JP4265751B2 - Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method - Google Patents

Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method Download PDF

Info

Publication number
JP4265751B2
JP4265751B2 JP2003124142A JP2003124142A JP4265751B2 JP 4265751 B2 JP4265751 B2 JP 4265751B2 JP 2003124142 A JP2003124142 A JP 2003124142A JP 2003124142 A JP2003124142 A JP 2003124142A JP 4265751 B2 JP4265751 B2 JP 4265751B2
Authority
JP
Japan
Prior art keywords
stainless steel
ferritic stainless
rolled sheet
annealing
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003124142A
Other languages
Japanese (ja)
Other versions
JP2004323957A (en
Inventor
慎一 寺岡
宜治 井上
勝彦 加藤
富美夫 札軒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2003124142A priority Critical patent/JP4265751B2/en
Publication of JP2004323957A publication Critical patent/JP2004323957A/en
Application granted granted Critical
Publication of JP4265751B2 publication Critical patent/JP4265751B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高耐食性で、深絞り性と二次加工性に優れたフェライト系ステンレス鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
フェライト系ステンレス鋼板は厨房機器や家電機器などに広く使用され、業務用の流し台水槽などでは過酷な深絞り加工が施される。また自動車部品、家電部品、建築部材などにも用途が拡大している。これはフェライト系ステンレス鋼板の製造技術が高純度化、特殊元素添加などの面で向上し、耐食性が大幅に改善された他、深絞り加工性がSUS304に代表されるオーステナイト系ステンレス鋼板のそれに匹敵するほどまで向上したためである。これが、腐食性の厳しいこれら用途のうちで、深絞り加工され、かつ厳しい腐食環境にさらされる缶体、容器構造、管状部材にフェライト系ステンレス鋼板が使用されはじめた理由である。
しかし、深絞り加工を受けた後、さらに二次加工を受ける用途において、二次加工割れを十分防止することは、従来技術で製造されたフェライト系ステンレス鋼板では達成し得ず、改良技術の提案が待たれていた。
【0003】
フェライト系ステンレス鋼の二次加工性の改善に関する提案として、Bを添加することが提案されている。例えば特許文献1には、Bを0.0003〜0.0050質量%含有させる方法が提案されている。また特許文献2でも、Bを0.0002〜0.005質量%添加することが同様に提案されている。しかし、ただ単純にBを添加しても、安定して二次加工性に優れたフェライト系ステンレス鋼を製造することは困難であることが、これまでの経験から明らかになってきた。
【0004】
【特許文献1】
特開平8−333639号公報
【特許文献2】
特開平11−236650号公報
【0005】
【発明が解決しようとする課題】
本発明は高耐食性を保持し、深絞りが可能で、二次加工性が良好なフェライト系ステンレス鋼板と、その鋼板を安定して製造する方法を提案するものである。
【0006】
【課題を解決するための手段】
高加工用の高純フェライト系ステンレス鋼において、深絞り性、二次加工性、耐食性の観点からボロンが最も好ましい状態となるように添加量と薄板製造の各工程条件を調整することが必要である。基本的な考えとしては、製品のボライド析出を防止し、かつ粒界に偏析して粒界強化するように製造条件を最適化することが必要である。
【0007】
本発明は上記知見を基に構成したもので、その要旨は次のとおりである。
(1)質量%で、
C :0.0005〜0.005%、 Si:0.05〜0.50%、
Mn:0.05〜0.50%、 Cr:11.0〜19.0%、
Mo:0.1〜2.0%、 Cu:0.02〜0.60%、
Al:0.002〜0.150%、 Ti:0.10〜0.30%、
N :0.0020〜0.0150で、かつTi/(C+N)≧10、
B :0.0005〜0.0015%で、かつ固溶Bが0.0004%以上
を含有し、残部が鉄および不可避的不純物からなり、JIS G0571に規定の蓚酸電解エッチングを行った際に、ボライドを起因とするエッチピットを生じないことを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板。
(2)前記(1)記載のフェライト系ステンレス鋼板を製造するに際し、熱延板の巻取温度を500℃以下とし、熱延板焼鈍を省略して冷間圧延し、その後、冷延板の焼鈍温度を820〜920℃とし、500℃までの平均冷却速度を15℃/s以上とすることを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板の製造方法。
前記(1)記載のフェライト系ステンレス鋼板を製造するに際し、熱延板の巻取温度を500℃以下とし、熱延板焼鈍を820℃以上の温度で行った後の熱延板を、800〜500℃の温度範囲を15/s以上の冷却速度で冷却し、その後冷間圧延し、その後、冷延板の焼鈍温度を820〜920℃とし、500℃までの平均冷却速度を15℃/s以上とすることを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板の製造方法。
【0008】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明者らは、製品の二次加工性を長年評価する中で、二次加工性が成分だけで整理できないことを認識し、二次加工性に影響する製造条件因子を洗い出した結果、添加したボロンの析出挙動と対応することを見出した。
即ち、ボロンは粒界偏析することで粒界の強度を高める働きをするのであるが、この時、粒界に存在するボロンは固溶原子として粒界偏析することでその効果を発揮し、ボライド、例えばCr2 B、M23(C,B)6 になっていては、粒界強化効果が失われる。
【0009】
フェライト系ステンレス鋼におけるボライドの固溶、析出挙動については、従来知見が無いため、本発明者らが詳細に調べた結果、通常ステンレス鋼の冷延板焼鈍において行われているような冷延板焼鈍後の冷却速度ではボライドの溶体化が困難であることが分かった。
即ち、一般的にステンレス鋼の冷延板焼鈍炉ではフェライト系ステンレス鋼と、オーステナイト系ステンレス鋼を焼鈍するため、800から1100℃の所定の温度で焼鈍し、冷却して400℃前後のソルト浴にスケール改質のために浸漬する。このため、ソルト入りまでに特別な冷却は行われておらず、放冷されている。しかしながら、ボロンを添加したステンレス鋼は緩慢な冷却速度でボライドが析出する。析出温度域は800〜400℃であり、この間の平均冷却速度として15℃/秒未満になると析出する。
【0010】
図1はボロン量の異なる冷延板を920℃で焼鈍し、冷却速度を変えて冷却し、JIS G0571の粒界腐食試験を行った後の顕微鏡組織観察写真であるが、ボロン8ppmで10℃/sで冷却すると粒界にボライドが起因のピットが多数観察されるが、15℃/sで冷却したものではこのようなピットは認められない。僅かに認められるピット状のものはチタン系の析出物である。ボロン量が20ppmの場合、ボライドに対応するエッチピットが数珠状に観察される。このボライドは熱延板を550℃で巻き取った際に析出したものが冷延板焼鈍時に溶体化せずに残存したものと思われる。この様にボライドが析出していると、ボロンによる粒界強化が得られないため、十分な二次加工性が選られない。
【0011】
ボロンの添加量が8ppm程度の場合、800℃以上の温度で焼鈍すればボライドは溶体化されるはずであるが、図1の様に熱延板において既にボライドが析出成長している場合、溶体化にはより高い温度と長い時間を必要とする。1000℃以上の高温で焼鈍すれば、現行の通板速度でも溶体化が可能であるが、そのような高温焼鈍をフェライト系ステンレス鋼で行うと粗粒化し製品加工時にオレンジピールが生じるなどの問題が発生する。従って、熱延板段階では極力溶体化していることが望ましい。すなわち、巻取温度は500℃以下にすることが必要である。
【0012】
ステンレス鋼板の一般的な製造工程では熱延板焼鈍をバッチ式、或いは連続焼鈍炉を用いて行うのが一般的であるが、バッチ式の熱延板焼鈍は冷却過程でボライドが粗大析出するために望ましくない。連続焼鈍を行う場合は、焼鈍後の冷却過程においてボライドが析出することが無いように、冷却速度を15℃/s以上で800〜500℃の温度範囲を冷却することが必要である。
【0013】
熱延板段階で溶体化した場合、冷延板焼鈍時にボライドを溶体化する必要性が無い。即ち、焼鈍温度で保定される間に析出しない最低限の温度で焼鈍することも可能となる。焼鈍温度の高温化は固溶Bの粒界と粒内の存在確立を近づける効果もあり、粒界を強化する粒界偏析Bを低下させる。即ち、二次加工性向上にとって、焼鈍温度はボライド析出を防止し、かつボロンの粒界偏析量を最大とするような温度域にすることが望ましいことから、820〜920℃が望ましい範囲である。
【0014】
図2は冷延板の焼鈍温度と冷却速度が二次加工性に及ぼす影響をラボ試験によりまとまた図である。供試材としては表1の成分、表の条件で冷延板を実機製造した。ラボの焼鈍炉で種々の温度冷却条件で焼鈍し、二次加工性を評価した。
二次加工性は多段絞りで絞り比2.5の円筒とし、衝撃法にて0℃での二次加工割れを評価し、割れの無い物を合格とした。焼鈍温度が820〜920℃、冷却速度が15℃/s以上の条件では良好な二次加工性が得られていることが判る。
【0015】
次に、本発明における成分限定理由を説明する。
成分に関しては、高純化による二次加工性不良と言った問題が生じる成分系を本技術の対象鋼種と限定したものである。
すなわち、Cについては深絞り性向上のために低いほど望ましい。但し0.0005%未満にするには、過大な設備と多大な時間を要することから、本発明のC量は0.0005〜0.005%に限定する。
【0016】
Siの量も深絞り性を向上させるためには低い方が望ましいが、脱酸元素としての効果、耐高温酸化性の点から下限があるため、本発明においてはSi:0.05〜0.50%に制限する。
【0017】
Mn量についても、深絞り性の観点からは低い方が望ましいが、耐食性に悪影響を及ぼすSの害を消去するため最低限の添加が必要であり、本発明においては0.05〜0.50%に規定する。
【0018】
Crは本発明の対象鋼種である高純フェライト系ステンレス鋼に、一般的に必要とされる耐食性を得るために下限を11%とした。一方、Crは増やすほど加工性が低下するため、深絞り性を重視して19%以下とした。
【0019】
Moは耐食性向上元素で、その効果はCrの増量よりも効果的であり、0.1%以上添加するが、一方、Moは置換型固溶強化元素とし深絞り性を低下させるので、上限を2.0%とした。
【0020】
Cuは耐食性向上のために必要量添加する。Cuは多くの腐食環境における全面腐食を抑制し、特に酸性環境では飛躍的に耐食性を向上させる。0.02%未満ではその効果に乏しく、0.6%を超すと加工性の劣化が大きいため、本発明では0.02〜0.60%に限定する。
【0021】
TiはC,Nと析出物を形成し、母地の高純化により深絞り性を改善する効果を有すると共に、クロム炭化物形成による耐食性の低下を防止するために、0.10%以上で、かつ(C+N)×10以上添加する。但し、過剰の添加は粗大析出物やチタン系酸化物による疵の問題、固溶Tiにより、深絞り性を低下させるため、0.3%以下に限定する。
【0022】
NはCと同様に加工性を低下させるため低いほど望ましいが、0.0020%未満にするには過大な設備と多大な時間を要することから、本発明においては0.0020〜0.0150%に限定する。
【0023】
Alは製鋼時の脱酸元素として利用されるが、多量に添加すると介在物の硬質化によって疵が出やすくなると思われるので、0.002〜0.150%とすることが望ましい。
【0024】
Bは二次加工性(深絞り後の張り出し成形性)向上のため必要量添加する。0.0005%未満では効果が発揮されず、0.0015%を超すと深絞り性が低下すると共に、ボライドの溶体化温度が上がり、部分的に未固溶ボライドが析出し耐食性を損ねる場合もあるため、0.0005〜0.0015%に限定する。
二次加工性を向上させるためには、ボロンが溶体化している必要性があるため、JIS G0571に規定の蓚酸電解エッチングを行った際に、ボライドを起因とするエッチピットを生じないフェライト系ステンレス鋼板に限定する。
【0025】
【実施例】
(実施例1)
表1に示す成分からなる鋼を転炉で溶製し、通常の鋳造法によって鋼片とした後、熱間圧延により板厚4mmの熱延コイルとした。本発明品については熱延板の巻取温度を500℃未満とし、熱延板の焼鈍を省略又は、800〜950℃で、冷却速度を15℃/s以上とする条件下で行い、冷間圧延焼鈍を行って、板厚1.0mmの冷延板とした。本発明の焼鈍条件で焼鈍し、薄板とした後、各種評価を行った。比較例は、製造条件が本発明範囲から外れるものである。
【0026】
製品評価として固溶Bを測定した。深絞り性は円筒絞りにおける限界絞り比が2.25以上になるものを合格とした。粒界腐食性はJIS G0571に規定の蓚酸中での電解エッチングを行った際にボライド起因のエッチピットが生じなかったものを合格とした。
耐食性の評価は、海浜環境の暴露試験において、赤さびの激しいものを不合格とした。二次加工性は多段絞りで、絞り比2.5の円筒深絞りを行ったサンプルを用いて、衝撃法による二次加工割れを評価し、0℃で割れが生じなかったものを合格とした。結果を表2に示す。
本発明法で製造した製品と、比較法で製造した製品の特性を表2に併記したが、本発明法で製造した鋼板は、従来法で製造した鋼板に比べて良好な深絞り性と二次加工性を示した。
【0027】
(実施例2)
表3に示す成分の鋼を転炉で溶製し、通常の鋳造法によって鋼片とした後、熱間圧延により板厚4mmの熱延コイルとした。熱延板の巻取温度を500℃とし、熱延板の焼鈍を省略し、冷間圧延焼鈍を行って、板厚1.0mmの冷延板とした。880℃で焼鈍後、15℃/sで400℃まで冷却し、薄板とした後、各種評価を行った。比較例は、成分が本発明範囲から外れるものである。
実施例1と同様の製品評価を行って、表4に整理した。
本発明法で製造した鋼板は、従来法で製造した鋼板に比べて良好な耐食性、深絞り性と二次加工性を示した。
【0028】
【表1】

Figure 0004265751
【0029】
【表2】
Figure 0004265751
【0030】
【表3】
Figure 0004265751
【0031】
【表4】
Figure 0004265751
【0032】
【発明の効果】
以上のように、本発明は近年需要が増大しつつある高耐食、高加工性(深絞り性、二次加工性)高純フェライト系ステンレス鋼板を、効率的に製造することができる。また本発明品を使用することにより、自動車排気系、自動車燃料系材料、家電製品などの用途で、従来より優れた製品が製造できるようになるので、その経済的効果は極めて大きい。
【図面の簡単な説明】
【図1】B量と冷延鋼板焼鈍後の冷却速度との関係を示す図。
【図2】冷延板の焼鈍温度と焼鈍後の冷却速度との関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel sheet having high corrosion resistance, excellent deep drawability and secondary workability, and a method for producing the same.
[0002]
[Prior art]
Ferritic stainless steel sheets are widely used in kitchen equipment and home appliances, and severe deep drawing is performed in commercial sink water tanks. Applications are also expanding to automotive parts, home appliance parts, building materials, etc. This is because the ferritic stainless steel sheet manufacturing technology has been improved in terms of high purity and addition of special elements, and the corrosion resistance has been greatly improved. In addition, deep drawing workability is comparable to that of austenitic stainless steel sheet such as SUS304. It is because it improved to such an extent. This is the reason why ferritic stainless steel sheets have begun to be used in cans, container structures, and tubular members that are deep-drawn and exposed to severe corrosive environments in these highly corrosive applications.
However, in applications that undergo deep drawing and then secondary processing, it is impossible to sufficiently prevent secondary processing cracks with ferritic stainless steel sheets manufactured by conventional technologies, and proposals for improved technology Was waiting.
[0003]
As a proposal for improving the secondary workability of ferritic stainless steel, adding B is proposed. For example, Patent Document 1 proposes a method of containing 0.0003 to 0.0050 mass% B. Also in Patent Document 2, it is similarly proposed to add 0.0002 to 0.005 mass% of B. However, it has become clear from past experience that it is difficult to produce a ferritic stainless steel that is stable and excellent in secondary workability by simply adding B.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 8-333639 [Patent Document 2]
Japanese Patent Laid-Open No. 11-236650
[Problems to be solved by the invention]
The present invention proposes a ferritic stainless steel sheet that retains high corrosion resistance, enables deep drawing, and has good secondary workability, and a method for stably producing the steel sheet.
[0006]
[Means for Solving the Problems]
In high-purity ferritic stainless steel for high workability, it is necessary to adjust the amount of addition and each process condition of thin sheet production so that boron is in the most preferable state from the viewpoint of deep drawability, secondary workability, and corrosion resistance. is there. As a basic idea, it is necessary to optimize the production conditions so as to prevent boride precipitation of the product and segregate at the grain boundaries to strengthen the grain boundaries.
[0007]
The present invention is configured based on the above findings, and the gist thereof is as follows.
(1) In mass%,
C: 0.0005 to 0.005%, Si: 0.05 to 0.50%,
Mn: 0.05 to 0.50 %, Cr: 11.0 to 19.0%,
Mo: 0.1 to 2.0%, Cu: 0.02 to 0.60%,
Al: 0.002 to 0.150%, Ti: 0.10 to 0.30%,
N: 0.0020 to 0.0150 , and Ti / (C + N) ≧ 10,
B: 0.0005 to 0.0015%, and solid solution B contains 0.0004% or more, and the balance consists of iron and unavoidable impurities. When oxalic acid electrolytic etching specified in JIS G0571 is performed, A ferritic stainless steel sheet excellent in secondary workability, characterized in that no etch pit caused by boride is generated.
(2) When producing the ferritic stainless steel sheet described in (1) above, the coiling temperature of the hot-rolled sheet is set to 500 ° C. or less, the hot-rolled sheet annealing is omitted, and cold rolling is performed. An annealing temperature is set to 820 to 920 ° C, and an average cooling rate up to 500 ° C is set to 15 ° C / s or more. A method for producing a ferritic stainless steel sheet excellent in secondary workability.
Upon manufacturing a ferritic stainless steel sheet (3) above (1), wherein the winding temperature of the hot-rolled sheet and 500 ° C. or less, the hot-rolled sheet after the hot-rolled sheet annealing at 820 ° C. or higher temperature The temperature range of 800 to 500 ° C. is cooled at a cooling rate of 15 / s or more , then cold rolled, and then the annealing temperature of the cold-rolled sheet is set to 820 to 920 ° C., and the average cooling rate to 500 ° C. is 15 The manufacturing method of the ferritic stainless steel plate excellent in secondary workability characterized by setting it as ° C / s or more .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
In many years of evaluating the secondary workability of the product, the present inventors recognized that the secondary workability cannot be organized only by ingredients, and as a result of identifying manufacturing condition factors that affect the secondary workability, It was found to correspond to the precipitation behavior of boron.
In other words, boron segregates at the grain boundary to increase the strength of the grain boundary. At this time, boron present at the grain boundary exhibits its effect by segregating at the grain boundary as a solid solution atom. For example, in the case of Cr 2 B, M 23 (C, B) 6 , the grain boundary strengthening effect is lost.
[0009]
As for the solid solution and precipitation behavior of boride in ferritic stainless steel, there is no conventional knowledge, and as a result of detailed investigations by the present inventors, a cold rolled sheet that is usually performed in cold rolled sheet annealing of stainless steel. It was found that boride solution was difficult at the cooling rate after annealing.
That is, generally in a stainless steel cold-rolled sheet annealing furnace, ferritic stainless steel and austenitic stainless steel are annealed. Therefore, annealing is performed at a predetermined temperature of 800 to 1100 ° C. and cooled to a salt bath of about 400 ° C. Soak for scale modification. For this reason, no special cooling is performed before the salt is added, and the cooling is performed. However, boron added to the stainless steel added with boron precipitates at a slow cooling rate. Precipitation temperature range is 800-400 degreeC, and it will precipitate when it becomes less than 15 degree-C / sec as an average cooling rate in the meantime.
[0010]
FIG. 1 is a microstructural observation photograph after annealing a cold-rolled sheet with different boron content at 920 ° C., changing the cooling rate, and conducting a grain boundary corrosion test of JIS G0571. When cooled at / s, many pits due to boride are observed at the grain boundaries, but such pits are not observed when cooled at 15 ° C./s. Slightly recognized pits are titanium-based precipitates. When the boron content is 20 ppm, etch pits corresponding to boride are observed in a bead shape. It is considered that this boride was deposited when the hot-rolled sheet was wound at 550 ° C. and remained without forming a solution during the cold-rolled sheet annealing. When boride is precipitated in this way, grain boundary strengthening by boron cannot be obtained, and sufficient secondary workability cannot be selected.
[0011]
When the amount of boron added is about 8 ppm, the boride should be in solution if it is annealed at a temperature of 800 ° C. or higher. However, if the boride has already precipitated and grown on the hot-rolled sheet as shown in FIG. Higher temperature and longer time are required for conversion. If annealing is performed at a high temperature of 1000 ° C or higher, it is possible to form a solution at the current plate speed, but if such high temperature annealing is performed with ferritic stainless steel, it will coarsen and orange peel will occur during product processing. Will occur. Therefore, it is desirable to form a solution as much as possible in the hot-rolled sheet stage. That is, the coiling temperature needs to be 500 ° C. or lower.
[0012]
In general manufacturing process of stainless steel sheet, it is common to perform hot-rolled sheet annealing using a batch type or continuous annealing furnace, but in the batch-type hot-rolled sheet annealing, boride is coarsely precipitated during the cooling process. Not desirable. When performing continuous annealing, it is necessary to cool a temperature range of 800 to 500 ° C. at a cooling rate of 15 ° C./s or higher so that no boride is precipitated in the cooling process after annealing.
[0013]
When the solution is formed in the hot-rolled sheet stage, there is no need to form a boride during the cold-rolled sheet annealing. That is, it is possible to perform annealing at a minimum temperature that does not precipitate while being held at the annealing temperature. Increasing the annealing temperature also has the effect of bringing the solid solution B grain boundaries closer to the establishment of the presence in the grains, and lowers the grain boundary segregation B that strengthens the grain boundaries. That is, in order to improve secondary workability, it is desirable that the annealing temperature is a temperature range that prevents boron precipitation and maximizes the grain boundary segregation amount of boron. Therefore, 820 to 920 ° C. is a desirable range. .
[0014]
FIG. 2 is a schematic diagram showing the effects of the annealing temperature and cooling rate of the cold-rolled sheet on the secondary workability by a laboratory test. As test materials, cold rolled sheets were actually manufactured under the conditions shown in Table 1 and Table 2 . The secondary workability was evaluated by annealing in a laboratory annealing furnace under various temperature cooling conditions.
The secondary workability was a multistage drawing with a cylinder with a drawing ratio of 2.5, and the secondary work cracking at 0 ° C. was evaluated by the impact method, and the product without cracks was accepted. It can be seen that good secondary workability is obtained under the conditions where the annealing temperature is 820 to 920 ° C. and the cooling rate is 15 ° C./s or more.
[0015]
Next, the reason for component limitation in the present invention will be described.
Concerning the components, the component system that causes the problem of secondary workability failure due to high purity is limited to the target steel type of the present technology.
That is, it is desirable that C is as low as possible to improve deep drawability. However, in order to make it less than 0.0005%, excessive equipment and a great deal of time are required. Therefore, the C content of the present invention is limited to 0.0005 to 0.005%.
[0016]
The amount of Si is preferably low in order to improve deep drawability, but since there is a lower limit in terms of the effect as a deoxidizing element and high-temperature oxidation resistance, in the present invention, Si: 0.05-0. Limit to 50%.
[0017]
The amount of Mn is also preferably low from the viewpoint of deep drawability, but a minimum addition is necessary to eliminate the harm of S that adversely affects corrosion resistance. In the present invention, 0.05 to 0.50 is required. %.
[0018]
Cr has a lower limit of 11% in order to obtain the generally required corrosion resistance of the high purity ferritic stainless steel that is the target steel type of the present invention. On the other hand, as the Cr content increases, the workability decreases.
[0019]
Mo is a corrosion resistance improving element, the effect is more effective than increasing the Cr, but the addition of 0.1% or more, whereas, the Mo decreases the deep drawability as a substitutional solid solution strengthening element, the upper limit Was 2.0%.
[0020]
Cu is added in a necessary amount for improving corrosion resistance. Cu suppresses overall corrosion in many corrosive environments, and dramatically improves the corrosion resistance particularly in acidic environments. If it is less than 0.02%, the effect is poor, and if it exceeds 0.6%, the workability is greatly deteriorated. Therefore, in the present invention, it is limited to 0.02 to 0.60%.
[0021]
Ti forms precipitates with C and N, and has an effect of improving deep drawability by high purity of the base, and in order to prevent deterioration of corrosion resistance due to chromium carbide formation, is 0.10% or more, and Add (C + N) × 10 or more. However, excessive addition reduces the deep drawability due to the problem of soot due to coarse precipitates and titanium-based oxides, and solid solution Ti, so it is limited to 0.3% or less.
[0022]
N is preferably as low as possible because it lowers workability in the same manner as C. However, in order to make it less than 0.0020%, excessive equipment and a lot of time are required. Therefore, in the present invention, 0.0020 to 0.0150 % Limited to.
[0023]
Al is used as a deoxidizing element during steelmaking, but if added in a large amount, it seems that wrinkles are likely to occur due to hardening of inclusions, so 0.002 to 0.150% is desirable.
[0024]
B is added in a necessary amount for improving secondary workability (extrusion formability after deep drawing). If it is less than 0.0005%, the effect is not exerted, and if it exceeds 0.0015%, the deep drawability is lowered, the solution temperature of the boride is raised, and the insoluble borides are partially precipitated to deteriorate the corrosion resistance. Therefore, it is limited to 0.0005 to 0.0015%.
In order to improve secondary workability, boron must be in solution. Ferritic stainless steel that does not generate etch pits caused by boride when succinic acid electrolytic etching specified in JIS G0571 is performed. Limited to steel plates.
[0025]
【Example】
Example 1
Steel having the components shown in Table 1 was melted in a converter and made into a steel piece by a normal casting method, and then hot rolled into a hot rolled coil having a plate thickness of 4 mm. For the product of the present invention, the coiling temperature of the hot-rolled sheet is set to less than 500 ° C., the annealing of the hot-rolled sheet is omitted, or 800 to 950 ° C. and the cooling rate is set to 15 ° C./s or more. Rolling annealing was performed to obtain a cold-rolled sheet having a thickness of 1.0 mm. After annealing under the annealing conditions of the present invention to obtain a thin plate, various evaluations were performed. In the comparative example, the manufacturing conditions deviate from the scope of the present invention.
[0026]
As a product evaluation, solid solution B was measured. The deep drawability was determined to be acceptable when the limit drawing ratio in the cylindrical drawing was 2.25 or more. Intergranular corrosivity was determined to be acceptable when no etch pits due to boride were produced when electrolytic etching in oxalic acid specified in JIS G0571 was performed.
In the evaluation of corrosion resistance, those with severe red rust were rejected in the beach environment exposure test. Secondary workability was multistage drawing, and samples subjected to deep drawing of cylinders with a drawing ratio of 2.5 were used to evaluate secondary working cracks by the impact method, and those that did not crack at 0 ° C were accepted. . The results are shown in Table 2.
The characteristics of the product manufactured by the method of the present invention and the product manufactured by the comparative method are shown together in Table 2, but the steel plate manufactured by the method of the present invention has better deep drawability and two properties than those manufactured by the conventional method. Next workability was shown.
[0027]
(Example 2)
Steel of the components shown in Table 3 was melted in a converter and made into a steel piece by a normal casting method, and then hot rolled into a hot rolled coil having a plate thickness of 4 mm. The coiling temperature of the hot rolled sheet was set to 500 ° C., the annealing of the hot rolled sheet was omitted, and cold rolling annealing was performed to obtain a cold rolled sheet having a thickness of 1.0 mm. After annealing at 880 ° C., the plate was cooled to 400 ° C. at 15 ° C./s to form a thin plate, and various evaluations were performed. In the comparative example, the components are out of the scope of the present invention.
The same product evaluation as in Example 1 was performed and summarized in Table 4.
The steel plate produced by the method of the present invention showed better corrosion resistance, deep drawability and secondary workability than the steel plate produced by the conventional method.
[0028]
[Table 1]
Figure 0004265751
[0029]
[Table 2]
Figure 0004265751
[0030]
[Table 3]
Figure 0004265751
[0031]
[Table 4]
Figure 0004265751
[0032]
【The invention's effect】
As described above, the present invention can efficiently produce a high corrosion resistance, high workability (deep drawability, secondary workability) high purity ferritic stainless steel sheet whose demand is increasing in recent years. Further, by using the product of the present invention, an excellent product can be produced in applications such as an automobile exhaust system, an automobile fuel system material, and a home appliance, so that the economic effect is extremely great.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between an amount of B and a cooling rate after cold-rolled steel sheet annealing.
FIG. 2 is a diagram showing the relationship between the annealing temperature of a cold-rolled sheet and the cooling rate after annealing.

Claims (3)

質量%で、
C :0.0005〜0.005%、 Si:0.05〜0.50%、
Mn:0.05〜0.50%、 Cr:11.0〜19.0%、
Mo:0.1〜2.0%、 Cu:0.02〜0.60%、
Al:0.002〜0.150%、 Ti:0.10〜0.30%、
N :0.0020〜0.0150で、かつTi/(C+N)≧10、
B :0.0005〜0.0015%で、かつ固溶Bが0.0004%以上
を含有し、残部が鉄および不可避的不純物からなり、JIS G0571に規定の蓚酸電解エッチングを行った際に、ボライドを起因とするエッチピットを生じないことを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板。
% By mass
C: 0.0005 to 0.005%, Si: 0.05 to 0.50%,
Mn: 0.05 to 0.50 %, Cr: 11.0 to 19.0%,
Mo: 0.1 to 2.0%, Cu: 0.02 to 0.60%,
Al: 0.002 to 0.150%, Ti: 0.10 to 0.30%,
N: 0.0020 to 0.0150 , and Ti / (C + N) ≧ 10,
B: 0.0005 to 0.0015%, and solid solution B contains 0.0004% or more, and the balance consists of iron and unavoidable impurities. When oxalic acid electrolytic etching specified in JIS G0571 is performed, A ferritic stainless steel sheet excellent in secondary workability, characterized in that no etch pit caused by boride is generated.
請求項1に記載のフェライト系ステンレス鋼板を製造するに際し、
熱延板の巻取温度を500℃以下とし、熱延板焼鈍を省略して冷間圧延し、その後、冷延板の焼鈍温度を820〜920℃とし、500℃までの平均冷却速度を15℃/s以上とすることを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板の製造方法。
In producing the ferritic stainless steel sheet according to claim 1,
The coiling temperature of the hot-rolled sheet is set to 500 ° C. or less, the hot-rolled sheet annealing is omitted and cold rolling is performed, and then the annealing temperature of the cold-rolled sheet is set to 820 to 920 ° C., and the average cooling rate up to 500 ° C. is 15 The manufacturing method of the ferritic stainless steel plate excellent in secondary workability characterized by setting it as ° C / s or more.
請求項1に記載のフェライト系ステンレス鋼板を製造するに際し、
熱延板の巻取温度を500℃以下とし、熱延板焼鈍を820℃以上の温度で行った後の熱延板を、800〜500℃の温度範囲を15/s以上の冷却速度で冷却し、その後冷間圧延し、その後、冷延板の焼鈍温度を820〜920℃とし、500℃までの平均冷却速度を15℃/s以上とすることを特徴とする、二次加工性に優れたフェライト系ステンレス鋼板の製造方法。
In producing the ferritic stainless steel sheet according to claim 1,
The hot-rolled sheet after the hot-rolled sheet winding temperature is set to 500 ° C. or lower and the hot-rolled sheet annealing is performed at a temperature of 820 ° C. or higher is cooled at a cooling rate of 15 / s or higher in the temperature range of 800 to 500 ° C. Then, cold rolling is performed, and then the annealing temperature of the cold-rolled sheet is set to 820 to 920 ° C., and the average cooling rate up to 500 ° C. is set to 15 ° C./s or more. A method for producing a ferritic stainless steel sheet.
JP2003124142A 2003-04-28 2003-04-28 Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method Expired - Lifetime JP4265751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003124142A JP4265751B2 (en) 2003-04-28 2003-04-28 Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003124142A JP4265751B2 (en) 2003-04-28 2003-04-28 Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2004323957A JP2004323957A (en) 2004-11-18
JP4265751B2 true JP4265751B2 (en) 2009-05-20

Family

ID=33501826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003124142A Expired - Lifetime JP4265751B2 (en) 2003-04-28 2003-04-28 Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4265751B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5588198B2 (en) * 2010-03-02 2014-09-10 日新製鋼株式会社 Ferritic stainless steel with excellent oxidation resistance, secondary work brittleness resistance and weldability
JP2011190524A (en) * 2010-03-17 2011-09-29 Nisshin Steel Co Ltd Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
CN115323144A (en) * 2022-07-15 2022-11-11 江苏康瑞新材料科技股份有限公司 Preparation method of stainless steel wire for mirror frame

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012207298A (en) * 2011-03-30 2012-10-25 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel sheet for vessel excellent in fatigue characteristic and manufacturing method therefor

Also Published As

Publication number Publication date
JP2004323957A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
RU2429306C1 (en) Thermal resistant ferrite stainless steel
JP3041050B2 (en) Duplex stainless steel and its manufacturing method
TWI460291B (en) Ferritic stainless steel
CN114761594B (en) Ferritic stainless steel sheet
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
TWI465587B (en) Ferritic stainless steel having excellent oxidation resistance
JP4624808B2 (en) Ferritic stainless steel sheet with excellent workability and method for producing the same
EP2412837A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
WO2017135240A1 (en) HOT ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME, AND COLD ROLLED Nb-CONTAINING FERRITIC STAINLESS STEEL SHEET AND METHOD FOR PRODUCING SAME
JP6796708B2 (en) Ferritic stainless steel sheet and its manufacturing method, and exhaust parts
JP7268182B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and ferritic stainless steel member
JP4185425B2 (en) Ferritic steel sheet with improved formability and high temperature strength, high temperature oxidation resistance and low temperature toughness at the same time
JP4471688B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP2005068549A (en) High strength low specific gravity steel sheet excellent in ductility and its manufacturing method
JP4265751B2 (en) Ferritic stainless steel sheet with excellent secondary workability and its manufacturing method
JPH11236650A (en) Ferritic stainless steel for engine exhaust member excellent in workability, intergranular corrosion resistance and high temperature strength
JP2514367B2 (en) Automotive engine manifold steel
JP6814678B2 (en) Ferritic stainless steel pipes for thickening pipe ends and ferritic stainless steel pipes for automobile exhaust system parts
JP2003213376A (en) Ferritic stainless steel sheet having excellent secondary hole enlargementability and production method therefor
JP2688392B2 (en) Method for producing martensitic stainless steel with low cracking susceptibility
CN111954724B (en) Ferritic stainless steel sheet, method for producing same, and ferritic stainless steel member
CN109252088B (en) Ferritic stainless steel and heat-resistant member
JP3705391B2 (en) Nb-containing ferritic stainless steel with excellent low temperature toughness of hot-rolled sheet
JP6665936B2 (en) Ferritic stainless steel
JPH06100990A (en) Ferritic stainless steel excellent in strength at high temperature

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

R150 Certificate of patent or registration of utility model

Ref document number: 4265751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term