JP4262844B2 - Pellet manufacturing method - Google Patents

Pellet manufacturing method Download PDF

Info

Publication number
JP4262844B2
JP4262844B2 JP29174899A JP29174899A JP4262844B2 JP 4262844 B2 JP4262844 B2 JP 4262844B2 JP 29174899 A JP29174899 A JP 29174899A JP 29174899 A JP29174899 A JP 29174899A JP 4262844 B2 JP4262844 B2 JP 4262844B2
Authority
JP
Japan
Prior art keywords
evoh
pellets
vinyl acetate
acetate copolymer
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29174899A
Other languages
Japanese (ja)
Other versions
JP2001105428A (en
Inventor
辛二 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP29174899A priority Critical patent/JP4262844B2/en
Publication of JP2001105428A publication Critical patent/JP2001105428A/en
Application granted granted Critical
Publication of JP4262844B2 publication Critical patent/JP4262844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion

Description

【0001】
【発明の属する技術分野】
本発明は、エチレン−酢酸ビニル共重合体ケン化物(以下、EVOHと略記する)或いはEVOH組成物のペレットに関し、更に詳しくは溶融成形時のフィード性(樹脂の押出機への食い込み性)に優れ、成形中の押出機のトルク変動と吐出変動が少なく、得られる成形物の寸法精度が極めて良好なEVOH或いはEVOH組成物のペレットに関する。
【0002】
【従来の技術】
一般に、EVOHはその透明性、ガスバリヤー性、保香性、耐溶剤性、耐油性などに優れており、かかる特性を生かして、食品包装材料、医薬品包装材料、工業薬品包装材料、農薬包装材料等のフィルムやシート、或いはボトル等の容器等に成形されて利用されている。
かかる成形にあたっては、通常EVOHのペレットを押出機等に投入して、溶融成形によりフィルム状やシート状等に成形されるのであるが、かかるEVOHペレットの性状によっては、目的とするEVOH成形物が得られないこともある。例えば、成形物の形状や厚み等の精度が低下することもあり、該ペレットの性状は大変重要なものとなりつつあり、かかる点を考慮して、特公昭47−38634号公報では、EVOHのメタノール−水混合溶液を50℃以下の水、またはメタノール−水混合液中にストランド状に押し出して析出させてEVOHペレットを得る方法が、特開昭53−9898号公報には、EVOH溶液をダイス細孔部から水、またはメタノール−水混合液中に吐出し、その直後に該EVOH溶液をカッターで分離して、球状のEVOHペレットを得る方法が、特開昭53−120767号公報には、析出させたEVOH溶液のストランドを特定の導入管を経て、切断部へ送給してEVOHペレットを得る方法が、特開昭62−106904号公報には、滑剤を含有させたEVOH溶液を凝固液中にストランド状に押し出してEVOHペレットを得る方法が、特開平3−61507号公報には、ストランドをベルトコンベヤを用いて切断部へ導入し、水をスプレーしながら切断してEVOHペレットを得る方法が、それぞれ記載されている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記の特公昭47−38634号公報、特開昭53−9898号公報、特開昭62−106904号公報開示の方法では、得られるEVOHペレットの溶融成形時のフィード性は不十分であり、また特開昭53−120767号公報、特開平3−61507号公報開示の方法でも、ペレット形状が比較的均一であることから、フィード性に対してある程度の効果は認められるものの、更なる改善の余地が残るものである。
すなわち、昨今の市場からは、成形物の形状や厚み等の精度に対する要求は厳しくなってきており、かかる要求に対応できるEVOHペレットの登場が待たれるところである。
【0004】
【課題を解決するための手段】
そこで、本発明者は、かかる現況に鑑みて鋭意研究を重ねた結果、EVOH或いはEVOH組成物を溶融押出機の溶融温度150〜300℃にてダイノズルから押出してストランド状とした後に切断してペレットを製造するに当たり、ダイノズルでのせん断速度(γ)と切断時のEVOH或いはEVOH組成物の表面温度(T)との関係が下記(1)式を満足することにより上記の目的を達成することができることを見出して本発明を完成するに至った。
1.5×103<(γ・T)<3×105・・・(1)
但し、γはせん断速度(sec-1)、TはEVOH或いはEVOH組成物の表面温度(℃)をそれぞれ表す。尚、かかる表面温度の測定に当たっては、赤外線反射温度計等により測定することができる。更に本発明においては、ダイノズルに供給されるEVOH或いはEVOH組成物の溶融混練条件が、下記(2)式を満足するときに本発明の作用効果を顕著に得ることができる。
10<(L/D)<100 ・・・(2)
但し、Lは溶融混練に用いる押出機のスクリューの長さ(mm)、Dは同スクリューの直径(mm)をそれぞれ表す。
【0005】
【発明の実施の形態】
以下に、本発明を詳細に述べる。
本発明に用いられるEVOHとしては、特に限定されないが、エチレン含有量が20〜60モル%(更には25〜55モル%)、ケン化度が90モル%以上(更には95モル%以上)のものが用いられ、該エチレン含有量が20モル%未満では高湿時のガスバリア性、溶融成形性が低下し、逆に60モル%を越えると充分なガスバリア性が得られず、更にケン化度が90モル%未満ではガスバリア性、熱安定性、耐湿性等が低下して好ましくない。
また、該EVOHのメルトフローレート(MFR)(210℃、荷重2160g)は、0.1〜100g/10分(更には0.5〜50g/10分)が好ましく、該MFRが該範囲よりも小さい場合には、成形時に押出機内が高トルク状態となって押出加工が困難となり、また該範囲よりも大きい場合には、成形物の機械強度が不足して好ましくない。
【0006】
該EVOHは、エチレン−酢酸ビニル共重合体のケン化によって得られ、該エチレン−酢酸ビニル共重合体は、公知の任意の重合法、例えば、溶液重合、懸濁重合、エマルジョン重合などにより製造され、エチレン−酢酸ビニル共重合体のケン化も公知の方法で行い得る。
また、本発明では、本発明の効果を阻害しない範囲で共重合可能なエチレン性不飽和単量体を共重合していてもよく、かかる単量体としては、プロピレン、1−ブテン、イソブテン等のオレフィン類、アクリル酸、メタクリル酸、クロトン酸、(無水)フタル酸、(無水)マレイン酸、(無水)イタコン酸等の不飽和酸類あるいはその塩あるいは炭素数1〜18のモノまたはジアルキルエステル類、アクリルアミド、炭素数1〜18のN−アルキルアクリルアミド、N,N−ジメチルアクリルアミド、2−アクリルアミドプロパンスルホン酸あるいはその塩、アクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のアクリルアミド類、メタクリルアミド、炭素数1〜18のN−アルキルメタクリルアミド、N,N−ジメチルメタクリルアミド、2−メタクリルアミドプロパンスルホン酸あるいはその塩、メタクリルアミドプロピルジメチルアミンあるいはその酸塩あるいはその4級塩等のメタクリルアミド類、N−ビニルピロリドン、N−ビニルホルムアミド、N−ビニルアセトアミド等のN−ビニルアミド類、アクリルニトリル、メタクリルニトリル等のシアン化ビニル類、炭素数1〜18のアルキルビニルエーテル、ヒドロキシアルキルビニルエーテル、アルコキシアルキルビニルエーテル等のビニルエーテル類、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、臭化ビニル等のハロゲン化ビニル類、トリメトキシビニルシラン等のビニルシラン類、酢酸アリル、塩化アリル、アリルアルコール、ジメチルアリルアルコール、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸等が挙げられる。
【0007】
本発明においては、上記の如き単品のEVOHのみならず、2種以上のEVOHの組成物、或いはEVOHと他の熱可塑性樹脂との組成物をペレット化することもでき、2種以上のEVOHを用いるときには、特に限定はされないが、ケン化度の差が0.1〜10モル%(更には0.3〜5モル%)が好ましく、かかる差が0.1モル%未満では、真空成形性や延伸性等の改善効果が不十分となり、逆に5モル%を越えると相溶性が悪くなって好ましくなく、またエチレン含有量の差が1〜30モル%(更には3〜25モル%)が好ましく、かかる差が1モル%未満でも真空成形性や延伸性等の改善効果が不十分となり、逆に30モル%を越えると相溶性が悪くなって好ましくなく、更にMFRの差が0〜60g/10分(更には0〜50g/10分)が好ましく、かかる差が60g/10分を越えると少成分の分散性が悪くなって好ましくない。
【0008】
また、EVOHと他の熱可塑性樹脂を用いるときの該熱可塑性樹脂としては、特に限定されないが、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したものなどの広義のポリオレフィン系樹脂、ポリエステル、ポリアミド、共重合ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、ポリケトン、ポリアルコール、等が挙げられ、好適にはアイオノマー、ポリアミド、ポリエステルエラストマー、ポリオレフィン系樹脂が用いられる。
【0009】
EVOHと他の熱可塑性樹脂との配合割合(重量比)も特に限定されないが、EVOH/該熱可塑性樹脂=99/1〜40/60(更には97/3〜45/55)が好ましく、かかる配合割合が99/1未満では延伸性、耐ピンホール性等が不十分となり、逆に40/60を越えるとガスバリア性が低くなって好ましくない。
【0010】
本発明は、上記の如きEVOH或いはEVOH組成物(以下、まとめてEVOH組成物と称する)を溶融押出機の溶融温度150〜300℃にてダイノズルから押出してストランド状とした後に切断してペレットを製造するに当たり、ダイノズルでのせん断速度(γ)と切断時のEVOH組成物の表面温度(T)との関係が下記(1)式を満足することを特徴とするもので、かかる製造法について説明する。
1.5×103<(γ・T)<3×105・・・(1)
但し、γはせん断速度(sec-1)、TはEVOH或いはEVOH組成物の表面温度(℃)をそれぞれ表す。
【0011】
EVOH組成物をダイノズルから押し出すに当たっては、ダイノズルが設けられた単軸押出機、二軸押出機等の溶融押出機にEVOH組成物を供給して、そのダイノズルからEVOH組成物を押し出せば良く、この時の溶融押出機の溶融温度は150〜300℃であり、更には180〜270℃が好ましく、かかる温度が150℃未満では溶融不十分で、未溶融ゲルが多発し、逆に300℃を越えるとEVOHが熱劣化し、着色する等して好ましくない。また、押出機のスクリューの長さL(mm)と同スクリューの直径D(mm)の比であるL/Dが、10<(L/D)<100の関係を満足することが好ましく、更に好ましくは、15<(L/D)<70である。かかる比が10以下では未溶融ゲルが多発し、逆に100を越えるとEVOHが熱劣化し、着色する等して好ましくない。
【0012】
本発明においては、かかる押出機におけるEVOH組成物のせん断速度と後述する切断時のEVOH組成物の温度との関係が重要で、かかる関係を満足していれば、該せん断速度は特に限定されないが、通常は10〜10000sec-1(更には50〜5000sec-1)から選択され、かかるせん断速度が大きすぎるとストランドの冷却が十分に進まないためかペレット化が困難となる恐れがあり、逆に小さすぎると生産性が悪く、押出量が変動する為、ペレット外径が変動し好ましくない。かかるせん断速度は、一般的にEVOH組成物の吐出量とダイノズルの断面の形状より決定されるものであり、例えば、ダイノズルの断面が円形の時は、γ=4Q/πr3により算出することができる。ここで、γはせん断速度(sec-1)、Qはダイノズル一本当たりのEVOH組成物の吐出量(cc/sec)、rはダイノズル断面の半径(cm)をそれぞれ表す。
【0013】
また、ダイノズルの形状も特に限定されないが、ペレットの形状の点で径1〜10mmの円形ノズルが好ましく、更には2〜7mmの円形ノズルが好ましい。ダイノズルからストランド状に押し出されたEVOH組成物は、その後は切断されてペレット状になるのであるが、本発明においては、かかる切断時のペレットの表面温度T(℃)と上記のせん断速度γ(sec-1)との関係が、1.5×103<(γ・T)<3×105を満足することを最大の特徴とするもので、γ・Tの値が1.5×103以下のときは、得られたEVOH組成物のペレットで製膜を行うと発泡や肌荒れ現象を起こし、逆に3×105を越えるときはストランドの切断が困難となり、切断してもペレットの形状が不均一となりその結果、後の押出成形時の原料の供給が不均一となって本発明の目的を達成することはできず、更に好ましくは2×103<(γ・T)<2×105である。
【0014】
かかる条件を満足させるためには、上記のせん断速度とEVOH組成物の表面温度を調整すれば良いのであるが、通常はせん断速度は上記の如く10〜10000sec-1から選択されることが好ましいため、該温度を30〜150℃程度に調整することが好ましく、かかる調整に当たっては、通常空冷、水冷等の方法により押し出されたEVOH組成物を冷却することが好ましく、特に冷却効率の点で、水冷することが好ましい。かかる水冷に当たっては、所定温度の水を入れた水槽中にストランドを通して冷却すればよい。
かくしてペレット状に切断されるのであるが、かかるペレットの形状は、円柱状の場合は径が1〜6mm、長さ1〜6mmのもの(更にはそれぞれ2〜5mmのもの)が好ましい。
【0015】
かくして、EVOH組成物のペレットが得られるわけであるが、かかるペレットには、更に、必要に応じて、滑剤(上記以外の滑剤)、可塑剤、熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、乾燥剤、酸素吸収剤、抗菌剤、フィラーなどの添加剤やポリオレフィン、ポリアミド等の他樹脂を配合することも可能である。特にゲル発生防止剤として、ハイドロタルサイト系化合物、ヒンダードフェノール系、ヒンダードアミン系熱安定剤、高級脂肪族カルボン酸の金属塩を添加することもできる。
【0016】
かかるペレットは、溶融成形等により、フィルム、シート、容器、繊維、棒、管、各種成形品等に成形され、又、これらの粉砕品(回収品を再使用する時など)を用いて再び溶融成形に供することもでき、かかる溶融成形方法としては、押出成形法、射出成形法が主として採用される。溶融成形温度は、150〜300℃の範囲から選ぶことが多い。
また、該ペレットは、単層として用いることもできるし、該ペレットからなる層の少なくとも片面に熱可塑性樹脂層等を積層して多層積層体として用いることも有用である。
【0017】
該積層体を製造するに当たっては、該ペレットからなる層の片面又は両面に他の基材を積層するのであるが、積層方法としては、例えば該ペレットからなるフィルムやシートに熱可塑性樹脂を溶融押出する方法、逆に熱可塑性樹脂等の基材に該ペレットを溶融押出する方法、該ペレットと他の熱可塑性樹脂とを共押出する方法、更には本発明で得られたペレットからなるフィルムやシートと他の基材のフィルム、シートとを有機チタン化合物、イソシアネート化合物、ポリエステル系化合物、ポリウレタン化合物等の公知の接着剤を用いてドライラミネートする方法等が挙げられる。
【0018】
共押出の場合の相手側樹脂としては直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したものなどの広義のポリオレフィン系樹脂、ポリエステル、ポリアミド、共重合ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、ポリスチレン、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン、ポリケトン、ポリアルコール等が挙げられる。他のEVOHも共押出可能である。上記のなかでも、共押出製膜の容易さ、フィルム物性(特に強度)の実用性の点から、ポリプロピレン、ポリアミド、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリスチレン、PET、PENが好ましく用いられる。
【0019】
更に、本発明で得られたペレットから一旦フィルムやシート等の成形物を得、これに他の基材を押出コートしたり、他の基材のフィルム、シート等を接着剤を用いてラミネートする場合、前記の熱可塑性樹脂以外に任意の基材(紙、金属箔、一軸又は二軸延伸プラスチックフィルム又はシート、織布、不織布、金属綿状、木質等)が使用可能である。
【0020】
積層体の層構成は、本発明で得られたペレットからなる層をa(a1、a2、・・・)、他の基材、例えば熱可塑性樹脂層をb(b1、b2、・・・)とするとき、フィルム、シート、ボトル状であれば、a/bの二層構造のみならず、b/a/b、a/b/a、a1/a2/b、a/b1/b2、b2/b1/a/b1/b2等任意の組み合わせが可能であり、フィラメント状ではa、bがバイメタル型、芯(a)−鞘(b)型、芯(b)−鞘(a)型、或いは偏心芯鞘型等任意の組み合わせが可能である。
【0021】
かくして得られた積層体の形状としては任意のものであってよく、フィルム、シート、テープ、ボトル、パイプ、フィラメント、異型断面押出物等が例示される。又、得られる積層体は必要に応じ、熱処理、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液又は溶融コート処理、製袋加工、深絞り加工、箱加工、チューブ加工、スプリット加工等を行うことができる。
上記の如く得られたフィルム、シート或いは容器等は食品、医薬品、工業薬品、農薬等各種の包装材料として有用である。
【0022】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
尚、実施例中「部」、「%」とあるのは特に断りのない限り重量基準を示す。
実施例1
EVOH[エチレン含有量32モル%、ケン化度99.5モル%、MFR3g/10分(210℃、荷重2160g)]を単軸押出機に供給して以下の条件で、EVOHをストランド状(直径3mm)に押し出した。

Figure 0004262844
【0023】
次いで、押し出されたEVOHのストランドを水冷(水温30℃の水槽中を0.19m/secの速度で5.2秒間通過)して、切断時のEVOH(ストランド)の表面温度(T)を80℃に調整し、ペレタイザーを用いて切断して、長さ3mm、直径3mmのEVOHペレットを得た。
尚、かかるEVOHペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=3.5×104で(1)式を満足するものであった。
得られたEVOHペレットを用いて、下記の条件で3時間製膜を行って、トルク変動、吐出量変動、膜厚変化について、以下の要領で評価を行った。
【0024】
Figure 0004262844
(トルク変動)
連続製膜中の押出機のモーター負荷(スクリュー回転数60rpm)時のスクリュートルクA(アンペア)を連続的に測定して、その変動を調べて、以下の通り評価した。
○ −−− ±5%未満の変動
△ −−− ±5〜±10%未満の変動
× −−− ±10%以上の変動
【0025】
(吐出量変動)
連続製膜中の押出機からのEVOHの吐出量を1分毎に測定して、その変動を調べて、以下の通り評価した。
○ −−− ±2%未満の変動
△ −−− ±2〜±5%未満の変動
× −−− ±5%以上の変動
(膜厚変化)
MD方向のフィルムの厚みを連続的に測定して、膜厚40μmを中心値として、膜厚の変化比を求めて、以下の通り評価した。
○ −−− ±5%未満の変化比
△ −−− ±5〜±10%未満の変化比
× −−− ±10%以上の変化比
【0026】
実施例2
エチレン含有量32モル%、ケン化度99.5モル%、MFR3g/10分(210℃、荷重2160g)のEVOH65部とエチレン含有量44モル%、ケン化度98.5モル%、MFR3g/10分(210℃、荷重2160g)のEVOH35部のEVOH組成物を単軸押出機に供給して以下の条件で、EVOH組成物をストランド状(直径4mm)に押し出した。
Figure 0004262844
【0027】
次いで、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.36m/secの速度で1.4秒間通過)して、切断時のEVOH組成物(ストランド)の表面温度(T)を100℃に調整し、ペレタイザーを用いて切断して、長さ3.0mm、直径2.5mmのEVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=8.3×104で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0028】
実施例3
エチレン含有量32モル%、ケン化度99.5モル%、MFR 3g/10分(210℃、荷重2160g)のEVOH80部とLLDPE(三井化学社製「タフマー PO180」)20部のEVOH組成物を単軸押出機に供給して以下の条件で、EVOH組成物をストランド状(直径3.0mm)に押し出した。
Figure 0004262844
【0029】
次いで、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.38m/secの速度で5.3秒間通過)させて、切断時のEVOH組成物(ストランド)の表面温度(T)を50℃に調整し、ペレタイザーを用いて切断して、長さ3mm、直径3mmのEVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=5×104で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0030】
実施例4
エチレン含有量32モル%、ケン化度99.7モル%、MFR4g/10分(210℃、荷重2160g)のEVOH95部とナイロン6・66・610(三井デュポン社製「エルバミド 8061」)5部のEVOH組成物を単軸押出機に供給して以下の条件で、EVOH組成物をストランド状(直径3.0mm)に押し出した。
Figure 0004262844
【0031】
次いで、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.35m/secの速度で2.9秒間通過)して、切断時のEVOH組成物(ストランド)の表面温度(T)を80℃に調整し、ペレタイザーを用いて切断して、長さ3mm、直径3mmのEVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=5.6×104で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0032】
実施例5
実施例1において、押し出されたEVOH組成物のストランドを水冷(水温30℃の水槽中を0.36m/secの速度で0.8秒間通過)して、せん断速度(γ)を825sec-1、表面温度(T)を120℃にした以外は同様に行って、EVOHペレットを得た。
尚、かかるEVOHペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=9.9×104で(1)式を満足するものであった。
得られたEVOHペレットについて、実施例1と同様に評価を行った。
【0033】
実施例6
実施例2において、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.44m/secの速度で1.1秒間通過)して、せん断速度(γ)を1000sec-1、表面温度(T)を100℃にした以外は同様に行って、EVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=1.0×105で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0034】
実施例7
実施例3において、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.19m/secの速度で2.7秒間通過)して、せん断速度(γ)を500sec-1、表面温度(T)を100℃にした以外は同様に行って、EVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=5×104で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0035】
実施例8
実施例4において、押し出されたEVOH組成物のストランドを水冷(水温40℃の水槽中を0.50m/secの速度で0.5秒間通過)して、せん断速度(γ)を1000sec-1、表面温度(T)を100℃にした以外は同様に行って、EVOH組成物ペレットを得た。
尚、かかるEVOH組成物ペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=1.0×105で(1)式を満足するものであった。
得られたEVOH組成物ペレットについて、実施例1と同様に評価を行った。
【0036】
比較例1
実施例1において、押し出されたEVOH組成物のストランドを水冷(水温5℃の水槽中を0.04m/secの速度で60秒間通過)して、ペレットの表面温度(T)を10℃、せん断速度(γ)を100sec-1にした以外は同様に行って、EVOHペレットを得た。
尚、かかるEVOHペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=1×103で(1)式を逸脱するものであった。
得られたEVOHペレットについて、実施例1と同様に評価を行った。尚、表2の示される結果以外に、得られたフィルムに発泡や穴あきの発生が認められた。
【0037】
比較例2
実施例1において、押し出されたEVOH組成物のストランドを水冷せずに、せん断速度(γ)を3000sec-1、ペレット表面温度(T)を167℃にした以外は同様に行って、EVOHペレットを得た。得られたペレットに連朱(未切断部分の発生により完全に個々のペレットに分離していない状態)が認められた。
尚、かかるEVOHペレットの製造において、せん断速度(γ)及び表面温度(T)のそれぞれの値を本文中記載の(1)式に代入したところ、γ・T=5×105で(1)式を逸脱するものであった。
得られたEVOHペレットについて、実施例1と同様に評価を行った。
実施例及び比較例の評価結果を表1にまとめて示す。
【0038】
【表1】
Figure 0004262844
【0039】
【発明の効果】
本発明のEVOH組成物ペレットは、特定の条件で製造されているため、溶融成形時に押出機へのフィード性に優れ、成形中の押出機のトルク変動と吐出変動が少なく、形状や厚み等の寸法精度に優れた成形物を得ることができ、更には各種の積層体とすることもでき、食品や医薬品、農薬品、工業薬品包装用のフィルム、シート、チューブ、ボトル、カップ、袋、容器等の用途に非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a saponified ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVOH) or a pellet of EVOH composition, and more particularly excellent in feedability (melting property of resin into an extruder) during melt molding. The present invention relates to a pellet of EVOH or EVOH composition in which the torque fluctuation and discharge fluctuation of the extruder during molding are small and the dimensional accuracy of the resulting molded article is extremely good.
[0002]
[Prior art]
In general, EVOH is excellent in transparency, gas barrier properties, fragrance retention, solvent resistance, oil resistance, etc., and taking advantage of these properties, food packaging materials, pharmaceutical packaging materials, industrial chemical packaging materials, agricultural chemical packaging materials It is used after being formed into a film or sheet such as a container or a container such as a bottle.
In such molding, EVOH pellets are usually charged into an extruder or the like and formed into a film or sheet by melt molding. Depending on the properties of such EVOH pellets, the target EVOH molded product may be It may not be obtained. For example, the accuracy of the shape and thickness of the molded product may be lowered, and the properties of the pellets are becoming very important. In view of this point, Japanese Examined Patent Publication No. 47-38634 discloses EVOH methanol. -A method of obtaining EVOH pellets by extruding a water mixed solution into water at 50 ° C or lower or in a methanol-water mixed solution in a strand shape to form EVOH pellets. JP-A No. 53-120767 discloses a method for discharging spherical EVOH solution from a hole portion into water or a methanol-water mixed solution, and immediately thereafter separating the EVOH solution with a cutter to obtain spherical EVOH pellets. JP-A-62-106904 discloses a method in which a strand of the EVOH solution is fed to a cutting section through a specific introduction tube to obtain EVOH pellets. A method for obtaining EVOH pellets by extruding the contained EVOH solution into a coagulating liquid in a strand form is disclosed in JP-A-3-61507 in which strands are introduced into a cutting section using a belt conveyor and water is sprayed. Each of the methods of cutting to obtain EVOH pellets is described.
[0003]
[Problems to be solved by the invention]
However, the methods disclosed in JP-B-47-38634, JP-A-53-9898, and JP-A-62-106904 have insufficient feed properties during melt molding of the obtained EVOH pellets. Further, the methods disclosed in Japanese Patent Laid-Open Nos. 53-120767 and 3-61507 have a relatively uniform pellet shape. There is still room for it.
In other words, demands for accuracy such as the shape and thickness of molded products have become stricter from the recent market, and the emergence of EVOH pellets that can meet such demands is awaited.
[0004]
[Means for Solving the Problems]
Therefore, as a result of intensive studies in view of the present situation, the present inventor has extruded EVOH or an EVOH composition from a die nozzle at a melting temperature of 150 to 300 ° C. of a melt extruder to form a strand, and then cut into pellets. In order to achieve the above object, the relationship between the shear rate (γ) at the die nozzle and the surface temperature (T) of the EVOH or EVOH composition at the time of cutting satisfies the following formula (1): The present invention has been completed by finding out what can be done.
1.5 × 10 3 <(γ · T) <3 × 10 5 (1)
However, (gamma) represents a shear rate (sec <-1> ) and T represents the surface temperature (degreeC) of EVOH or an EVOH composition, respectively. In measuring the surface temperature, an infrared reflection thermometer or the like can be used. Furthermore, in this invention, the effect of this invention can be acquired notably when the melt-kneading conditions of EVOH or EVOH composition supplied to a die nozzle satisfy | fill following (2) Formula.
10 <(L / D) <100 (2)
However, L represents the length (mm) of the screw of the extruder used for melt kneading, and D represents the diameter (mm) of the screw.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
EVOH used in the present invention is not particularly limited, but has an ethylene content of 20 to 60 mol% (more preferably 25 to 55 mol%) and a saponification degree of 90 mol% or more (further 95 mol% or more). When the ethylene content is less than 20 mol%, the gas barrier property and melt moldability at high humidity are lowered. Conversely, when the ethylene content exceeds 60 mol%, sufficient gas barrier properties cannot be obtained. If it is less than 90 mol%, the gas barrier properties, thermal stability, moisture resistance and the like are lowered, which is not preferable.
Further, the melt flow rate (MFR) (210 ° C., load 2160 g) of the EVOH is preferably 0.1 to 100 g / 10 minutes (more preferably 0.5 to 50 g / 10 minutes), and the MFR is more than this range. If it is small, the inside of the extruder will be in a high torque state during molding, making extrusion difficult, and if it is larger than this range, the mechanical strength of the molded product will be insufficient, which is not preferable.
[0006]
The EVOH is obtained by saponification of an ethylene-vinyl acetate copolymer, and the ethylene-vinyl acetate copolymer is produced by any known polymerization method such as solution polymerization, suspension polymerization, emulsion polymerization and the like. The saponification of the ethylene-vinyl acetate copolymer can also be performed by a known method.
In the present invention, an ethylenically unsaturated monomer that can be copolymerized within a range that does not impair the effects of the present invention may be copolymerized. Examples of such a monomer include propylene, 1-butene, and isobutene. Olefins, acrylic acid, methacrylic acid, crotonic acid, (anhydrous) phthalic acid, (anhydrous) maleic acid, (anhydrous) itaconic acid and other unsaturated acids or salts thereof, or mono- or dialkyl esters having 1 to 18 carbon atoms Acrylamide, acrylamide such as C1-C18 N-alkylacrylamide, N, N-dimethylacrylamide, 2-acrylamidepropanesulfonic acid or its salt, acrylamidepropyldimethylamine or its acid salt or its quaternary salt, methacryl Amides, N-alkyl methacrylamides having 1 to 18 carbon atoms, N, N- Methacrylamide such as methylmethacrylamide, 2-methacrylamidepropanesulfonic acid or its salt, methacrylamideamidopropylamine or its acid salt or its quaternary salt, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, etc. N-vinylamides, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl ethers such as alkyl vinyl ethers having 1 to 18 carbon atoms, hydroxyalkyl vinyl ethers and alkoxyalkyl vinyl ethers, vinyl chloride, vinylidene chloride, vinyl fluoride, fluorine Vinyl halides such as vinylidene chloride and vinyl bromide, vinyl silanes such as trimethoxyvinyl silane, allyl acetate, allyl chloride, allyl alcohol, dimethylallyl alcohol, trimer Le - (3-acrylamido-3-dimethylpropyl) - ammonium chloride, and the like acrylamido-2-methylpropanesulfonic acid.
[0007]
In the present invention, not only a single EVOH as described above but also a composition of two or more types of EVOH, or a composition of EVOH and another thermoplastic resin can be pelletized, and two or more types of EVOH can be pelletized. When used, it is not particularly limited, but the difference in the degree of saponification is preferably 0.1 to 10 mol% (more preferably 0.3 to 5 mol%). And the improvement effect such as stretchability is insufficient, and on the contrary, if it exceeds 5 mol%, the compatibility is unfavorable, and the difference in ethylene content is 1 to 30 mol% (further 3 to 25 mol%). Even if the difference is less than 1 mol%, the improvement effect such as vacuum moldability and stretchability becomes insufficient. On the contrary, if it exceeds 30 mol%, the compatibility deteriorates, and the MFR difference is 0 to 0. 60 g / 10 min (further 0-50 g 10 minutes) are preferred, such difference is unfavorably poor dispersibility of small components to exceed 60 g / 10 min.
[0008]
The thermoplastic resin when EVOH and other thermoplastic resins are used is not particularly limited, but includes linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer. Polymer, ionomer, ethylene-propylene copolymer, ethylene-acrylic acid ester copolymer, polypropylene, propylene-α-olefin (α-olefin having 4 to 20 carbon atoms) copolymer, olefin alone such as polybutene and polypentene Or a copolymer, or a polyolefin resin, polyester, polyamide, copolymerized polyamide, polyvinyl chloride, polyvinyl chloride, such as those obtained by graft-modifying these olefins alone or copolymers with unsaturated carboxylic acid or ester thereof. Vinylidene, acrylic resin, polystyrene Rene, vinyl ester resins, polyester elastomers, polyurethane elastomers, chlorinated polyethylene, chlorinated polypropylene, polyketones, polyalcohols, and the like can be used, and ionomers, polyamides, polyester elastomers, and polyolefin resins are preferably used.
[0009]
The blending ratio (weight ratio) of EVOH and other thermoplastic resin is also not particularly limited, but EVOH / the thermoplastic resin = 99/1 to 40/60 (more preferably 97/3 to 45/55) is preferable. If the blending ratio is less than 99/1, the stretchability, pinhole resistance and the like are insufficient, and conversely if it exceeds 40/60, the gas barrier property is undesirably lowered.
[0010]
In the present invention, the EVOH or EVOH composition as described above (hereinafter collectively referred to as the EVOH composition) is extruded from a die nozzle at a melting temperature of 150 to 300 ° C. of a melt extruder to form a strand, and then cut into pellets. In manufacturing, the relationship between the shear rate (γ) at the die nozzle and the surface temperature (T) of the EVOH composition at the time of cutting satisfies the following formula (1), and this manufacturing method is explained. To do.
1.5 × 10 3 <(γ · T) <3 × 10 5 (1)
However, (gamma) represents a shear rate (sec <-1>) and T represents the surface temperature (degreeC) of EVOH or an EVOH composition, respectively.
[0011]
In extruding the EVOH composition from the die nozzle, the EVOH composition may be supplied to a melt extruder such as a single-screw extruder or a twin-screw extruder provided with the die nozzle, and the EVOH composition may be extruded from the die nozzle. melting temperature of the melt extruder at this time was 150 to 300 ° C., more preferably from 180 to 270 ° C., insufficient melt at such a temperature is less than 0.99 ° C., unmelted gel frequently, the 300 ° C. Conversely If it exceeds, EVOH will be thermally deteriorated and unfavorably colored. Moreover, it is preferable that L / D which is a ratio of the screw length L (mm) of the extruder and the diameter D (mm) of the screw satisfies the relationship of 10 <(L / D) <100. Preferably, 15 <(L / D) <70. If the ratio is 10 or less, unmelted gel is frequently generated. Conversely, if it exceeds 100, EVOH is undesirably deteriorated by heat and colored.
[0012]
In the present invention, the relationship between the shear rate of the EVOH composition in such an extruder and the temperature of the EVOH composition at the time of cutting described later is important, and if the relationship is satisfied, the shear rate is not particularly limited. In general, it is selected from 10 to 10000 sec −1 (further, 50 to 5000 sec −1 ). If the shear rate is too high, the strand may not be cooled sufficiently, which may make pelleting difficult. If it is too small, the productivity is poor and the amount of extrusion varies, which is not preferable because the pellet outer diameter varies. Such shear rate is generally determined from the discharge amount of the EVOH composition and the shape of the cross section of the die nozzle. For example, when the cross section of the die nozzle is circular, it can be calculated by γ = 4Q / πr 3. it can. Here, γ represents the shear rate (sec −1 ), Q represents the discharge amount (cc / sec) of the EVOH composition per die nozzle, and r represents the radius (cm) of the die nozzle cross section.
[0013]
The shape of the die nozzle is not particularly limited, but a circular nozzle having a diameter of 1 to 10 mm is preferable in terms of the shape of the pellet, and a circular nozzle having a diameter of 2 to 7 mm is more preferable. The EVOH composition extruded from the die nozzle in the form of a strand is then cut into pellets. In the present invention, the surface temperature T (° C.) of the pellets during the cutting and the above shear rate γ ( sec -1 ) satisfying 1.5 × 10 3 <(γ · T) <3 × 10 5 , and the value of γ · T is 1.5 × 10 5. When it is 3 or less, foaming or rough skin occurs when film formation is performed with the pellets of the obtained EVOH composition. Conversely, when it exceeds 3 × 10 5 , it becomes difficult to cut the strands. The shape becomes non-uniform, and as a result, the supply of raw materials in the subsequent extrusion molding becomes non-uniform, and the object of the present invention cannot be achieved. More preferably, 2 × 10 3 <(γ · T) <2 × 10 5
[0014]
In order to satisfy such conditions, the shear rate and the surface temperature of the EVOH composition may be adjusted, but usually the shear rate is preferably selected from 10 to 10000 sec −1 as described above. The temperature is preferably adjusted to about 30 to 150 ° C., and in this adjustment, it is preferable to cool the EVOH composition extruded by a method such as air cooling or water cooling, and particularly in terms of cooling efficiency, It is preferable to do. In such water cooling, the strand may be cooled through a water tank containing water at a predetermined temperature.
Thus, the pellets are cut into pellets, and the pellets preferably have a diameter of 1 to 6 mm and a length of 1 to 6 mm (more preferably 2 to 5 mm, respectively).
[0015]
Thus, EVOH composition pellets can be obtained. In addition, if necessary, the pellets may further include a lubricant (a lubricant other than the above), a plasticizer, a heat stabilizer, an ultraviolet absorber, an antioxidant, It is also possible to add additives such as a colorant, a desiccant, an oxygen absorber, an antibacterial agent, a filler, and other resins such as polyolefin and polyamide. In particular, hydrotalcite compounds, hindered phenols, hindered amine heat stabilizers, and metal salts of higher aliphatic carboxylic acids can also be added as gel generation inhibitors.
[0016]
Such pellets are formed into films, sheets, containers, fibers, rods, tubes, various molded products, etc. by melt molding, etc., and melted again using these pulverized products (for example, when the recovered products are reused). An extrusion molding method and an injection molding method are mainly employed as the melt molding method. The melt molding temperature is often selected from the range of 150 to 300 ° C.
In addition, the pellet can be used as a single layer, or it is useful to laminate a thermoplastic resin layer or the like on at least one side of the layer made of the pellet and use it as a multilayer laminate.
[0017]
In producing the laminate, another substrate is laminated on one side or both sides of the layer made of pellets. For example, a thermoplastic resin is melt-extruded into a film or sheet made of the pellets. On the contrary, a method of melt-extruding the pellets on a substrate such as a thermoplastic resin, a method of co-extrusion of the pellets and another thermoplastic resin, and a film or sheet comprising the pellets obtained in the present invention And a method of dry-laminating films and sheets of other substrates with known adhesives such as organic titanium compounds, isocyanate compounds, polyester compounds, polyurethane compounds, and the like.
[0018]
The other resin in the case of coextrusion is linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ionomer, ethylene-propylene copolymer, ethylene-acrylic acid. Ester copolymer, polypropylene, propylene-α-olefin (α-olefin having 4 to 20 carbon atoms) copolymer, polybutene, polypentene and other olefins alone or copolymers, or these olefins alone or copolymers Polyolefin resins such as those obtained by graft modification with unsaturated carboxylic acids or esters thereof, polyesters, polyamides, copolymerized polyamides, polyvinyl chloride, polyvinylidene chloride, acrylic resins, polystyrene, vinyl ester resins, polyester elastomers , Poly Examples include urethane elastomer, chlorinated polyethylene, chlorinated polypropylene, polyketone, polyalcohol and the like. Other EVOHs can be coextruded. Among these, polypropylene, polyamide, polyethylene, ethylene-vinyl acetate copolymer, polystyrene, PET, and PEN are preferably used from the viewpoint of ease of coextrusion film formation and practicality of film physical properties (particularly strength).
[0019]
Further, a molded product such as a film or a sheet is once obtained from the pellet obtained in the present invention, and another substrate is extrusion coated thereon, or a film or sheet of another substrate is laminated using an adhesive. In this case, any base material (paper, metal foil, uniaxial or biaxially stretched plastic film or sheet, woven fabric, non-woven fabric, metallic cotton, wood, etc.) can be used in addition to the thermoplastic resin.
[0020]
The layer structure of the laminate is such that the layer made of the pellets obtained in the present invention is a (a 1 , a 2 ,...), And another substrate, for example, a thermoplastic resin layer is b (b 1 , b 2 , ..)), If it is a film, sheet or bottle, not only a / b two-layer structure but also b / a / b, a / b / a, a 1 / a 2 / b, a / B 1 / b 2 , b 2 / b 1 / a / b 1 / b 2, etc., and any combination is possible, and in the filament form, a and b are bimetal type, core (a) -sheath (b) type, Arbitrary combinations, such as a core (b) -sheath (a) type or an eccentric core-sheath type, are possible.
[0021]
The shape of the laminate thus obtained may be any shape, and examples thereof include films, sheets, tapes, bottles, pipes, filaments, profile cross-section extrudates, and the like. In addition, the obtained laminate can be subjected to heat treatment, cooling treatment, rolling treatment, printing treatment, dry lamination treatment, solution or melt coating treatment, bag making processing, deep drawing processing, box processing, tube processing, split processing, etc. It can be carried out.
The film, sheet or container obtained as described above is useful as various packaging materials such as foods, pharmaceuticals, industrial chemicals and agricultural chemicals.
[0022]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
In the examples, “parts” and “%” are based on weight unless otherwise specified.
Example 1
EVOH [ethylene content: 32 mol%, saponification degree: 99.5 mol%, MFR: 3 g / 10 min (210 ° C., load: 2160 g)] was supplied to a single-screw extruder, and EVOH was converted into a strand (diameter) under the following conditions. 3mm).
Figure 0004262844
[0023]
Subsequently, the extruded EVOH strand is water-cooled (passed through a water bath at a water temperature of 30 ° C. at a speed of 0.19 m / sec for 5.2 seconds), and the EVOH (strand) surface temperature (T) at the time of cutting is 80 The temperature was adjusted to 0 ° C. and cut using a pelletizer to obtain EVOH pellets having a length of 3 mm and a diameter of 3 mm.
In the production of such EVOH pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 3.5 × 10 4 ( 1) The formula was satisfied.
Using the obtained EVOH pellets, film formation was performed for 3 hours under the following conditions, and torque fluctuation, discharge amount fluctuation, and film thickness change were evaluated in the following manner.
[0024]
Figure 0004262844
(Torque fluctuation)
The screw torque A (ampere) at the time of motor load (screw rotation speed: 60 rpm) of the extruder during continuous film formation was continuously measured, and the fluctuation was examined and evaluated as follows.
○ −−− Fluctuation of less than ± 5% Δ −−− Fluctuation of ± 5 to less than ± 10% × −−− Fluctuation of ± 10% or more
(Discharge variation)
The discharge amount of EVOH from the extruder during continuous film formation was measured every minute, and the fluctuations were examined and evaluated as follows.
○ ---- Less than ± 2% variation △ --- ± 2 to less than ± 5% variation × --- ± 5% or more variation (film thickness change)
The thickness of the film in the MD direction was continuously measured, and the change ratio of the film thickness was obtained with a film thickness of 40 μm as the center value, and evaluated as follows.
○ −−− Change ratio less than ± 5% Δ −−− Change ratio less than ± 5 ± 10% × −−− Change ratio greater than ± 10%
Example 2
Ethylene content 32 mol%, saponification degree 99.5 mol%, MFR 3 g / 10 min (210 ° C, load 2160 g) EVOH 65 parts and ethylene content 44 mol%, saponification degree 98.5 mol%, MFR 3 g / 10 The EVOH composition of 35 parts of EVOH (210 ° C., load 2160 g) was supplied to a single-screw extruder, and the EVOH composition was extruded into a strand (diameter 4 mm) under the following conditions.
Figure 0004262844
[0027]
Next, the extruded strand of the EVOH composition is cooled with water (passed through a water bath at a water temperature of 40 ° C. for 1.4 seconds at a speed of 0.36 m / sec), and the surface temperature of the EVOH composition (strand) at the time of cutting ( T) was adjusted to 100 ° C. and cut using a pelletizer to obtain EVOH composition pellets having a length of 3.0 mm and a diameter of 2.5 mm.
In the production of such EVOH composition pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 8.3 × 10 4 (1) was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0028]
Example 3
An EVOH composition having an ethylene content of 32 mol%, a saponification degree of 99.5 mol%, MFR 3 g / 10 min (210 ° C., load 2160 g) EVOH 80 parts and LLDPE (“Tafmer PO180” manufactured by Mitsui Chemicals, Inc.) The EVOH composition was extruded into a strand shape (diameter: 3.0 mm) under the following conditions after being supplied to a single screw extruder.
Figure 0004262844
[0029]
Next, the extruded strand of the EVOH composition was cooled with water (passed through a water bath at a water temperature of 40 ° C. for 5.3 seconds at a speed of 0.38 m / sec), and the EVOH composition (strand) surface temperature at the time of cutting (strand) T) was adjusted to 50 ° C. and cut with a pelletizer to obtain EVOH composition pellets having a length of 3 mm and a diameter of 3 mm.
In the production of such EVOH composition pellets, when the respective values of the shear rate (γ) and the surface temperature (T) were substituted into the equation (1) described in the text, γ · T = 5 × 10 4 ( 1) The formula was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0030]
Example 4
95 parts of EVOH having an ethylene content of 32 mol%, a saponification degree of 99.7 mol%, an MFR of 4 g / 10 min (210 ° C., a load of 2160 g), and nylon 6,66,610 (“Elbamide 8061” manufactured by Mitsui DuPont) The EVOH composition was supplied to a single screw extruder, and the EVOH composition was extruded into a strand (diameter: 3.0 mm) under the following conditions.
Figure 0004262844
[0031]
Subsequently, the extruded strand of the EVOH composition is cooled with water (passed through a water bath at a water temperature of 40 ° C. for 2.9 seconds at a speed of 0.35 m / sec), and the EVOH composition (strand) surface temperature at the time of cutting (strand) T) was adjusted to 80 ° C. and cut with a pelletizer to obtain EVOH composition pellets having a length of 3 mm and a diameter of 3 mm.
In the production of such EVOH composition pellets, when the respective values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 5.6 × 10 4 (1) was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0032]
Example 5
In Example 1, the extruded strand of the EVOH composition was water-cooled (passed through a water bath at a water temperature of 30 ° C. at a rate of 0.36 m / sec for 0.8 seconds), and the shear rate (γ) was 825 sec −1 , EVOH pellets were obtained in the same manner except that the surface temperature (T) was 120 ° C.
In the production of such EVOH pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 9.9 × 10 4 ( 1) The formula was satisfied.
The obtained EVOH pellets were evaluated in the same manner as in Example 1.
[0033]
Example 6
In Example 2, the extruded strand of the EVOH composition was water-cooled (passed through a water bath at a water temperature of 40 ° C. at a rate of 0.44 m / sec for 1.1 seconds), and the shear rate (γ) was 1000 sec −1 , An EVOH composition pellet was obtained in the same manner except that the surface temperature (T) was 100 ° C.
In the production of such EVOH composition pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 1.0 × 10 5 (1) was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0034]
Example 7
In Example 3, the extruded strand of the EVOH composition was water-cooled (passed through a water bath at a water temperature of 40 ° C. at a speed of 0.19 m / sec for 2.7 seconds), and the shear rate (γ) was 500 sec −1 , An EVOH composition pellet was obtained in the same manner except that the surface temperature (T) was 100 ° C.
In the production of such EVOH composition pellets, when the respective values of the shear rate (γ) and the surface temperature (T) were substituted into the equation (1) described in the text, γ · T = 5 × 10 4 ( 1) The formula was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0035]
Example 8
In Example 4, the extruded strand of the EVOH composition was water-cooled (passed through a water bath at a water temperature of 40 ° C. at a rate of 0.50 m / sec for 0.5 seconds), and the shear rate (γ) was 1000 sec −1 , An EVOH composition pellet was obtained in the same manner except that the surface temperature (T) was 100 ° C.
In the production of such EVOH composition pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 1.0 × 10 5 (1) was satisfied.
The obtained EVOH composition pellets were evaluated in the same manner as in Example 1.
[0036]
Comparative Example 1
In Example 1, the extruded EVOH composition strand was water-cooled (passed through a water bath at a water temperature of 5 ° C. at a rate of 0.04 m / sec for 60 seconds), and the pellet surface temperature (T) was 10 ° C. and sheared. EVOH pellets were obtained in the same manner except that the speed (γ) was set to 100 sec −1 .
In the production of such EVOH pellets, when the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, γ · T = 1 × 10 3 (1) It deviated from the formula.
The obtained EVOH pellets were evaluated in the same manner as in Example 1. In addition to the results shown in Table 2, foaming and perforation were observed in the obtained film.
[0037]
Comparative Example 2
In Example 1, the extruded EVOH composition strand was not cooled with water, except that the shear rate (γ) was 3000 sec −1 and the pellet surface temperature (T) was 167 ° C. Obtained. Continuous vermilion (a state in which the pellets were not completely separated into individual pellets due to the occurrence of uncut portions) was observed in the obtained pellets.
In the production of such EVOH pellets, the values of the shear rate (γ) and the surface temperature (T) were substituted into the formula (1) described in the text, and γ · T = 5 × 10 5 (1) It deviated from the formula.
The obtained EVOH pellets were evaluated in the same manner as in Example 1.
The evaluation results of Examples and Comparative Examples are summarized in Table 1.
[0038]
[Table 1]
Figure 0004262844
[0039]
【The invention's effect】
Since the EVOH composition pellets of the present invention are manufactured under specific conditions, they have excellent feedability to the extruder during melt molding, less torque fluctuation and discharge fluctuation of the extruder during molding, and the shape, thickness, etc. Molded products with excellent dimensional accuracy can be obtained, and various laminates can be obtained. Films, sheets, tubes, bottles, cups, bags, containers for food, pharmaceuticals, agricultural chemicals, industrial chemicals packaging It is very useful for such applications.

Claims (2)

エチレン−酢酸ビニル共重合体ケン化物或いはエチレン−酢酸ビニル共重合体ケン化物組成物を溶融押出機の溶融温度150〜300℃にてダイノズルから押出してストランド状とした後に切断してペレットを製造するに当たり、ダイノズルでのせん断速度(γ)と切断時のエチレン−酢酸ビニル共重合体ケン化物或いはエチレン−酢酸ビニル共重合体ケン化物組成物の表面温度(T)との関係が下記(1)式を満足することを特徴とするペレットの製造法。
1.5×103<(γ・T)<3×105・・・(1)
[γはせん断速度(sec-1)、Tはエチレン−酢酸ビニル共重合体ケン化物或いはエチレン−酢酸ビニル共重合体ケン化物組成物の表面温度(℃)をそれぞれ表す]
A saponified ethylene-vinyl acetate copolymer or a saponified ethylene-vinyl acetate copolymer composition is extruded from a die nozzle at a melting temperature of 150 to 300 ° C. of a melt extruder to form a strand, and then cut to produce pellets. The relationship between the shear rate (γ) at the die nozzle and the surface temperature (T) of the ethylene-vinyl acetate copolymer saponified product or ethylene-vinyl acetate copolymer saponified composition at the time of cutting is expressed by the following formula (1): A method for producing pellets characterized by satisfying
1.5 × 10 3 <(γ · T) <3 × 10 5 (1)
[Γ represents the shear rate (sec −1 ), and T represents the surface temperature (° C.) of the saponified ethylene-vinyl acetate copolymer or saponified ethylene-vinyl acetate copolymer composition, respectively]
ダイノズルに供給されるエチレン−酢酸ビニル共重合体ケン化物或いはエチレン−酢酸ビニル共重合体ケン化物組成物の溶融混練条件が、下記(2)式を満足することを特徴とする請求項1記載のペレットの製造法。
10<(L/D)<100・・・(2)
[Lは溶融混練に用いる押出機のスクリューの長さ(mm)、Dは同スクリューの直径(mm)をそれぞれ表す]
The melt kneading condition of the saponified ethylene-vinyl acetate copolymer or the saponified ethylene-vinyl acetate copolymer composition supplied to the die nozzle satisfies the following formula (2). Pellet manufacturing method.
10 <(L / D) <100 (2)
[L represents the length (mm) of the screw of the extruder used for melt kneading, and D represents the diameter (mm) of the screw]
JP29174899A 1999-10-14 1999-10-14 Pellet manufacturing method Expired - Lifetime JP4262844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29174899A JP4262844B2 (en) 1999-10-14 1999-10-14 Pellet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29174899A JP4262844B2 (en) 1999-10-14 1999-10-14 Pellet manufacturing method

Publications (2)

Publication Number Publication Date
JP2001105428A JP2001105428A (en) 2001-04-17
JP4262844B2 true JP4262844B2 (en) 2009-05-13

Family

ID=17772911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29174899A Expired - Lifetime JP4262844B2 (en) 1999-10-14 1999-10-14 Pellet manufacturing method

Country Status (1)

Country Link
JP (1) JP4262844B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5908298B2 (en) * 2012-02-10 2016-04-26 日本合成化学工業株式会社 Method for producing desiccant-containing resin composition pellets
JP5769863B2 (en) * 2013-12-27 2015-08-26 日本合成化学工業株式会社 Molding material for saponified ethylene-vinyl ester copolymer
JP6403560B2 (en) * 2014-12-10 2018-10-10 日本合成化学工業株式会社 Method for producing saponified ethylene-vinyl ester copolymer composition

Also Published As

Publication number Publication date
JP2001105428A (en) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3539846B2 (en) Resin composition and laminate thereof
JPWO2018168903A1 (en) Resin composition, method for producing the same, and molded article using the same
JP4527818B2 (en) Saponified pellet of ethylene-vinyl acetate copolymer
CN105814133A (en) Melt-molding material using evoh resin
JP2000136281A (en) Resin composition and use thereof
JP3998340B2 (en) Process for producing saponified ethylene-vinyl acetate copolymer composition
JP4707783B2 (en) Resin composition for modifying hydroxyl-containing thermoplastic resin and method of use thereof
JP2001200123A (en) Resin composition pellet and molded product
JP3871437B2 (en) Method for drying saponified pellets of ethylene-vinyl acetate copolymer
JP4097103B2 (en) Saponified pellet of ethylene-vinyl acetate copolymer
JP4104095B2 (en) Saponified pellet of ethylene-vinyl acetate copolymer
JP4705209B2 (en) Processing method of saponified pellet of ethylene-vinyl acetate copolymer
JP4262844B2 (en) Pellet manufacturing method
US6432552B1 (en) Saponified ethylene-vinyl acetate copolymer and laminate
JP3966380B2 (en) Method for producing ethylene-vinyl acetate copolymer saponified composition pellets
JP2000043040A (en) Production of saponified ethylene-vinyl acetate copolymer composition pellet
JP4017275B2 (en) Resin composition and use thereof
JP4081530B2 (en) Saponified pellet of ethylene-vinyl acetate copolymer
JP4082780B2 (en) Manufacturing method of resin composition
JP4125417B2 (en) Manufacturing method of resin composition
JP2000351811A (en) Ethylene/vinyl acetate copolymer saponificate and its laminate
JP4822570B2 (en) Resin composition
JP4107447B2 (en) Method for drying saponified pellets of ethylene-vinyl acetate copolymer
JP3262364B2 (en) Method for producing resin composition
JP4164151B2 (en) Manufacturing method of resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4262844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term