JP4267097B2 - Piping holding structure for seismic isolation structures - Google Patents

Piping holding structure for seismic isolation structures Download PDF

Info

Publication number
JP4267097B2
JP4267097B2 JP23758698A JP23758698A JP4267097B2 JP 4267097 B2 JP4267097 B2 JP 4267097B2 JP 23758698 A JP23758698 A JP 23758698A JP 23758698 A JP23758698 A JP 23758698A JP 4267097 B2 JP4267097 B2 JP 4267097B2
Authority
JP
Japan
Prior art keywords
arm
pipe
slider
seismic isolation
connecting pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23758698A
Other languages
Japanese (ja)
Other versions
JP2000065254A (en
Inventor
晴基 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokkyokiki Corp
Original Assignee
Tokkyokiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokkyokiki Corp filed Critical Tokkyokiki Corp
Priority to JP23758698A priority Critical patent/JP4267097B2/en
Publication of JP2000065254A publication Critical patent/JP2000065254A/en
Application granted granted Critical
Publication of JP4267097B2 publication Critical patent/JP4267097B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/16Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets with special provision allowing movement of the pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Supports For Pipes And Cables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震構造を備えた建築物の配管の保持構造に関するものである。
【0002】
【従来の技術】
地震の際に免震装置により建築物自体の揺れを少なくする免震構造を備えた建築物が注目されている。図13は免震構造を備えた建築物の免震機構の概念を示した図である。(A)は通常時の状態を示しており、(B)は地震の際の状態を示している。土地(イ)が震動しても、免震装置(ウ)の働きで建築物(ア)自体の震動は抑制され、倒壊等を免れることができる。
【0003】
【発明が解決しようとする課題】
しかしながら、土地と建物との間は相対的に位置関係が変化するために、建築物自体に被害がなくても土地から建物につながるガス,電気,上下水道等の配管は破損してしまい、ガス漏れ,漏電等の危険を招くおそれがあり、地中の配管の修復には大きな時間や手間が必要とされる。
【0004】
そこで、このような免震構造を備えた建築物において、地震の際の配管の破損を防止する手段が求められている。
【0005】
【課題を解決するための手段】
請求項1の免震構造建築物の配管保持構造は、接続管(1)の一端は免震構造建築物(ア)側に固定された配管(3b)と可撓性及び伸縮性を有する継手(2b)を介して接続されており、接続管(1)の他端は基礎(イ)側に固定された配管(3a)と可撓性及び伸縮性を有する継手(2a)を介して接続されており、基礎(イ)又は免震構造建築物(ア)のいずれか一方には回転軸(7)が取り付けられており、該回転軸(7)にはアーム(8)が回動自在に枢着されており、アーム(8)には該アーム(8)に沿ってスライド可能なスライダ(9)が取り付けられており、該スライダ(9)には前記接続管(1)が接続されており、接続管 (1) とスライダ (9) とはアーム (8) の回動方向に対して垂直方向に伸縮可能な接続部材 (14) を介して接続されていることを特徴とする。
【0006】
請求項2の免震構造建築物の配管保持構造は、アーム (8) が回動方向に対して垂直な方向に首振り可能であることを特徴とする。
【0007】
これによれば、地震で土地と免震構造の建物との間で相対的な位置関係が変化しても、配管 (3a) (3b) は可撓性及び伸縮性を有する継手 (2a) (2b) で接続されているので、継手 (2a) (2b) が変形することにより配管 (3a) (3b) に強い力が加わることを防ぐことができる。これにより地震時の配管 (3a) (3b) の破損を防止することができる。
【0008】
2本の継手 (2a) (2b) の間に位置する接続管 (1) はスライダ (9) に接続されて保持されるが、アーム (8) に対するスライダ (9) のスライドと、回転軸 (7) を中心としたアーム (8) の回動により、スライダ (8) はアーム回動面内で自由に動くことができる。したがって、継手 (2a) (2b) の変形により接続管 (1) が移動してもスライダ (9) は接続管 (1) を保持し続けることができる。
【0009】
また、接続部材 (14) の伸縮又はアーム (8) の首振りにより、接続管 (1) はアーム (8) の回動方向のみならず、それに垂直な方向に移動することができる。したがって、垂直方向の振動にもある程度対応することができる。
【0010】
請求項3の免震構造建築物の配管保持構造は、請求項1または2の配管保持構造において、アーム (8) の回転軸と反対側の端部を支持するためのガイド部 (11) (12) を備えたことを特徴とする。
【0011】
これによれば、アーム (8) に掛かる重量を回転軸 (7) とガイド部 (11) (12) に分散することができるので、配管 (3a) (3b) や継手 (2a) (2b) が重い場合でも十分な強度を得ることができる。
【0013】
【発明の実施の形態】
[実施例1]
図1は本発明の実施例を示した斜視図であり、図2は本実施例の正面図である。又、図3は本実施例の要部拡大平面図、図4は本実施例の要部拡大正面断面図、図5は本実施例の要部拡大側面断面図である。
【0014】
(4)は基礎側の配管固定部であり、基礎側の配管(3a)が取り付けられている。(5)は建築物底部側の配管固定部であり、建築物側の配管(3b)が取り付けられている。(4a),(5a)は配管(3a),(3b)を配管固定部(4),(5)に固定するためのUボルトである。
【0015】
(1)は接続管であり、形状はL形で両端部がフランジ部となっている。(2a)及び(2b)は伸縮性と可撓性を有した継手である。接続管(1)は継手(2b)を介して建築物側の配管(3b)と接続されており、接続管(1)の他端は継手(2a)を介して基礎側の配管(3a)と接続されている。
【0016】
(7)は回転軸取付部(6)により建築物(ア)の底部に取り付けられた回転軸である。(8)は回転軸に回動可能に取り付けられたアームである。したがって、アーム(8)は建物底面に略水平な面で回動することができる。
【0017】
(9)はアーム(8)に沿って移動可能に可能なスライダであり、アーム(8)に対してスムーズに移動できるようにアーム(8)の上下面に当接する2つのローラー部(9a)を有している。
【0018】
(10)はスライダ(9)と接続管(1)とを接続するめの接続管スライダ接続体であり、接続管(1)の高さを微調節するためのレベルアジャスター機能を有している。又、(10a)は接続管(1)を固定するためのUボルトである。
【0019】
地震時に土地(イ)と免震構造の建物(ア)との間で相対的な位置関係が変化すると、配管(3a),(3b)に力がかからないように可撓性及び伸縮性を有する継手(2a),(2b)が変形する。継手(2a),(2b)の変形により接続管(1)は移動する。接続管(1)は接続管スライダ接続体(10)を介してスライダ(9)に接続されているので、接続管(1)は移動に併せてスライダ(9)が移動する。
【0020】
スライダ(9)は、アーム(8)に対するスライドと、回転軸(7)を中心としたアーム(8)の回動により、アーム回転面内で自由に動くことができる。したがって、スライダ(9)は接続管(1)の移動に追従し、接続管(1)を保持し続けることができる。
【0021】
[実施例2]
本実施例は特に支える配管の重量が大きい場合に適した実施例である。基本構成は実施例1と同様であるが、配管重量を分散するためにアームの回転軸と反対側の端部付近を支持するガイド部を備えている点が異なる。
【0022】
図6は本実施例の平面図、図7は本実施例の正面図、図8は本実施例の要部拡大断面図である。(11)は円弧状のガイド溝であり、建築物(ア)の底部に取り付けられている。アーム(8)の回転軸(7)と反対側の端部にはローラ部材(12)が取り付けられている。ローラ部材(12)の詳細は図8に示したが、アーム(8)と固定する固定部(12a)と、ガイド溝(11)内で転がるローラ(12b)と、これらを連結する連結部材(12c)とからなっている。
【0023】
このような構造とすることにより、スライダ(9)を介してアーム(8)に掛かる配管や継手(2a),(2b)、接続管(1)の重量を、回転軸(7)とガイド溝(11)に分散することができる。ガイド溝(11)は回転軸(7)を中心とした円弧状に配されているためアーム(8)が回動しても常にアーム(8)の端部を支持することができる。よって、継手(2a),(2b)等の重量が大きい場合でも十分な機械的強度を維持することができる。
【0024】
尚、本実施例ではガイド部として円弧状のガイド溝と、該ガイド溝内を走行するローラを用いたが、ガイド部構造はこれに限定されず、例えば平面的なガイド板又はガイドレールと、その上を移動可能なキャスター等を用いたものでもよいでも良い。
【0025】
[実施例3]
図9は本実施例の正面図であり、図10は接続管とスライダとの接続部分の拡大断面図である。
【0026】
実施例1及び実施例2は、水平方向(アームの回転面)での移動に対応しているが、本実施例は、垂直方向の揺れにも対応するようになっている。
【0027】
スライダ(13)は、接続管スライダ接続体(14)を介して接続管(1)に接続されているが、接続管スライダ接続体(14)にはコイルバネ(14a)が備えられている。
【0028】
平時にはバネ(14a)と接続管スライダ接続体(14)に掛かる重量とがバランスした位置が接続管(1)の上下位置となる。振動時には接続管(1)の上下振動に合わせてコイルバネ(14a)が伸縮する。したがって、コイルバネ(14a)の伸縮範囲で上下振動に対応することができる。
【0029】
[実施例4]
図11は本実施例の正面図である。本実施例も上記の実施例3と同様に垂直方向の揺れに対応するものである。但し実施例3が接続管(1)とスライダ(13)との接続部分を伸縮可能として対応しているのに対し、本実施例ではアーム(8)を垂直方向にも回動可能とすることにより対応している。
【0030】
具体的には建物底部に固定された回転軸(7)に、回動体(15)が回動可能に取り付けられている。回動体(15)は首振り軸(16)を有しており、この首振り軸(16)にアーム(8)が取り付けられている。
【0031】
これにより、アーム(8)は首振り軸(16)を軸として、回動体(15)の回転方向(建築物(ア)の底面と略水平な面)と垂直な方向に一定範囲で回動(首振り)することができる。(17)は平時にアーム(8)が略水平となるようにアーム(8)を支えるバネ材である。
【0032】
地震の際に、接続管(1)が上下に振動してもスライダ(9)が取り付けられたアーム(8)が上下方向に首振りすることにより対応することができる。
【0033】
[実施例5]
上記実施例1から実施例4は回転軸を建築物(ア)の底部に設けた場合を例として説明したが、回転軸(7)は基礎(イ)に設けても良い。本実施例はそのような場合の実施例であり、図12に本実施例の正面図を示す。
【0034】
実施例1から実施例4では接続管(1)が上方から吊られるように保持されていたのに対し、本実施例では接続管(1)が下方から支持されるように保持されることになる。(18)は接続管スライダ接続体であり、圧縮バネにより平時は継手(2a),(2b)が略水平となるように接続管(1)を下方から支持している。本実施例でも接続管スライダ接続体(18)の圧縮バネの伸縮により接続管(1)の上下振動に対応することができる。
【0035】
【発明の効果】
以上述べたように本発明により、免震構造を備えた建築物において、地震の際でも配管の破損を防止することのできる配管保持構造を提供することができる。
【図面の簡単な説明】
【図1】実施例1の平面図。
【図2】実施例1の正面図。
【図3】実施例1の要部拡大平面図。
【図4】実施例1の要部拡大正面断面図。
【図5】実施例1の要部拡大側面断面図。
【図6】実施例2の平面図。
【図7】実施例2の正面図。
【図8】実施例2の要部拡大断面図。
【図9】実施例3の正面図。
【図10】実施例3の要部拡大断面図。
【図11】実施例4の正面図。
【図12】実施例5の正面図。
【図13】一般的な免震建築物の概略図。
【符号の説明】
(ア) 建築物
(イ) 基礎
(1) 接続管
(2a),(2b) 継手
(3a) 配管(基礎側)
(3b) 配管(建築物側)
(4) 配管固定部(基礎側)
(5) 配管固定部(建築物側)
(6) 回転軸取付部
(7) 回転軸
(8) アーム
(9) スライダ
(10) 接続管スライダ接続体
(11) ガイド溝
(12) ローラ部材
(16) 首振り軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piping holding structure for a building having a seismic isolation structure.
[0002]
[Prior art]
Buildings with seismic isolation structures that reduce the shaking of the buildings themselves by seismic isolation devices in the event of an earthquake are drawing attention. FIG. 13 is a diagram showing the concept of a seismic isolation mechanism for a building having a seismic isolation structure. (A) shows a normal state, and (B) shows a state in the event of an earthquake. Even if the land (I) vibrates, the seismic isolation device (c) can suppress the seismic vibration of the building (A) itself and can avoid collapse.
[0003]
[Problems to be solved by the invention]
However, because the positional relationship between the land and the building changes relatively, the gas, electricity, and water and sewage pipes connected from the land to the building are damaged even if the building itself is not damaged. There is a risk of leakage, electric leakage, etc., and repairing underground piping requires a lot of time and effort.
[0004]
Thus, there is a demand for a means for preventing the piping from being damaged during an earthquake in a building having such a base isolation structure.
[0005]
[Means for Solving the Problems]
The pipe holding structure for a seismic isolation structure building according to claim 1 is characterized in that a connecting pipe (1) has one end of a pipe (3b) fixed to the seismic isolation structure building (a) side and a joint having flexibility and elasticity. The other end of the connecting pipe (1) is connected to the pipe (3a) fixed to the foundation (b) side via a flexible and stretchable joint (2a). The rotating shaft (7) is attached to either the foundation (I) or the seismic isolation structure (A), and the arm (8) is rotatable on the rotating shaft (7). A slider (9) that can slide along the arm (8) is attached to the arm (8), and the connecting pipe (1) is connected to the slider (9). The connecting pipe (1) and the slider (9) are connected to each other via a connecting member (14) that can extend and contract in a direction perpendicular to the rotational direction of the arm (8) .
[0006]
The pipe holding structure for a seismic isolation structure according to claim 2 is characterized in that the arm (8) can swing in a direction perpendicular to the rotation direction.
[0007]
According to this, even if the relative positional relationship between the land and the base-isolated structure changes due to the earthquake, the pipes (3a) and (3b) are flexible and stretchable joints (2a) because it is connected with (2b), the joint (2a), the pipe by deformation (2b) (3a), it is possible to prevent a strong force is applied to (3b). This can prevent the pipes (3a) and (3b) from being damaged during an earthquake .
[0008]
Two joints (2a), but connecting pipe located (1) is held by being connected to the slider (9) between the (2b), the slide of the slider (9) relative to the arm (8), the rotation axis By the rotation of the arm (8) about (7) , the slider (8) can move freely within the arm rotation surface. Therefore, even if the connecting pipe (1) moves due to deformation of the joints (2a) and (2b) , the slider (9) can continue to hold the connecting pipe (1) .
[0009]
Moreover, the swing of the telescopic or arm (8) of the connecting member (14), connecting tube (1) can be moved not only in the rotating direction of the arm (8) to which the vertical direction. Therefore, it is possible to cope with vertical vibration to some extent.
[0010]
A pipe holding structure for a base-isolated structure building according to claim 3 is the pipe holding structure according to claim 1 or 2, wherein a guide part (11) for supporting an end of the arm (8) opposite to the rotating shaft is provided . (12) is provided.
[0011]
According to this, since the weight applied to the arm (8) can be distributed to the rotating shaft (7) and the guide portions (11) , (12) , the pipes (3a) , (3b) , the joint (2a) , Even when (2b) is heavy, sufficient strength can be obtained.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
FIG. 1 is a perspective view showing an embodiment of the present invention, and FIG. 2 is a front view of the embodiment. 3 is an enlarged plan view of an essential part of the present embodiment, FIG. 4 is an enlarged front sectional view of an essential part of the present embodiment, and FIG. 5 is an enlarged side sectional view of the essential part of the present embodiment.
[0014]
(4) is a pipe fixing part on the foundation side, and the pipe (3a) on the foundation side is attached. (5) is a pipe fixing part on the bottom side of the building, and the pipe (3b) on the building side is attached. (4a) and (5a) are U bolts for fixing the pipes (3a) and (3b) to the pipe fixing parts (4) and (5).
[0015]
(1) is a connecting pipe, the shape is L-shaped, and both end portions are flange portions. (2a) and (2b) are joints having stretchability and flexibility. The connecting pipe (1) is connected to the building side pipe (3b) via the joint (2b), and the other end of the connecting pipe (1) is connected to the foundation side pipe (3a) via the joint (2a). Connected with.
[0016]
(7) is a rotating shaft attached to the bottom of the building (a) by the rotating shaft attaching portion (6). (8) is an arm rotatably attached to the rotating shaft. Therefore, the arm (8) can rotate on a substantially horizontal surface on the bottom of the building.
[0017]
(9) is a slider that can move along the arm (8), and the two roller portions (9a) that abut the upper and lower surfaces of the arm (8) so that the arm (8) can move smoothly. have.
[0018]
(10) is a connecting pipe slider connecting body for connecting the slider (9) and the connecting pipe (1), and has a level adjuster function for finely adjusting the height of the connecting pipe (1). Further, (10a) is a U bolt for fixing the connecting pipe (1).
[0019]
When the relative positional relationship changes between the land (I) and the seismic isolation structure (A) during an earthquake, the pipes (3a) and (3b) have flexibility and elasticity so that no force is applied to them. Joints (2a) and (2b) are deformed. The connecting pipe (1) moves due to the deformation of the joints (2a) and (2b). Since the connecting pipe (1) is connected to the slider (9) via the connecting pipe slider connector (10), the slider (9) moves along with the movement of the connecting pipe (1).
[0020]
The slider (9) can move freely within the arm rotation plane by sliding with respect to the arm (8) and by rotating the arm (8) about the rotation axis (7). Therefore, the slider (9) can follow the movement of the connecting pipe (1) and keep holding the connecting pipe (1).
[0021]
[Example 2]
This embodiment is an embodiment particularly suitable when the weight of the supporting piping is large. The basic configuration is the same as that of the first embodiment, except that a guide portion that supports the vicinity of the end portion on the opposite side of the arm rotation shaft is provided in order to disperse the pipe weight.
[0022]
6 is a plan view of the present embodiment, FIG. 7 is a front view of the present embodiment, and FIG. 8 is an enlarged cross-sectional view of the main part of the present embodiment. (11) is an arc-shaped guide groove, which is attached to the bottom of the building (a). A roller member (12) is attached to the end of the arm (8) opposite to the rotating shaft (7). The details of the roller member (12) are shown in FIG. 8, but the fixing portion (12a) to be fixed to the arm (8), the roller (12b) that rolls in the guide groove (11), and the connecting member ( 12c).
[0023]
With such a structure, the weight of the pipes and joints (2a), (2b), and the connecting pipe (1) that are applied to the arm (8) via the slider (9) is reduced between the rotary shaft (7) and the guide groove. (11) can be dispersed. Since the guide groove (11) is arranged in an arc shape centering on the rotating shaft (7), the end of the arm (8) can always be supported even if the arm (8) rotates. Therefore, sufficient mechanical strength can be maintained even when the weights of the joints (2a), (2b), etc. are large.
[0024]
In this embodiment, an arc guide groove and a roller running in the guide groove are used as the guide part. However, the guide part structure is not limited to this, for example, a planar guide plate or guide rail, The thing using the caster etc. which can move on it may be used.
[0025]
[Example 3]
FIG. 9 is a front view of the present embodiment, and FIG. 10 is an enlarged cross-sectional view of a connection portion between the connection pipe and the slider.
[0026]
The first embodiment and the second embodiment correspond to the movement in the horizontal direction (the rotation surface of the arm), but the present embodiment is also adapted to the vibration in the vertical direction.
[0027]
The slider (13) is connected to the connection pipe (1) via the connection pipe slider connection body (14), and the connection pipe slider connection body (14) is provided with a coil spring (14a).
[0028]
The position where the spring (14a) and the weight applied to the connecting pipe slider connecting body (14) are balanced at the normal time is the vertical position of the connecting pipe (1). At the time of vibration, the coil spring (14a) expands and contracts in accordance with the vertical vibration of the connecting pipe (1). Therefore, it is possible to cope with vertical vibrations within the expansion / contraction range of the coil spring (14a).
[0029]
[Example 4]
FIG. 11 is a front view of the present embodiment. This embodiment also corresponds to vertical shaking as in the third embodiment. However, in contrast to Example 3 where the connecting portion between the connecting pipe (1) and the slider (13) can be expanded and contracted, in this example, the arm (8) can also be rotated in the vertical direction. It corresponds by.
[0030]
Specifically, the rotating body (15) is rotatably attached to the rotating shaft (7) fixed to the bottom of the building. The rotating body (15) has a swing shaft (16), and an arm (8) is attached to the swing shaft (16).
[0031]
As a result, the arm (8) rotates within a certain range about the swinging shaft (16) in a direction perpendicular to the rotating direction of the rotating body (15) (a surface substantially parallel to the bottom surface of the building (a)). (Swing). (17) is a spring material that supports the arm (8) so that the arm (8) is substantially horizontal during normal times.
[0032]
In the event of an earthquake, even if the connecting pipe (1) vibrates up and down, the arm (8) to which the slider (9) is attached swings up and down.
[0033]
[Example 5]
Although the said Example 1-Example 4 demonstrated as an example the case where a rotating shaft was provided in the bottom part of a building (a), you may provide a rotating shaft (7) in a foundation (A). This embodiment is an embodiment in such a case, and FIG. 12 shows a front view of this embodiment.
[0034]
In the first to fourth embodiments, the connecting pipe (1) is held so as to be suspended from above, whereas in this embodiment, the connecting pipe (1) is held so as to be supported from below. Become. (18) is a connecting pipe slider connecting body, and the connecting pipe (1) is supported from below by a compression spring so that the joints (2a) and (2b) are substantially horizontal during normal times. Also in this embodiment, it is possible to cope with the vertical vibration of the connection pipe (1) by the expansion and contraction of the compression spring of the connection pipe slider connection body (18).
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a pipe holding structure capable of preventing the pipe from being damaged even in the event of an earthquake in a building having a seismic isolation structure.
[Brief description of the drawings]
FIG. 1 is a plan view of a first embodiment.
FIG. 2 is a front view of the first embodiment.
FIG. 3 is an enlarged plan view of a main part of the first embodiment.
4 is an enlarged front cross-sectional view of a main part of Example 1. FIG.
FIG. 5 is an enlarged side cross-sectional view of a main part of the first embodiment.
6 is a plan view of Example 2. FIG.
7 is a front view of Embodiment 2. FIG.
8 is an enlarged cross-sectional view of a main part of Example 2. FIG.
9 is a front view of Example 3. FIG.
10 is an enlarged cross-sectional view of a main part of Example 3. FIG.
11 is a front view of Example 4. FIG.
12 is a front view of Example 5. FIG.
FIG. 13 is a schematic view of a general base-isolated building.
[Explanation of symbols]
(A) Building (I) Foundation
(1) Connection pipe
(2a), (2b) Fitting
(3a) Piping (foundation side)
(3b) Piping (building side)
(4) Piping fixing part (foundation side)
(5) Piping fixing part (building side)
(6) Rotating shaft mounting part
(7) Rotating shaft
(8) Arm
(9) Slider
(10) Connection pipe slider connection
(11) Guide groove
(12) Roller member
(16) Swing axis

Claims (3)

接続管の一端は免震構造建築物側に固定された配管と可撓性及び伸縮性を有する継手を介して接続されており、
接続管の他端は基礎側に固定された配管と可撓性及び伸縮性を有する継手を介して接続されており、
基礎又は免震構造建築物のいずれか一方には回転軸が取り付けられており、
該回転軸にはアームが回動自在に枢着されており、
アームには該アームに沿ってスライド可能なスライダが取り付けられており、
該スライダには前記接続管が接続されており、
接続管とスライダとはアームの回動方向に対して垂直方向に伸縮可能な接続部材を介して接続されていることを特徴とする免震構造建築物の配管保持構造。
One end of the connecting pipe is connected to a pipe fixed on the seismic isolation structure building side through a joint having flexibility and elasticity,
The other end of the connection pipe is connected to a pipe fixed on the base side via a joint having flexibility and stretchability.
A rotating shaft is attached to either the foundation or the seismic isolation structure,
An arm is pivotally attached to the rotating shaft,
A slider that can slide along the arm is attached to the arm,
The connecting pipe is connected to the slider ,
A pipe holding structure for a base-isolated structure, wherein the connecting pipe and the slider are connected via a connecting member that can be expanded and contracted in a direction perpendicular to the rotational direction of the arm .
接続管の一端は免震構造建築物側に固定された配管と可撓性及び伸縮性を有する継手を介して接続されており、One end of the connecting pipe is connected to a pipe fixed on the seismic isolation structure building side through a joint having flexibility and elasticity,
接続管の他端は基礎側に固定された配管と可撓性及び伸縮性を有する継手を介して接続されており、The other end of the connection pipe is connected to a pipe fixed on the base side via a joint having flexibility and stretchability.
基礎又は免震構造建築物のいずれか一方には回転軸が取り付けられており、A rotating shaft is attached to either the foundation or the seismic isolation structure,
該回転軸にはアームが回動自在に枢着されており、An arm is pivotally attached to the rotating shaft,
アームには該アームに沿ってスライド可能なスライダが取り付けられており、A slider that can slide along the arm is attached to the arm,
該スライダには前記接続管が接続されており、The connecting pipe is connected to the slider,
アームが回動方向に対して垂直な方向に首振り可能であることを特徴とする免震構造建築物の配管保持構造。A piping holding structure for a base-isolated structure, wherein the arm can swing in a direction perpendicular to the rotating direction.
アームの回転軸と反対側の端部を支持するためのガイド部を備えたことを特徴とする請求項1または2に記載の免震構造建築物の配管保持構造。The piping holding structure for a seismic isolation structure building according to claim 1 or 2, further comprising a guide portion for supporting an end portion of the arm opposite to the rotating shaft.
JP23758698A 1998-08-24 1998-08-24 Piping holding structure for seismic isolation structures Expired - Lifetime JP4267097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23758698A JP4267097B2 (en) 1998-08-24 1998-08-24 Piping holding structure for seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23758698A JP4267097B2 (en) 1998-08-24 1998-08-24 Piping holding structure for seismic isolation structures

Publications (2)

Publication Number Publication Date
JP2000065254A JP2000065254A (en) 2000-03-03
JP4267097B2 true JP4267097B2 (en) 2009-05-27

Family

ID=17017524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23758698A Expired - Lifetime JP4267097B2 (en) 1998-08-24 1998-08-24 Piping holding structure for seismic isolation structures

Country Status (1)

Country Link
JP (1) JP4267097B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727601B2 (en) 1999-10-25 2010-06-01 Vitex Systems, Inc. Method for edge sealing barrier films
US7985606B2 (en) 2002-07-05 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144823A (en) * 2006-12-08 2008-06-26 Sekisui House Ltd Sleeve holder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598772B2 (en) * 1988-12-12 1997-04-09 三井建設株式会社 Piping support structure
JPH09287691A (en) * 1996-04-19 1997-11-04 Tokkyo Kiki Kk Damping device for piping
JPH09303616A (en) * 1996-05-07 1997-11-28 Hitachi Metals Ltd Antiseismic piping
JPH10339386A (en) * 1997-06-05 1998-12-22 Takenaka Komuten Co Ltd Piping supporter device
JP3714772B2 (en) * 1997-06-05 2005-11-09 株式会社竹中工務店 Piping support device
JPH1144382A (en) * 1997-07-28 1999-02-16 Tokyu Constr Co Ltd Hanging device for displacement absorbing joint in piping facility
JPH11132365A (en) * 1997-10-27 1999-05-21 Hitachi Metals Ltd Base isolation piping

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727601B2 (en) 1999-10-25 2010-06-01 Vitex Systems, Inc. Method for edge sealing barrier films
US7985606B2 (en) 2002-07-05 2011-07-26 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing light emitting device
CN1471065B (en) * 2002-07-05 2012-07-04 株式会社半导体能源研究所 Light-emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000065254A (en) 2000-03-03

Similar Documents

Publication Publication Date Title
SA516380623B1 (en) Azimuthal rotation mechanism for solar trackers
JPH10184783A (en) Self-tuning type vibration control device
JP5879812B2 (en) Ceiling suspension device
JP4267097B2 (en) Piping holding structure for seismic isolation structures
JP2001074098A (en) Base isolation device
JP4077999B2 (en) Damping device for vibration control
JP2016199343A (en) Support structure of belt conveyer
JP3714772B2 (en) Piping support device
JPH0643261Y2 (en) Piping facilities for seismically isolated buildings
JP4216955B2 (en) Seismic isolation piping system and bellows type expansion joint with legs
CN215452335U (en) Support structure capable of freely overturning
JP3550486B2 (en) Damping device
JP2004270751A (en) Piping structure for base isolation structure
CN109594469B (en) Bridge expansion joint device
JP4307299B2 (en) Building damping device
JP3363742B2 (en) Seismic isolation building piping holding structure
JP3260698B2 (en) Seismic isolation building piping holding structure
JP2000144822A (en) Base isolation joint for equipped piping
JPH10339386A (en) Piping supporter device
JP4653891B2 (en) Construction method of hydraulic damper for vibration control
JP3055101U (en) Seismic isolation building piping holding structure
CN215636363U (en) A gallows antidetonation convenient to adjustable
JP3876052B2 (en) Support device for displacement hose for absorbing displacement in drainage pipe
JP4272763B2 (en) A dredge device that supports structures in a movable manner
JP2000035164A (en) Flexible hose support device for displacement absorption on drain piping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term