JP4261083B2 - Air-oil lubrication structure for rolling bearings - Google Patents

Air-oil lubrication structure for rolling bearings Download PDF

Info

Publication number
JP4261083B2
JP4261083B2 JP2001160361A JP2001160361A JP4261083B2 JP 4261083 B2 JP4261083 B2 JP 4261083B2 JP 2001160361 A JP2001160361 A JP 2001160361A JP 2001160361 A JP2001160361 A JP 2001160361A JP 4261083 B2 JP4261083 B2 JP 4261083B2
Authority
JP
Japan
Prior art keywords
air
oil
inner ring
rolling
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001160361A
Other languages
Japanese (ja)
Other versions
JP2002054643A (en
Inventor
正継 森
好美 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001160361A priority Critical patent/JP4261083B2/en
Publication of JP2002054643A publication Critical patent/JP2002054643A/en
Application granted granted Critical
Publication of JP4261083B2 publication Critical patent/JP4261083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、工作機械主軸用の転がり軸受等に適用されるエアオイル給油による潤滑構造に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
工作機械の主軸装置は、加工能率を上げるためますます高速化の傾向にある。このため、軸受の潤滑も、搬送エアに潤滑用オイルを混合して、内輪転走面に直接に噴きつけるエアオイル給油が増加しつつある。
図10は、アンギュラ玉軸受における従来のエアオイル潤滑構造を示したものである。ハウジング51の供給口52より供給される搬送エアと潤滑油は、外輪間座53に設けたエアオイル噴射孔54から内輪55の転走面55aに向けて噴射される。噴射孔54の孔径は、1.2mm程度、搬送エアの圧力は約3kgf/cm2 であり、噴射孔54の出口部でのエア速度はかなりの高速となっている。高速にする理由は、転動体56が公転することで生じる風圧に打ち勝って転走面55aに潤滑油を到達させるためであり、高速回転になる程、エア速度を速くする必要がある。
【0003】
エア速度を速くするには、噴射孔54の孔径を小さくする方法と、搬送エア圧力を上昇させる方法が考えられる。しかし、噴射孔54の径は、噴射孔口から目標とする転走面55aまでの距離が長いため、小さくすることが出来ず、そのため搬送エア圧力を上昇させて速度を増すしかない。
このように噴射孔54からのエア速度を増すことは、エア量の増加によるエネルギ消費の増加と共に、転動体56の公転が及ぼすエア流の遮断・貫通の繰り返しによる騒音(風切り音)の問題が生じる。昨今の環境,省エネ,省資源の観点から、これらの問題の早期対策が望まれている。
このように、工作機械主軸用軸受の高速化要求に対して、利用が増えつつあるエアオイル潤滑の騒音の低減と省エネ対策が大きな課題となっている。
【0004】
このような課題を解決するものとして、本発明者は、図11に示すエアオイル潤滑構造を試みた。このエアオイル潤滑構造は、転がり軸受61の内輪62の外径面に、この内輪62の転走面62aに続く斜面部62bを設け、この斜面部62bに隙間δを持って沿うノズル部材66を設ける。このノズル部材66に、上記斜面部62bに対面して開口するエアオイルの吐出溝67を円周方向に延びて設け、ノズル部材66の吐出溝67内に吐出口68aが開口するエアオイルの吐出孔68を設ける。
【0005】
このエアオイル潤滑構造によると、搬送エアに混合された潤滑油であるエアオイルは、ノズル部材66の吐出孔68から吐出され、吐出溝67を通って内輪62の斜面部62bとノズル部材66間の隙間δに導入される。この隙間δに導入されたエアオイルは、軸受運転時に隙間δで生じる負圧吸引作用によって軸受内部へ導かれ、また斜面部62bに付着した潤滑油の表面張力と、遠心力の斜面部大径側への分力により、軸受内部の転走面62aあるいは保持器65の内径面へ導かれる。ノズル部材66に設けた円周溝状の吐出溝67は、吐出されたエアオイルを全周に行き渡らせる機能を持つ。
【0006】
このように、内輪62の斜面部62bにエアオイルを供給し、転動体64の転走経路へは直接にエアオイルを噴出させないため、転動体64の公転による風切り音の発生がなく、騒音が低下する。また、エアの噴射によるオイル供給ではなく、内輪62の斜面部62bに供給されたエアオイルを内輪62の回転で軸受内に導くようにしたため、使用するエアは、内輪62の斜面部62bまでオイルを搬送する役目で良く、使用量を減らせる。そのため、エア量削減による省エネ効果も期待できる。
エア量削減に着目したこれまでの試験の結果、従来潤滑法での必要エア量30〜40Nl/min (dn値210万回転に際し)に対し、17.5Nl/min ノエア量で運転可能であり、約半減できることが判明した。
【0007】
しかしこのエアオイル潤滑構造では、エア量をさらに少量にすると、吐出孔68の吐出エアオイルを全周に行き渡らせるための吐出溝67おいて、円周上でエアの流れが不均一となり、吐出される潤滑油の一部が吐出溝67に滞留してしまう結果となる。その結果、滞留した潤滑油が周期的に軸受内に流入してしまい、軸受61の温度が変動するという問題点がある。
【0008】
この発明の目的は、エアオイル潤滑を使用した転がり軸受において、運転中に生じる騒音の低減と、搬送エア量の削減を可能にすると共に、少量エアにおける油の滞留による軸受温度の変動を防止できる潤滑構造を提供することである。
【0009】
【課題を解決するための手段】
この発明のエアオイル潤滑構造は、転がり軸受の内輪の外径面に、この内輪の転走面に続く斜面部を設け、この斜面部は内輪の外径面の全周に連続しており、この斜面部に隙間を持って沿うリング状のノズル部材を設け、上記内輪の斜面部に円周溝を設け、上記ノズル部材に、上記円周溝に対面して開口するエアオイルの吐出孔を設けたものである。
この構成によると、搬送エアに混合された潤滑油であるエアオイルは、ノズル部材の吐出孔から内輪の円周溝に吐出され、内輪の斜面部とノズル部材間の隙間から、軸受運転時に生じる負圧吸引作用によって軸受内部へ導かれる。また斜面部に付着した潤滑油の表面張力と、遠心力の斜面部大径側への分力により、軸受内部の転走面あるいは保持器の内径面へ導かれる。
この場合に、内輪に設けられた円周溝のため、吐出孔から吐出されるエアオイルを全周に行き渡られる作用が得られ、ノズル部材側は内輪斜面部に沿った凹凸のない面とできる。このため、エアオイルの吐出量が少量となって円周上でのエアの出方が不均一となっても、内輪斜面部に作用する遠心力のため、油の滞留がなく、安定して軸受内に潤滑油が供給できる。
このように、転動体の転走経路に直接にエアオイルを噴出せずに、風切り音による騒音を低下させると共に、搬送エア量の削減を可能にすると共に、少量エアにおける油の滞留による軸受温度の変動を防止することができる。
【0010】
この発明において、上記円周溝は、断面がV字状の溝とする。上記ノズル部材のエアオイルの吐出孔は、上記円周溝における転走面寄りの側壁斜面に対面して開口させる。このように、円周溝を断面V字状とした場合、円周溝の側壁斜面の傾斜角度が内輪の斜面部の傾斜角度によりも大きくなる。そのため、円周溝の側壁斜面に付着した油が、遠心力の作用により確実に内輪斜面部に導かれ、軸受内に潤滑油として流入することになる。
【0011】
この発明において、内輪の上記斜面部の傾斜角度を、上記吐出孔から吐出されたエアオイル中の上記斜面部に付着した潤滑油が、内輪の回転による遠心力とオイルの表面張力によって上記転走面へ流れる角度とする。
内輪の斜面部の傾斜角度は、軸受サイズ、実用回転数、使用潤滑油によって適宜の値に設定することが好ましく、これにより軸受内部への潤滑油供給がより一層良好に行える。
【0012】
この発明において、上記転がり軸受がアンギュラ玉軸受であっても良い。アンギュラ玉軸受は、一般に内輪の外径面の片側部分がステップ面となるため、そのステップ面をエアオイル供給のための斜面部に利用でき、エアオイル供給のために斜面部を特に形成する必要がない。
【0013】
【発明の実施の形態】
この発明の第1の実施形態を図1,図2と共に説明する。転がり軸受1は、内輪2と外輪3の転走面2a,3a間に複数の転動体4を介在させたものである。転動体4は、例えばボールからなり、保持器5のポケット(図示せず)内に保持される。この転がり軸受1の内輪2の外径面に、転走面2aに続く斜面部2bを設け、この斜面部2bに隙間δを持って沿うノズル部材6を設ける。斜面部2bは、内輪2の幅面から転走面2aに続いて設け、また内輪2の反負荷側(軸受背面側)の外径面に設ける。転がり軸受1がアンギュラ玉軸受である場合、内輪2のステップ面を設ける部分の外径面が上記斜面部2bとされる。
【0014】
ノズル部材6は、その先端部6aaを保持器5の内径面と内輪2の外径面の間における転動体4の近傍に位置させる。ノズル部材6は、リング状の部材であって、転がり軸受1に軸方向に隣接して設けられ、側面の内径部から軸方向に伸びる鍔状部6aを有している。この鍔状部6aは、平坦な内径面が内輪2の斜面部2bと同一角度の傾斜面に形成されて、保持器5の直下まで伸び、その先端がノズル部材6の上記先端部6aaとなる。ノズル部材6の鍔状部6aと内輪2の斜面部2bとの間の隙間δは、内輪2と軸との嵌合、および内輪2の温度上昇と遠心力による膨張とを考慮し、運転中に接触しない範囲で出来るだけ小さな寸法に設定される。
【0015】
内輪2の斜面部2bには、円周溝7が設けられている。円周溝7は円周方向に延びて環状に形成されており、断面がV字状に形成されている。ノズル部材6は、内輪斜面部2bの円周溝7に対面して吐出口8aが開口する吐出孔8が設けられている。吐出孔8は、ノズル部材6の円周方向の1か所または複数箇所に設けられている。吐出孔8は、吐出したエアオイルが内輪斜面部2bの円周溝7に直接に吹き付け可能なように、吐出口8aの吐出方向を円周溝7に向け、かつ斜面部2bに対して吐出方向が傾斜角度βを持つように設けられている。断面V字状の円周溝7の転走面2a寄りの側壁斜面7aの軸心に対する傾斜角度は、内輪2の斜面部2bの傾斜角度よりも大きくなる。
【0016】
ノズル部材6は、軸受1の外輪3を取付けたハウジング9に取付けられる。ノズル部材6のハウジング9への取付けは、外輪間座10を介して行っても、直接に行っても良い。図1の例は、外輪間座10を介して取付けた例であり、外輪間座10の一側面の内径部に形成した環状の切欠凹部10aに、ノズル部材6を嵌合状態に設けてある。ノズル部材6の軸受外の部分の内径面は、内輪間座11に対して接触しない程度に近接している。なお、ノズル部材6をハウジング9に直接に取付ける場合は、例えば図5に示すように設けられ、ノズル部材6が外輪間座を兼ねるものとできる。
【0017】
ノズル部材6の吐出孔8は、その吐出口8aの近傍部8bが一般部よりも小径の絞り孔に形成されている。吐出孔8の入口は、ハウジング9からノズル部材6にわたって設けられたエアオイル供給路13に連通している。エアオイル供給路13は、ハウジング9にエアオイル供給口13aを有し、ハウジング9の内面にハウジング部出口13bを有している。ハウジング部出口13bは、外輪間座10の外径面に設けられた環状の連通溝13cに連通し、連通溝13cから、径方向に貫通した個別経路13dを介して、ノズル部材6の各吐出孔8に連通している。エアオイル供給口13aは、圧縮した搬送エアに潤滑油を混合させたエアオイルの供給源(図示せず)に接続されている。
【0018】
図2は、図1の実施形態にかかる転がり軸受のエアオイル潤滑構造を応用したスピンドル装置の一例を示す。このスピンドル装置は、工作機械に応用されるものであり、主軸15の端部に工具またはワークのチャックが取付けられる。主軸15は、軸方向に離れた複数の転がり軸受1により支持されており、これらの転がり軸受1に、図1の例のエアオイル潤滑構造が採用されている。同図では、転がり軸受1は、一対のものが背面を向き合うように配置されている。各転がり軸受1の内輪2は主軸15の外径面に嵌合し、外輪3はハウジング9の内径面に嵌合している。これら内外輪2,3は、内輪押さえ25および外輪押さえ26により、主軸15およびハウジング9にそれぞれ固定されている。ハウジング9は、内周ハウジング9Aと外周ハウジング9Bの二重構造とされ、内外のハウジング9A,9B間に冷却媒体流路16が形成されている。内周ハウジング9Aは、その一部を図1に示したものであり、上記エアオイル供給路13およびそのエアオイル供給口13aが設けられている。ハウジング9は、支持台17に設置され、ボルト18で固定されている。
スピンドル装置に応用する場合、外輪間座10と内輪間座11間の径方向隙間部が、内輪斜面部2bの負圧吸引作用で負圧とならないように、大気開放孔をハウジング9に設けることが好ましい。また、ハウジング9には、内径面における軸受1の設置部近傍にエアオイル排気溝22が設けられ、このエアオイル排気溝22から大気に開放されるエアオイル排気路23が設けられる。
【0019】
上記構成のエアオイル潤滑構造の作用を説明する。図1のエアオイル供給口13aより供給されたエアオイルは、ノズル部材6の吐出孔8を経て内輪斜面部2bの円周溝7の側壁斜面7aに噴射される。
側壁斜面7aの傾斜角度は、内輪2の斜面部2bよりも大きくなるため、側壁斜面7aに付着した油は、遠心力の作用により、確実に内輪斜面部2bに導かれ、軸受内に潤滑油として流入する。また、供給エア量が少量となって円周上で流れが不均一になった場合においても、内輪斜面部2bとノズル部材6との隙間δで生じる負圧吸引力のために、軸受側に流れ、転動体4または保持器5の内径面に付着し、軸受の潤滑油として機能することができる。このため、少量エアにおける油の滞留が防止され、油の滞留による軸受温度の変動を防止することができる。
【0020】
このように、内輪斜面部2bの円周溝7にエアオイルを供給し、転動体4の転走経路へは直接にエアオイルを噴出させないため、転動体4の公転による風切り音の発生がなく、騒音が低下する。また、エアの噴射によるオイル供給ではなく、内輪斜面部2bの円周溝7に供給されたエアオイルを内輪2の回転で軸受1内に導くようにしたため、使用するエアは、内輪2の円周溝7までオイルを搬送する役目で良く、使用量を減らせる。そのためエア量削減による省エネ効果も期待できる。また、吐出孔8の出口部8aが細径である場合、流速が増し、吐出エア温度が下がる。この低温エアが近距離より内輪2に吹き付けられるため、より一層の内輪温度の低減が期待できる。
この実施形態の場合、このように、エア量を減じた場合においても少量エアにおける油の滞留による軸受温度の変動を防止できて、運転可能であり、騒音の低減効果と共に、エアオイル量のさらなる削減効果が期待できる。
【0021】
図3は、以下の運転条件により、図11に示した提案例のエアオイル潤滑構造による軸受を運転した場合の外輪温度の変化を調べた試験結果を示すグラフである。

Figure 0004261083
この試験結果から、エア量が15Nl/min 以下の少量になると、運転途中で急激な温度変化が周期的に認められた。その温度変化の周期は、供給エア量とオイル量に影響を受けるものである。これらのことから、温度変化の原因は、ノズル部材66の吐出孔68から出た潤滑油の一部が吐出溝67に滞留し、滞留の限界量を超えると、軸受内に吐き出されることで軸受温度の上昇を誘発したものと推察される。
【0022】
図4は、上記の場合と同じ運転条件により、この実施形態のエアオイル潤滑構造による軸受を運転した場合の外輪温度の変化を調べた試験結果を示すグラフである。この試験結果から、このエアオイル潤滑構造では、軸受に温度変化の発生がなく、問題なく運転可能であり、さらにエア量を減少させた10Nl/min においても問題なく運転できることが確認された。
【0023】
図6,図7は、この発明における他の実施形態を示す。この実施形態は、エアオイルの排気の一部を再度利用する経路を設けたものである。図6は、この実施形態にかかる転がり軸受のエアオイル潤滑構造を備えたスピンドル装置を示し、図7はその一部を拡大して示す。図6および図7では、図1および図2の例と対応する部材には同一符号を付して示している。この転がり軸受のエアオイル潤滑構造は、転がり軸受1を嵌合したハウジング9の内径面に、転がり軸受1へエアオイルを吐出するノズル部材6Aを嵌合させ、上記転がり軸受1に並べて配置された内輪間座11および外輪間座10A間の間隙Gに、上記転がり軸受1側へ流れる空気流を生じさせる空気流発生手段30(図7)を、上記内輪間座11に設けている。ノズル部材6Aは、外輪間座10Aと一体に形成されてノズル間座一体部材40を構成している。なお、ノズル部材6Aは外輪間座10Aと別体としても良い。
空気流発生手段30は、内輪間座11の外径面に設けた螺旋溝30A,30Bとされている。両側の螺旋溝30A,30Bは、互いに逆ねじに相当する溝とさている。すなわち、図7において、主軸15が左側のワーク側軸端に向かって左回転する場合、図中の左側の螺旋溝30Aは左ねじ相当の螺旋溝、右側の螺旋溝30Bは右ねじ相当の螺旋溝とされている。なお、これらの螺旋溝30A,30Bは、外輪間座10Aの内径面に設けても良い。
【0024】
また、転がり軸受1から排出されるエアオイルの排気路23と、上記内輪間座11と外輪間座10Aの間隙Gとは、排気連通路31によって連通している。この排気連通路31は、ハウジング9に設けられたエアオイル排気路23から上記外輪間座10Aの内周面に貫通して上記エアオイル排気路23と連通する貫通孔として形成されている。すなわち、内輪間座11の外径面における両螺旋溝30A,30Bで挟まれる間座幅中間部には円周方向に延びる環状の円周溝32が設けられ、この円周溝32に対向して排気連通路31の一端開口が配置される。また、外輪間座10Aの外径面の間座幅中間部にも円周方向に延びる環状の円周溝33が設けられ、この円周溝33を上記排気連通路31が貫通している。
【0025】
転がり軸受1はハウジング9の軸方向に離れて一対設けられ、ノズル部材6Aは両側の転がり軸受1,1の対向側に隣接して、各転がり軸受1に対して設けられている。内輪間座11および外輪間座10Aは、両側の転がり軸受1,1間に配置されたものである。ノズル部材6Aは、外輪間座10Aと一体に設けられたものであることを除き、上記実施形態のノズル部材6と同じ構成である。この実施形態およびスピンドル装置におけるその他の構成は、図1,図2と共に説明した第1の実施形態およびそのスピンドル装置と同じである。
【0026】
この転がり軸受のエアオイル潤滑構造においては、第1の実施形態と同様に、エアオイル供給口13aから供給されたエアオイルが、ノズル部材6の吐出孔8から内輪円周溝7,内輪斜面部2bを経て軸受1の内部に流入する。軸受1の潤滑に供されたエアオイルは、各軸受1の両端側に位置して上記エアオイル排気路23に連通するエアオイル排気溝22に流入し、一部はエアオイル排気路23の排気孔23aにより外部に排出される。また、内輪間座11の外径面の螺旋溝30A,30Bの回転に伴う空気流が、間座幅の中間部から左右両側の軸受1,1に向けて生じるため、排気連通路31のエアオイル排気路23側と、内周溝32との間に圧力差(円周溝32側<エアオイル排気路23側)が発生する。これにより、排気溝22からエアオイル排気路23内に流入したエアオイルの一部は、排気連通路31から螺旋溝30A,30Bを経て左右の各軸受1,1内へ流入する。このときのエアオイルはオイルミストの状態にあるため、軸受1の潤滑油として利用でき、エアオイル供給口13aから供給するエア量の削減とオイル量の削減が可能となる。
【0027】
図8,図9は、図6,図7と共に前述したエアオイルの排気の一部を再利用する構成を、図11と共に前述したエアオイル潤滑構造を備えたスピンドル装置に応用した提案例を示す。図8,図9において、図6,図7の例に対応する部材には同一符号を付して示している。この提案例は、図8,図9の実施形態において、内輪2の円周溝7を無くし、ノズル部材6Bに、図11の提案例と同じ円周方向に延びる吐出溝67を設けたものである。ノズル部材6Bは、外輪間座10Aと一体のノズル間座一体部材40Bを構成しているが、これらノズル部材6Bと外輪間座10Aとは別体に設けられたものであっても良い。
この構成の場合も、軸受1からエアオイル排気路23に流入したエアオイルの一部が排気連通路23および螺旋溝30A,30Bを経て軸受1に再度流入するので、エアオイル供給口13aから供給するエア量の削減とオイル量の削減が可能となる。
【0028】
図6,図7の実施形態や、図8,図9の提案例において、エアオイルの排気の一部を再利用する構成は、つぎの提案例としてまとめることができる。
この提案例の転がり軸受のエアオイル潤滑構造は、転がり軸受を嵌合したハウジングの内径面に、上記転がり軸受へエアオイルを吐出するノズル部材を嵌合させ、上記転がり軸受に並べて配置された内輪間座および外輪間座間の間隙に、上記転がり軸受側へ流れる空気流を生じさせる空気流発生手段を、上記内輪間座に設けたものである。
この提案例において、上記空気流発生手段は、内輪間座の外径面に設けた螺旋溝であっても良い。
この提案例において、上記転がり軸受から排出されるエアオイルの排気路と、上記内輪間座と外輪間座間の隙間を連通させる排気連通路を設けても良い。
この排気通路は、ハウジングに設けられたエアオイル排気路と、上記外輪間座の内外周面に貫通して上記エアオイル排気路と連通した貫通孔であっても良い。
この提案例の上記各構成の場合に、上記転がり軸受を、ハウジングの軸方向に離れて一対設け、上記ノズル部材は両側の転がり軸受の対向側に隣接して、各転がり軸受に対して設け、上記内輪間座および外輪間座は、両側の転がり軸受間に配置されたものであり、上記外輪間座に、内外径面に貫通した貫通孔を設けても良い。
【0029】
【発明の効果】
この発明の転がり軸受のエアオイル潤滑構造は、転がり軸受の内輪の外径面に、この内輪の転走面に続く斜面部を設け、この斜面部に隙間を持って沿うノズル部材を設け、上記内輪の斜面部に円周溝を設け、このノズル部材に、上記円周溝に対面して開口するエアオイルの吐出孔を設けたため、エアオイル潤滑を使用した転がり軸受において、運転中に生じる騒音の低減と、搬送エア量の削減を可能にすると共に、少量エアにおける油の滞留による軸受温度の変動を防止することができる。
上記円周溝、断面がV字状の溝としたため、ノズル部材の吐出孔から噴射されるエアオイルが、遠心力により円周溝の側壁斜面から内輪斜面部に導かれるので、エアオイルを確実に軸受に供給できる。
内輪の斜面部の傾斜角度、上記吐出孔から吐出されたエアオイル中の上記斜面部に付着した潤滑油が、内輪の回転による遠心力とオイルの表面張力によって上記転走面へ流れる角度としたため、低騒音化と共に、高速運転時における軸受内部への潤滑油供給の確実を図ることができる。これにより、軸受の耐焼き性が向上し、より一層高速までの使用が可能になる。
【図面の簡単な説明】
【図1】(A)はこの発明の第1の実施形態にかかる転がり軸受のエアオイル潤滑構造の断面図、(B)はその部分拡大図である。
【図2】同エアオイル潤滑構造を採用したスピンドル装置の断面図である。
【図3】提案例によるエアオイル潤滑構造で軸受を運転した場合の外輪温度の変化を示すグラフである。
【図4】上記実施形態によるエアオイル潤滑構造で運転した場合の外輪温度の変化を示したグラフである。
【図5】この発明の他の実施形態にかかる転がり軸受のエアオイル潤滑構造の断面図である。
【図6】この発明のさらに他の実施形態にかかるエアオイル潤滑構造を採用したスピンドル装置の断面図である。
【図7】同スピンドル装置の部分拡大図である。
【図8】提案例にかかる転がり軸受のエアオイル潤滑構造を採用したスピンドル装置の断面図である。
【図9】同スピンドル装置の部分拡大図である。
【図10】従来例の断面図である。
【図11】(A)は他の提案例にかかる転がり軸受のエアオイル潤滑構造の断面図、(B)はその部分拡大図である。
【符号の説明】
1…転がり軸受
2…内輪
2a…転走面
2b…斜面部
3…外輪
4…転動体
5…保持器
6,6A…ノズル部材
7…円周溝
8…吐出孔
8a…吐出口
9…ハウジング
10,10A…外輪間座
13…エアオイル供給路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lubrication structure using air oil supply applied to a rolling bearing for a machine tool main shaft.
[0002]
[Prior art and problems to be solved by the invention]
Machine tool spindles are becoming increasingly faster to increase machining efficiency. For this reason, the lubrication of the bearing is also increasing in the number of air oil replenished by mixing lubricating oil with the carrier air and spraying directly on the inner ring rolling surface.
FIG. 10 shows a conventional air-oil lubrication structure in an angular ball bearing. The conveying air and the lubricating oil supplied from the supply port 52 of the housing 51 are injected from the air oil injection hole 54 provided in the outer ring spacer 53 toward the rolling surface 55 a of the inner ring 55. The diameter of the injection hole 54 is about 1.2 mm, the pressure of the conveying air is about 3 kgf / cm 2 , and the air speed at the outlet of the injection hole 54 is considerably high. The reason for the high speed is to overcome the wind pressure generated by the revolution of the rolling element 56 and allow the lubricating oil to reach the rolling surface 55a. The higher the rotation speed, the higher the air speed.
[0003]
In order to increase the air speed, there are a method of reducing the diameter of the injection hole 54 and a method of increasing the conveying air pressure. However, the diameter of the injection hole 54 cannot be reduced because the distance from the injection hole to the target rolling surface 55a is long, and therefore, the air pressure must be increased to increase the speed.
Increasing the air velocity from the injection hole 54 in this way causes an increase in energy consumption due to an increase in the amount of air and a problem of noise (wind noise) due to repeated interruption and penetration of the air flow caused by the revolution of the rolling element 56. Arise. From the viewpoint of recent environment, energy saving, and resource saving, early countermeasures for these problems are desired.
Thus, in response to the demand for higher speeds of machine tool spindle bearings, the reduction of air-oil lubrication noise and energy saving measures, which are increasingly used, have become major issues.
[0004]
In order to solve such a problem, the present inventor tried an air oil lubrication structure shown in FIG. In this air oil lubrication structure, an inclined surface portion 62b following the rolling surface 62a of the inner ring 62 is provided on the outer diameter surface of the inner ring 62 of the rolling bearing 61, and a nozzle member 66 is provided along the inclined surface portion 62b with a gap δ. . The nozzle member 66 is provided with an air oil discharge groove 67 that opens in the circumferential direction so as to face the slope portion 62 b, and an air oil discharge hole 68 in which the discharge port 68 a opens in the discharge groove 67 of the nozzle member 66. Is provided.
[0005]
According to this air oil lubrication structure, the air oil that is the lubricating oil mixed with the carrier air is discharged from the discharge hole 68 of the nozzle member 66, passes through the discharge groove 67, and the gap between the inclined surface portion 62 b of the inner ring 62 and the nozzle member 66. Introduced into δ. The air oil introduced into the gap δ is led into the bearing by the negative pressure suction action generated in the gap δ during the operation of the bearing, and the surface tension of the lubricating oil adhering to the slope portion 62b and the large-diameter side of the slope portion of the centrifugal force Is guided to the rolling surface 62 a inside the bearing or the inner diameter surface of the cage 65. A circumferential groove-like discharge groove 67 provided in the nozzle member 66 has a function of spreading the discharged air oil over the entire circumference.
[0006]
In this way, since air oil is supplied to the slope portion 62b of the inner ring 62 and the air oil is not directly ejected to the rolling path of the rolling element 64, no wind noise is generated due to the revolution of the rolling element 64, and noise is reduced. . Further, since the air oil supplied to the inclined surface portion 62b of the inner ring 62 is guided into the bearing by the rotation of the inner ring 62, rather than the oil supply by air injection, the air to be used supplies the oil to the inclined surface portion 62b of the inner ring 62. It can be used for transporting and can reduce usage. Therefore, an energy saving effect by reducing the amount of air can also be expected.
As a result of the tests so far focusing on the reduction of air amount, it is possible to operate at 17.5 Nl / min no air amount against the required air amount of 30-40 Nl / min (when the dn value is 2.1 million revolutions) in the conventional lubrication method. It was found that it could be reduced by half.
[0007]
However, in this air-oil lubrication structure, if the amount of air is further reduced, the air flow becomes uneven on the circumference in the discharge groove 67 for spreading the discharge air oil in the discharge holes 68 over the entire circumference, and the air is discharged. As a result, a part of the lubricating oil stays in the discharge groove 67. As a result, the accumulated lubricating oil periodically flows into the bearing, and there is a problem that the temperature of the bearing 61 fluctuates.
[0008]
An object of the present invention is to provide a rolling bearing that uses air-oil lubrication, which makes it possible to reduce noise generated during operation and reduce the amount of air transported, and to prevent fluctuations in the bearing temperature due to stagnation of oil in a small amount of air. Is to provide a structure.
[0009]
[Means for Solving the Problems]
In the air-oil lubrication structure of the present invention, a slope portion is provided on the outer diameter surface of the inner ring of the rolling bearing, following the rolling surface of the inner ring , and this slope portion is continuous with the entire circumference of the outer diameter surface of the inner ring. provided Bruno nozzle member along the Hare ring shape with a gap in the inclined surface portion, a circumferential groove is provided on the slope portion of the inner ring, to the nozzle member, the discharge hole of the air-oil which is open facing to the circumferential groove It is provided.
According to this configuration, air oil, which is lubricating oil mixed with the carrier air, is discharged from the discharge hole of the nozzle member into the circumferential groove of the inner ring, and the negative oil generated during the bearing operation from the gap between the inclined surface of the inner ring and the nozzle member. It is guided into the bearing by pressure suction. Moreover, it is guided to the rolling surface inside the bearing or the inner diameter surface of the cage by the surface tension of the lubricating oil adhering to the slope portion and the component force of the centrifugal force toward the larger diameter portion of the slope portion.
In this case, because of the circumferential groove provided in the inner ring, the effect of spreading the air oil discharged from the discharge hole over the entire circumference can be obtained, and the nozzle member side can be a surface without unevenness along the inclined surface of the inner ring. For this reason, even if the amount of air oil discharged is small and the air is not evenly distributed on the circumference, there is no stagnation of oil due to the centrifugal force acting on the inner ring slope, and the bearing is stable. Lubricating oil can be supplied inside.
In this way, air oil is not directly blown into the rolling path of the rolling elements, noise due to wind noise is reduced, the amount of transported air can be reduced, and bearing temperature due to oil retention in a small amount of air can be reduced. Variations can be prevented.
[0010]
In the present invention, the circumferential groove is a groove having a V-shaped cross section . The air oil discharge hole of the nozzle member is opened to face the side wall slope near the rolling surface in the circumferential groove. As this, when the circumferential groove and a V-shaped cross section, the inclination angle of the sidewall slope of the circumferential grooves also increases the inclination angle of the inner ring of the inclined surface portion. Therefore, the oil adhering to the side wall slope of the circumferential groove is surely guided to the inner ring slope portion by the action of centrifugal force and flows into the bearing as lubricating oil.
[0011]
In this invention, the inclination angle of the slope portion of the inner ring is determined so that the lubricating oil attached to the slope portion in the air oil discharged from the discharge hole is caused by the centrifugal force due to the rotation of the inner ring and the surface tension of the oil. The angle to flow to.
The inclination angle of the slope portion of the inner ring is preferably set to an appropriate value depending on the bearing size, the practical rotational speed, and the lubricating oil used, whereby the lubricating oil can be supplied to the inside of the bearing even better.
[0012]
In the present invention, the rolling bearing may be an angular ball bearing. Angular contact ball bearings generally have a step surface on one side of the outer diameter surface of the inner ring, so that the step surface can be used as a slope portion for supplying air oil, and there is no need to form a slope portion for supplying air oil. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIGS. The rolling bearing 1 has a plurality of rolling elements 4 interposed between rolling surfaces 2 a and 3 a of an inner ring 2 and an outer ring 3. The rolling element 4 is made of, for example, a ball and is held in a pocket (not shown) of the cage 5. A slope portion 2b following the rolling surface 2a is provided on the outer diameter surface of the inner ring 2 of the rolling bearing 1, and a nozzle member 6 is provided along the slope portion 2b with a gap δ. The slope portion 2b is provided from the width surface of the inner ring 2 to the rolling surface 2a, and is provided on the outer diameter surface of the inner ring 2 on the side opposite to the load (bearing rear surface side). When the rolling bearing 1 is an angular ball bearing, the outer diameter surface of the portion where the step surface of the inner ring 2 is provided is the inclined surface portion 2b.
[0014]
The nozzle member 6 has its tip portion 6aa positioned in the vicinity of the rolling element 4 between the inner diameter surface of the cage 5 and the outer diameter surface of the inner ring 2. The nozzle member 6 is a ring-shaped member, and is provided adjacent to the rolling bearing 1 in the axial direction, and has a flange-shaped portion 6a extending in the axial direction from the inner diameter portion of the side surface. The flange-shaped portion 6 a is formed with a flat inner diameter surface having an inclined surface having the same angle as that of the inclined surface portion 2 b of the inner ring 2, extends directly below the cage 5, and the tip thereof becomes the tip portion 6 aa of the nozzle member 6. . The clearance δ between the flange portion 6a of the nozzle member 6 and the inclined surface portion 2b of the inner ring 2 is in consideration of the fitting between the inner ring 2 and the shaft, the temperature rise of the inner ring 2 and the expansion due to centrifugal force. The dimension is set as small as possible without touching.
[0015]
A circumferential groove 7 is provided on the slope portion 2 b of the inner ring 2. The circumferential groove 7 extends in the circumferential direction and is formed in an annular shape, and has a V-shaped cross section. The nozzle member 6 is provided with a discharge hole 8 that faces the circumferential groove 7 of the inner ring slope portion 2b and in which a discharge port 8a opens. The discharge holes 8 are provided at one place or a plurality of places in the circumferential direction of the nozzle member 6. The discharge hole 8 directs the discharge direction of the discharge port 8a toward the circumferential groove 7 and the discharge direction with respect to the inclined surface portion 2b so that the discharged air oil can be directly blown onto the circumferential groove 7 of the inner ring inclined surface portion 2b. Are provided so as to have an inclination angle β. The inclination angle of the side wall inclined surface 7a near the rolling surface 2a of the circumferential groove 7 having a V-shaped cross section is larger than the inclination angle of the inclined surface portion 2b of the inner ring 2.
[0016]
The nozzle member 6 is attached to a housing 9 to which the outer ring 3 of the bearing 1 is attached. The nozzle member 6 may be attached to the housing 9 through the outer ring spacer 10 or directly. The example of FIG. 1 is an example attached through an outer ring spacer 10, and a nozzle member 6 is provided in a fitted state in an annular notch recess 10 a formed in the inner diameter part of one side surface of the outer ring spacer 10. . The inner diameter surface of the portion outside the bearing of the nozzle member 6 is close enough not to contact the inner ring spacer 11. In addition, when attaching the nozzle member 6 directly to the housing 9, it is provided as shown, for example in FIG. 5, and the nozzle member 6 can also serve as an outer ring spacer.
[0017]
In the discharge hole 8 of the nozzle member 6, the vicinity 8b of the discharge port 8a is formed as a narrowed hole having a smaller diameter than the general part. The inlet of the discharge hole 8 communicates with an air oil supply path 13 provided from the housing 9 to the nozzle member 6. The air oil supply path 13 has an air oil supply port 13 a in the housing 9, and a housing portion outlet 13 b on the inner surface of the housing 9. The housing portion outlet 13b communicates with an annular communication groove 13c provided on the outer diameter surface of the outer ring spacer 10, and each discharge of the nozzle member 6 is performed from the communication groove 13c through an individual path 13d that penetrates in the radial direction. It communicates with the hole 8. The air oil supply port 13a is connected to an air oil supply source (not shown) in which lubricating oil is mixed with compressed carrier air.
[0018]
FIG. 2 shows an example of a spindle device to which the air-oil lubrication structure of the rolling bearing according to the embodiment of FIG. 1 is applied. This spindle device is applied to a machine tool, and a tool or workpiece chuck is attached to the end of a main shaft 15. The main shaft 15 is supported by a plurality of rolling bearings 1 separated in the axial direction, and the air-oil lubrication structure of the example of FIG. 1 is adopted for these rolling bearings 1. In the figure, the rolling bearing 1 is arranged so that a pair of the bearings face each other. The inner ring 2 of each rolling bearing 1 is fitted to the outer diameter surface of the main shaft 15, and the outer ring 3 is fitted to the inner diameter surface of the housing 9. The inner and outer rings 2 and 3 are fixed to the main shaft 15 and the housing 9 by an inner ring retainer 25 and an outer ring retainer 26, respectively. The housing 9 has a double structure of an inner peripheral housing 9A and an outer peripheral housing 9B, and a cooling medium flow path 16 is formed between the inner and outer housings 9A and 9B. A part of the inner peripheral housing 9A is shown in FIG. 1, and is provided with the air oil supply passage 13 and the air oil supply port 13a. The housing 9 is installed on the support base 17 and fixed with bolts 18.
When applied to the spindle device, an air opening hole is provided in the housing 9 so that the radial gap between the outer ring spacer 10 and the inner ring spacer 11 does not become negative pressure due to the negative pressure suction action of the inner ring slope 2b. Is preferred. Further, the housing 9 is provided with an air oil exhaust groove 22 in the vicinity of the installation portion of the bearing 1 on the inner diameter surface, and an air oil exhaust passage 23 opened from the air oil exhaust groove 22 to the atmosphere.
[0019]
The operation of the air oil lubrication structure having the above configuration will be described. The air oil supplied from the air oil supply port 13a of FIG. 1 is injected to the side wall inclined surface 7a of the circumferential groove 7 of the inner ring inclined surface portion 2b through the discharge hole 8 of the nozzle member 6.
Since the inclination angle of the side wall inclined surface 7a is larger than that of the inclined surface portion 2b of the inner ring 2, the oil adhering to the side wall inclined surface 7a is surely guided to the inner ring inclined surface portion 2b by the action of centrifugal force, and lubricating oil is contained in the bearing. Inflow as. Even when the amount of supplied air is small and the flow becomes uneven on the circumference, the negative pressure suction force generated in the gap δ between the inner ring inclined surface portion 2b and the nozzle member 6 causes a negative pressure suction force. The flow adheres to the inner diameter surface of the rolling element 4 or the cage 5, and can function as a lubricating oil for the bearing. For this reason, stagnation of oil in a small amount of air is prevented, and fluctuations in the bearing temperature due to stagnation of oil can be prevented.
[0020]
In this way, air oil is supplied to the circumferential groove 7 of the inner ring slope portion 2b, and the air oil is not directly blown into the rolling path of the rolling element 4, so that no wind noise is generated due to the revolution of the rolling element 4, and noise is generated. Decreases. In addition, since the air oil supplied to the circumferential groove 7 of the inner ring slope portion 2b is guided into the bearing 1 by the rotation of the inner ring 2 instead of the oil supply by air injection, the air to be used is the circumference of the inner ring 2 It can be used to transport oil to the groove 7 and reduce the amount used. Therefore, energy saving effect by reducing air volume can be expected. Further, when the outlet portion 8a of the discharge hole 8 has a small diameter, the flow rate increases and the discharge air temperature decreases. Since this low temperature air is blown to the inner ring 2 from a short distance, further reduction of the inner ring temperature can be expected.
In the case of this embodiment, even when the air amount is reduced as described above, the bearing temperature can be prevented from fluctuating due to oil stagnation in a small amount of air, and the operation is possible. The effect can be expected.
[0021]
FIG. 3 is a graph showing test results obtained by examining changes in the outer ring temperature when the bearing having the air-oil lubrication structure of the proposed example shown in FIG. 11 is operated under the following operating conditions.
Figure 0004261083
From this test result, when the air amount became a small amount of 15 Nl / min or less, rapid temperature changes were periodically observed during operation. The cycle of the temperature change is affected by the supply air amount and the oil amount. From these facts, the cause of the temperature change is that a part of the lubricating oil that has come out from the discharge hole 68 of the nozzle member 66 stays in the discharge groove 67 and is discharged into the bearing when it exceeds the limit amount of stay. It is presumed that the temperature rise was induced.
[0022]
FIG. 4 is a graph showing test results obtained by examining changes in the outer ring temperature when the bearing with the air-oil lubrication structure of this embodiment is operated under the same operating conditions as in the above case. From this test result, it was confirmed that this air-oil lubrication structure can be operated without any problem with temperature change in the bearing, and can be operated without problems even at 10 Nl / min with a reduced air amount.
[0023]
6 and 7 show another embodiment of the present invention. In this embodiment, a route for reusing part of the exhaust air air is provided. FIG. 6 shows a spindle apparatus provided with an air-oil lubrication structure for a rolling bearing according to this embodiment, and FIG. 7 shows an enlarged part thereof. 6 and 7, members corresponding to those in the examples of FIGS. 1 and 2 are denoted by the same reference numerals. This air-oil lubrication structure of the rolling bearing is such that a nozzle member 6A for discharging air oil to the rolling bearing 1 is fitted to the inner diameter surface of the housing 9 to which the rolling bearing 1 is fitted, and between the inner rings arranged side by side on the rolling bearing 1. An air flow generating means 30 (FIG. 7) for generating an air flow that flows toward the rolling bearing 1 in the gap G between the seat 11 and the outer ring spacer 10 </ b> A is provided in the inner ring spacer 11. The nozzle member 6 </ b> A is formed integrally with the outer ring spacer 10 </ b> A to constitute a nozzle spacer integrated member 40. The nozzle member 6A may be separated from the outer ring spacer 10A.
The air flow generating means 30 is formed as spiral grooves 30 </ b> A and 30 </ b> B provided on the outer diameter surface of the inner ring spacer 11. The spiral grooves 30A and 30B on both sides are grooves corresponding to reverse screws. That is, in FIG. 7, when the main shaft 15 rotates counterclockwise toward the left workpiece side shaft end, the left spiral groove 30A in the figure is a spiral groove corresponding to a left screw, and the right spiral groove 30B is a spiral corresponding to a right screw. It is a groove. These spiral grooves 30A and 30B may be provided on the inner diameter surface of the outer ring spacer 10A.
[0024]
The exhaust passage 23 for air oil discharged from the rolling bearing 1 and the gap G between the inner ring spacer 11 and the outer ring spacer 10A are communicated with each other through an exhaust communication passage 31. The exhaust communication passage 31 is formed as a through hole that penetrates from the air oil exhaust passage 23 provided in the housing 9 to the inner peripheral surface of the outer ring spacer 10 </ b> A and communicates with the air oil exhaust passage 23. That is, an annular circumferential groove 32 extending in the circumferential direction is provided in the intermediate portion of the spacer width between the spiral grooves 30A and 30B on the outer diameter surface of the inner ring spacer 11, and faces the circumferential groove 32. One end opening of the exhaust communication passage 31 is arranged. Further, an annular circumferential groove 33 extending in the circumferential direction is provided also in the spacer width intermediate portion of the outer diameter surface of the outer ring spacer 10A, and the exhaust communication passage 31 passes through the circumferential groove 33.
[0025]
A pair of rolling bearings 1 are provided apart in the axial direction of the housing 9, and a nozzle member 6 </ b> A is provided for each rolling bearing 1 adjacent to the opposite sides of the rolling bearings 1, 1 on both sides. The inner ring spacer 11 and the outer ring spacer 10A are arranged between the rolling bearings 1 and 1 on both sides. The nozzle member 6A has the same configuration as the nozzle member 6 of the above embodiment except that the nozzle member 6A is provided integrally with the outer ring spacer 10A. Other configurations of this embodiment and the spindle device are the same as those of the first embodiment and the spindle device described with reference to FIGS.
[0026]
In the air-oil lubrication structure of the rolling bearing, as in the first embodiment, the air oil supplied from the air oil supply port 13a passes through the inner ring circumferential groove 7 and the inner ring slope portion 2b from the discharge hole 8 of the nozzle member 6. It flows into the bearing 1. The air oil used for lubricating the bearing 1 flows into the air oil exhaust groove 22 located at both ends of each bearing 1 and communicating with the air oil exhaust path 23, and part of the air oil is exposed to the outside through the exhaust hole 23 a of the air oil exhaust path 23. To be discharged. Further, since the air flow accompanying the rotation of the spiral grooves 30A and 30B on the outer diameter surface of the inner ring spacer 11 is generated from the intermediate portion of the spacer width toward the left and right bearings 1 and 1, air oil in the exhaust communication passage 31 is obtained. A pressure difference (circumferential groove 32 side <air oil exhaust passage 23 side) is generated between the exhaust passage 23 side and the inner peripheral groove 32. As a result, part of the air oil that has flowed into the air oil exhaust passage 23 from the exhaust groove 22 flows into the left and right bearings 1, 1 from the exhaust communication passage 31 through the spiral grooves 30 </ b> A, 30 </ b> B. Since the air oil at this time is in an oil mist state, it can be used as the lubricating oil for the bearing 1, and the amount of air supplied from the air oil supply port 13a can be reduced and the amount of oil can be reduced.
[0027]
FIGS. 8 and 9 show a proposed example in which the configuration of reusing a part of the air-oil exhaust described with reference to FIGS. 6 and 7 is applied to the spindle apparatus having the air-oil lubrication structure described with reference to FIG. 8 and 9, members corresponding to the examples of FIGS. 6 and 7 are denoted by the same reference numerals. In this embodiment, the circumferential groove 7 of the inner ring 2 is eliminated and the nozzle member 6B is provided with a discharge groove 67 extending in the same circumferential direction as the proposed example in FIG. is there. The nozzle member 6B constitutes a nozzle spacer integrated member 40B integrated with the outer ring spacer 10A. However, the nozzle member 6B and the outer ring spacer 10A may be provided separately.
Also in this configuration, a part of the air oil that has flowed from the bearing 1 into the air oil exhaust path 23 flows again into the bearing 1 through the exhaust communication path 23 and the spiral grooves 30A and 30B, so the amount of air supplied from the air oil supply port 13a And oil quantity can be reduced.
[0028]
In the embodiment shown in FIGS. 6 and 7 and the proposed examples shown in FIGS. 8 and 9, the configuration for reusing a part of the exhaust air air can be summarized as the following proposed example.
The air-oil lubrication structure of the rolling bearing according to this proposed example has an inner ring spacer that is arranged side by side on the rolling bearing by fitting a nozzle member that discharges air oil to the rolling bearing on the inner diameter surface of the housing in which the rolling bearing is fitted. An air flow generating means for generating an air flow flowing toward the rolling bearing is provided in the gap between the outer ring spacers on the inner ring spacer.
In this proposed example, the air flow generating means may be a spiral groove provided on the outer diameter surface of the inner ring spacer.
In this proposed example, an exhaust path for air oil discharged from the rolling bearing and an exhaust communication path for communicating a gap between the inner ring spacer and the outer ring spacer may be provided.
The exhaust passage may be an air oil exhaust passage provided in the housing and a through hole that penetrates the inner and outer peripheral surfaces of the outer ring spacer and communicates with the air oil exhaust passage.
In the case of each configuration of the proposed example, a pair of the rolling bearings are provided apart in the axial direction of the housing, and the nozzle member is provided to each rolling bearing adjacent to the opposite side of the rolling bearings on both sides, The inner ring spacer and the outer ring spacer are arranged between the rolling bearings on both sides, and the outer ring spacer may be provided with a through hole penetrating the inner and outer diameter surfaces.
[0029]
【The invention's effect】
In the air-oil lubrication structure for a rolling bearing according to the present invention, an inclined surface portion is provided on the outer diameter surface of the inner ring of the rolling bearing, and a nozzle member is provided along the inclined surface with a gap between the inner ring and the inner ring. A circumferential groove is provided on the slope portion of the nozzle, and an air oil discharge hole that opens facing the circumferential groove is provided in the nozzle member. Therefore, in a rolling bearing using air oil lubrication, noise generated during operation can be reduced. In addition, it is possible to reduce the amount of conveying air and to prevent fluctuations in the bearing temperature due to oil retention in a small amount of air.
Said circumferential groove, since the cross section is a V-shaped groove, air-oil injected from the discharge hole of the nozzle member, so guided to inner inclined surface portion from the side wall slope of the circumferential grooves by centrifugal force, to ensure the air-oil Can be supplied to bearings.
The inclination angle of the inner ring of the inclined surface portion, the lubricating oil adhering to the inclined surface portion in air-oil discharged from the discharge hole, due to the angle at which flow to the rolling surface by the surface tension of the centrifugal force and the oil by the rotation of the inner ring In addition to low noise, it is possible to reliably supply the lubricating oil into the bearing during high-speed operation. As a result, the burning resistance of the bearing is improved, and the bearing can be used at a higher speed.
[Brief description of the drawings]
1A is a sectional view of an air-oil lubrication structure of a rolling bearing according to a first embodiment of the present invention, and FIG. 1B is a partially enlarged view thereof.
FIG. 2 is a cross-sectional view of a spindle device that employs the same air-oil lubrication structure.
FIG. 3 is a graph showing changes in outer ring temperature when a bearing is operated with an air-oil lubrication structure according to a proposed example.
FIG. 4 is a graph showing changes in outer ring temperature when operating with an air-oil lubrication structure according to the embodiment.
FIG. 5 is a sectional view of an air oil lubrication structure of a rolling bearing according to another embodiment of the present invention.
FIG. 6 is a cross-sectional view of a spindle device employing an air oil lubrication structure according to still another embodiment of the present invention.
FIG. 7 is a partially enlarged view of the spindle device.
FIG. 8 is a cross-sectional view of a spindle device adopting an air-oil lubrication structure for a rolling bearing according to a proposed example.
FIG. 9 is a partially enlarged view of the spindle device.
FIG. 10 is a cross-sectional view of a conventional example.
11A is a sectional view of an air-oil lubrication structure of a rolling bearing according to another proposed example, and FIG. 11B is a partially enlarged view thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Inner ring 2a ... Rolling surface 2b ... Slope part 3 ... Outer ring 4 ... Rolling body 5 ... Retainer 6, 6A ... Nozzle member 7 ... Circumferential groove 8 ... Discharge hole 8a ... Discharge port 9 ... Housing 10 , 10A ... Outer ring spacer 13 ... Air oil supply passage

Claims (2)

転がり軸受の内輪の外径面に、この内輪の転走面に続く斜面部を設け、この斜面部は内輪の外径面の全周に連続しており、この斜面部に隙間を持って沿うリング状のノズル部材を設け、上記内輪の斜面部に、断面がV字状の円周溝を設け、上記ノズル部材に、上記円周溝における転走面寄りの側壁斜面に対面して開口するエアオイルの吐出孔を設け、内輪の上記斜面部の傾斜角度を、上記吐出孔から吐出されたエアオイル中の上記斜面部に付着した潤滑油が、内輪の回転による遠心力とオイルの表面張力によって上記転走面へ流れる角度とし、かつ上記断面V字状の円周溝における上記転走面寄りの側壁斜面の軸心に対する傾斜角度を、内輪の上記斜面部の傾斜角度よりも大きくした転がり軸受のエアオイル潤滑構造。To the outer surface of the inner ring of the rolling bearing, only setting the slope portion that follows the rolling run surface of the inner ring, the slope portion is continuous to the entire circumference of the inner ring of the outer diameter surface, with a gap to the slope portion of this provided along cormorants annular Roh nozzle member Te, the inclined surface portion of the inner ring in cross section is provided a V-shaped circumferential groove, in the nozzle member, facing the sidewall slope of the rolling run face closer in the circumferential groove The air oil discharge hole is opened, and the inclination angle of the slope portion of the inner ring is set so that the lubricating oil adhering to the slope portion in the air oil discharged from the discharge hole causes the centrifugal force and oil of the inner ring to rotate. The inclination angle with respect to the axial center of the side wall slope near the rolling surface in the circumferential groove having the V-shaped cross section is larger than the inclination angle of the slope portion of the inner ring. Air-oil lubrication structure for rolling bearings. 上記転がり軸受がアンギュラ玉軸受である請求項1に記載の転がり軸受のエアオイル潤滑構造。  The air-oil lubrication structure for a rolling bearing according to claim 1, wherein the rolling bearing is an angular ball bearing.
JP2001160361A 2000-05-31 2001-05-29 Air-oil lubrication structure for rolling bearings Expired - Lifetime JP4261083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001160361A JP4261083B2 (en) 2000-05-31 2001-05-29 Air-oil lubrication structure for rolling bearings

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-162331 2000-05-31
JP2000162331 2000-05-31
JP2001160361A JP4261083B2 (en) 2000-05-31 2001-05-29 Air-oil lubrication structure for rolling bearings

Publications (2)

Publication Number Publication Date
JP2002054643A JP2002054643A (en) 2002-02-20
JP4261083B2 true JP4261083B2 (en) 2009-04-30

Family

ID=26593031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001160361A Expired - Lifetime JP4261083B2 (en) 2000-05-31 2001-05-29 Air-oil lubrication structure for rolling bearings

Country Status (1)

Country Link
JP (1) JP4261083B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046153A1 (en) 2012-09-24 2014-03-27 Ntn株式会社 Cooling structure for bearing device
WO2020189364A1 (en) 2019-03-18 2020-09-24 Ntn株式会社 Angular ball bearing, and retainer for angular ball bearing

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100343542C (en) * 2002-03-05 2007-10-17 Ntn株式会社 Rolling bearing lubricating method and device
JP2006118526A (en) 2004-10-19 2006-05-11 Ntn Corp Lubrication device of rolling bearing
EP1850019A4 (en) 2005-01-17 2009-04-22 Jtekt Corp Rolling bearing device and rotary device
DE112007001043T5 (en) 2006-05-01 2009-04-02 Ntn Corporation Multi-row rolling bearing arrangement
JP4917110B2 (en) * 2009-01-07 2012-04-18 Ntn株式会社 Rolling bearing lubrication structure
JP2009150559A (en) * 2009-04-10 2009-07-09 Ntn Corp Lubricating device of rolling bearing
JP5672805B2 (en) * 2010-07-14 2015-02-18 株式会社ジェイテクト Oil-air lubricated rolling bearing device
JP6234017B2 (en) * 2012-09-24 2017-11-22 Ntn株式会社 Lubrication structure of bearing device
CN103438094B (en) * 2013-08-10 2016-12-28 江苏江海机床集团有限公司 Machine tool mainshaft bearing structure
CN103481191B (en) * 2013-09-07 2015-11-18 江苏海建股份有限公司 High-speed grinding lathe
EP3851692B1 (en) * 2018-09-13 2023-09-06 NTN Corporation Bearing device cooling structure, and main spindle device of machine tool
CN114941655B (en) * 2022-05-13 2024-02-13 马鞍山经纬回转支承股份有限公司 Anti-tooth breakage slewing bearing for solar equipment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046153A1 (en) 2012-09-24 2014-03-27 Ntn株式会社 Cooling structure for bearing device
KR20150058493A (en) 2012-09-24 2015-05-28 엔티엔 가부시키가이샤 Cooling structure for bearing device
US9541137B2 (en) 2012-09-24 2017-01-10 Ntn Corporation Cooling structure for bearing device
US10280980B2 (en) 2012-09-24 2019-05-07 Ntn Corporation Cooling structure for bearing device
EP3567267A1 (en) 2012-09-24 2019-11-13 NTN Corporation Cooling structure for bearing device
WO2020189364A1 (en) 2019-03-18 2020-09-24 Ntn株式会社 Angular ball bearing, and retainer for angular ball bearing

Also Published As

Publication number Publication date
JP2002054643A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
EP2910806B1 (en) Bearing device with a cooling structure
JP4261083B2 (en) Air-oil lubrication structure for rolling bearings
KR20040101268A (en) Rolling bearing lubricating method and device
JP2007010017A (en) Air oil lubricating device for ball bearing
JP2006194402A (en) Rolling bearing device
CA2193518C (en) Rotary atomizing electrostatic coating apparatus
US20080063331A1 (en) Lubricating Structure Of Rolling Bearing
JP2003278773A (en) Air/oil lubricating structure of rolling bearing and spindle device
JPWO2005045269A1 (en) Oil lubricated rolling bearing device
US10221892B2 (en) Rolling bearing apparatus
JP4353785B2 (en) Air-oil lubrication structure for rolling bearings
JP2004100890A (en) Air oil lubricating structure for roller bearing
JPH11336767A (en) Cylindrical roller bearing
JP4393828B2 (en) Roller bearing cage and rolling bearing provided with the same
JP2005351439A (en) Air oil lubrication structure of cylindrical roller bearing
JP2004332928A (en) Bearing device and spindle device
JP2006118525A (en) Lubrication device of rolling bearing
JP2002361540A (en) Spindle device of machine tool
JP4289875B2 (en) Air-oil lubrication structure for cylindrical roller bearings
JP2002061657A (en) Air oil lubrication structure for rolling bearing
JP2004225807A (en) Lubricating device for rolling bearing
JP2003065345A (en) Lubrication construction of rolling bearing by feeding air and oil
JP4045291B2 (en) Rolling bearing device
JP2004183781A (en) Rotation supporting device for turbocharger
JP2009068719A (en) Retainer for rolling bearing and lubricating structure of rolling bearing having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080128

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term