film capacitors
JP5395302B2 (en) Metallized film capacitors
JP5397936B2 (en) Metallized film capacitors
JP5294321B2 (en) Metallized film capacitors
JP2019207931A (en) Metalization film for capacitor element and metalization film capacitor using the same
JP2011114092A (en) Film capacitor
JP5397968B2 (en) Metallized film capacitors
JP2004186641A (en) Metallized film capacitor and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060919

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees