JP2006118525A - Lubrication device of rolling bearing - Google Patents

Lubrication device of rolling bearing Download PDF

Info

Publication number
JP2006118525A
JP2006118525A JP2004303778A JP2004303778A JP2006118525A JP 2006118525 A JP2006118525 A JP 2006118525A JP 2004303778 A JP2004303778 A JP 2004303778A JP 2004303778 A JP2004303778 A JP 2004303778A JP 2006118525 A JP2006118525 A JP 2006118525A
Authority
JP
Japan
Prior art keywords
lubricating oil
inner ring
oil
rolling bearing
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303778A
Other languages
Japanese (ja)
Inventor
Yoshinobu Akamatsu
良信 赤松
Masatsugu Mori
正継 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004303778A priority Critical patent/JP2006118525A/en
Publication of JP2006118525A publication Critical patent/JP2006118525A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubrication device of a rolling bearing enabling a high-speed operation without increasing a power loss irrespective of the size of the bearing, capable of efficiently guiding a lubricating oil to a raceway surface, and capable of cooling the bearing without a complicated oil supply mechanism. <P>SOLUTION: This lubrication device of the rolling bearing lubricates the rolling bearing by discharging the lubrication oil from a lubrication oil lead-in member 7 into the rolling bearing 1. The lubrication oil lead-in member 7 comprises a discharge port 8 opening to the lateral face of an inner ring 2. A sloped part 2b larger in diameter on the raceway surface 2a side of the inner ring 2 and leading the lubrication oil discharged from the discharge port 8 to the raceway surface 2a of the inner ring 2 by a centrifugal force and a surface tension acting on the lubrication oil is formed on the outer diameter surface of the inner ring 2. A flanged part 10 covering over the sloped part 2b through a clearance δ and guiding the lubrication oil flowing to the raceway surface 2a through the clearance δ is formed on the lubrication oil lead-in member 7. The flanged part 10 is formed to extend to the inner diameter side of a cage 5 holding rolling elements 4, and the inner diameter surface 5a of the cage 5 on the flanged part 10 side is formed in a tapered surface having a larger diameter at the lateral center side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、工作機械主軸用の転がり軸受等に適用される潤滑装置に関する。   The present invention relates to a lubricating device applied to a rolling bearing for a machine tool main shaft.

工作機械主軸では、加工能率を上げるため、ますます高速化の傾向にある。主軸の高速化に伴い、主軸軸受ではトルクと発熱量が増加する。そこで、これに対処するために、主軸軸受の潤滑には、ジェット潤滑やエアオイル潤滑が多く用いられている。   Machine tool spindles tend to increase in speed in order to increase machining efficiency. As the spindle speed increases, torque and heat generation increase in the spindle bearing. In order to cope with this, jet lubrication and air-oil lubrication are often used for lubrication of the main shaft bearing.

ジェット潤滑は、多量の油を軸受内に噴射し、軸受の潤滑と軸受の冷却を同時に行うものであるが、この潤滑法は、軸受を高速運転すると潤滑油の攪拌抵抗が大きくなることから(速度の二乗にほぼ比例)、軸受の動力損失が大きくなり、大容量の駆動モータが必要になる欠点がある。   Jet lubrication involves injecting a large amount of oil into the bearing to simultaneously lubricate the bearing and cool the bearing, but this lubrication method increases the agitation resistance of the lubricant when the bearing is operated at high speed ( This is disadvantageous in that the power loss of the bearing increases and a large capacity drive motor is required.

また、エアオイル潤滑は、搬送エアに潤滑油を混合して油をノズルより軸受内に噴射するものであり、軸受内の油の攪拌抵抗を減じる対策として、内輪外径面に少量の油を付着させ、軌道部まで遠心力と表面張力を利用して給油するようにしたものが提案されている(例えば特許文献1,2)。   Air oil lubrication mixes lubricating oil with the carrier air and injects the oil into the bearing from the nozzle. As a measure to reduce the stirring resistance of the oil in the bearing, a small amount of oil is attached to the outer surface of the inner ring. In addition, there has been proposed a system in which oil is supplied to a track portion using centrifugal force and surface tension (for example, Patent Documents 1 and 2).

例えば特許文献1に開示の潤滑構造では、図5のように、軸受内輪42の一方の幅面に集油部であるスクープ部50が形成されると共に、これに隣接して配置される外輪間座47には、前記スクープ部50に向けて潤滑油を噴射する給油ノズル51が形成されている。また、スクープ部50はノズル孔52を介して内輪42の軌道面に連通しており、給油ノズル51から供給された潤滑油の大部分は、スクープ部50に浸入し、遠心力によりノズル孔52を経てボール44に吹き付けられる。   For example, in the lubricating structure disclosed in Patent Document 1, as shown in FIG. 5, a scoop portion 50 that is an oil collecting portion is formed on one width surface of the bearing inner ring 42, and an outer ring spacer disposed adjacent thereto. 47, an oil supply nozzle 51 for injecting lubricating oil toward the scoop portion 50 is formed. Further, the scoop portion 50 communicates with the raceway surface of the inner ring 42 through the nozzle hole 52, and most of the lubricating oil supplied from the oil supply nozzle 51 enters the scoop portion 50 and the nozzle hole 52 by centrifugal force. After that, the ball 44 is sprayed.

図5のV部を拡大して示す図6のように、前記外輪間座47の給油ノズル51の形成側の端面と、内輪42のスクープ部50の形成側の端面との間には、ギャップ量が0.2mm以下の隙間Cが形成されており、給油ノズル51から供給された潤滑油のうちスクープ部50に入らなかった一部の潤滑油で、外輪間座47の端面に付着したものは前記隙間Cを通り、内輪42の端面に移動する。また、内輪42のスクープ部50の形成側の外径面50aは、軸受内側に向けて拡径するテーパ面とされ、さらに内輪端面と前記外径面50aとの交差部は曲面部50cとされているので、内輪42の端面に移動した潤滑油は、内輪42の回転に伴う遠心力で前記曲面部50cから内輪外径面50aに移動して、保持器45の下に供給される。
なお、上記特許文献1では、図5および図6に示す潤滑構造において、内輪42のノズル孔52を省略したもの(図7)も開示されている。
As shown in FIG. 6 showing the V portion of FIG. 5 in an enlarged manner, there is a gap between the end surface on the formation side of the oil supply nozzle 51 of the outer ring spacer 47 and the end surface on the formation side of the scoop portion 50 of the inner ring 42. A gap C having an amount of 0.2 mm or less is formed, and a part of the lubricating oil supplied from the oil supply nozzle 51 that does not enter the scoop portion 50 and adheres to the end face of the outer ring spacer 47 Passes through the gap C and moves to the end face of the inner ring 42. Further, the outer diameter surface 50a on the formation side of the scoop portion 50 of the inner ring 42 is a tapered surface that expands toward the inner side of the bearing, and the intersection between the inner ring end surface and the outer diameter surface 50a is a curved surface portion 50c. Therefore, the lubricating oil that has moved to the end surface of the inner ring 42 is moved from the curved surface portion 50c to the inner ring outer diameter surface 50a by the centrifugal force accompanying the rotation of the inner ring 42, and is supplied below the cage 45.
Note that the above-mentioned Patent Document 1 also discloses a lubricating structure shown in FIGS. 5 and 6 in which the nozzle hole 52 of the inner ring 42 is omitted (FIG. 7).

ところで、エアオイル潤滑に用いられるエアオイルには、軸受冷却効果がほとんど無い。そこで、エアオイル潤滑を採用する場合には、別途、冷却機構を設ける必要がある。そのような冷却機構として、ハウジングを冷却すると共に、軸の内径部に冷却油を通油することで軸受を冷却するものが知られている(特許文献3〜5)。
特開2001−012481号公報 特開2002−54643号公報 特許第3084356号公報 特開平7−24687号公報 特開平7−145819号公報
Incidentally, air oil used for air oil lubrication has almost no bearing cooling effect. Therefore, when air-oil lubrication is employed, it is necessary to provide a cooling mechanism separately. As such a cooling mechanism, one that cools the housing and cools the bearing by passing cooling oil through the inner diameter portion of the shaft is known (Patent Documents 3 to 5).
JP 2001-012481 A JP 2002-54643 A Japanese Patent No. 3084356 Japanese Patent Laid-Open No. 7-24687 JP-A-7-145819

上記特許文献1に開示の潤滑構造(図5〜図7)では、軸受のサイズが小さかったり、軸受内輪42の厚さが薄かったりした場合に、上記隙間Cを設定できないという問題がある。また、軸受内部に供給する油量の調整を、給油ノズル51側の供給装置で行う必要がある。
また、特許文献3〜5の冷却機構では、軸の内径側に給油する専用の回転継手部が必要で、この回転継手部の構造が複雑になるなどの問題がある。
The lubrication structure disclosed in Patent Document 1 (FIGS. 5 to 7) has a problem that the gap C cannot be set when the bearing size is small or the bearing inner ring 42 is thin. Further, it is necessary to adjust the amount of oil supplied into the bearing with the supply device on the oil supply nozzle 51 side.
Further, the cooling mechanisms of Patent Documents 3 to 5 have a problem that a dedicated rotary joint portion for supplying oil to the inner diameter side of the shaft is necessary, and the structure of the rotary joint portion becomes complicated.

このような課題を解消するものとして、本発明者は図8に示すものを試みた。この潤滑装置は、潤滑油導入部材7の吐出口8から、内輪2の幅面の円周溝6に潤滑油を吐出し、その潤滑油を遠心力と表面張力とで、内輪2の外径面の斜面部2bに沿って内輪2の軌道面2aへ導くものである。また、この斜面部2bに隙間δを介して被さる鍔状部10を設け、隙間δから軌道面2aへ流れる潤滑油を案内するように構成している。   In order to solve such a problem, the present inventor tried the one shown in FIG. This lubricating device discharges lubricating oil from the discharge port 8 of the lubricating oil introducing member 7 to the circumferential groove 6 on the width surface of the inner ring 2, and the lubricating oil is subjected to the outer diameter surface of the inner ring 2 by centrifugal force and surface tension. Is led to the raceway surface 2a of the inner ring 2 along the inclined surface 2b. In addition, a hook-like portion 10 is provided on the inclined surface portion 2b via a gap δ so that the lubricating oil flowing from the gap δ to the raceway surface 2a is guided.

しかし、図8の構成では、矢印で潤滑油の流れを示すように、円周溝6から斜面部2bに流れ出た潤滑油のうち、一部のもの(矢印p)は、鍔状部10の先端から遠心力で外径側へ飛ばされてしまい、軌道面2aに至らないことが分かった。このため、潤滑油導入部材7から吐出された潤滑油が、潤滑にも冷却にも供されずに排出され、潤滑油供給の無駄が生じる。   However, in the configuration of FIG. 8, as indicated by the arrows, the lubricating oil that has flowed from the circumferential groove 6 to the inclined surface portion 2 b is partially (arrow p), It was found that the tip was blown to the outer diameter side by centrifugal force and did not reach the track surface 2a. For this reason, the lubricating oil discharged from the lubricating oil introducing member 7 is discharged without being lubricated or cooled, resulting in wasted lubricating oil supply.

この発明の目的は、軸受サイズによらず動力損失を増大させないで高速運転できると共に、効率良く潤滑油を軌道面へ案内でき、かつ複雑な給油機構を持たずに軸受の冷却を行うことができる転がり軸受の潤滑装置を提供することである。   The object of the present invention is to enable high speed operation without increasing power loss regardless of the bearing size, to efficiently guide the lubricating oil to the raceway surface, and to cool the bearing without having a complicated oiling mechanism. A lubrication device for a rolling bearing is provided.

この発明の転がり軸受の潤滑装置は、転がり軸受内に潤滑油導入部材から潤滑油を吐出して潤滑する転がり軸受の潤滑装置において、前記潤滑油導入部材は、内輪の幅面に対向して開口する吐出口を有し、前記内輪の外径面に、前記内輪の軌道面側が大径となり、前記吐出口から吐出された潤滑油をこの潤滑油に作用する遠心力と表面張力とで内輪の軌道面に導く斜面部を設け、この斜面部に隙間を介して被さってこの隙間から前記軌道面へ流れる潤滑油を案内する鍔状部を前記潤滑油導入部材に設け、この鍔状部は転動体を保持する保持器の内径側まで延びるものとし、前記保持器の前記鍔状部側の内径面を、幅方向の中央側が大径となるテーパ状面としたことを特徴とする。   The lubrication device for a rolling bearing according to the present invention is a lubrication device for a rolling bearing in which the lubricating oil is discharged from the lubricating oil introduction member into the rolling bearing for lubrication, and the lubricating oil introduction member opens facing the width surface of the inner ring. The inner ring raceway has a discharge port, the outer ring surface of the inner ring has a larger diameter on the raceway side of the inner ring, and the lubricating oil discharged from the discharge port is subjected to centrifugal force and surface tension acting on the lubricating oil. A slope portion that leads to the surface is provided, and a flange-like portion that covers the slope portion through a gap and guides the lubricant flowing from the gap to the raceway surface is provided on the lubricant introduction member, and the flange-like portion is a rolling element. The cage is extended to the inner diameter side of the cage, and the inner diameter surface of the cage on the side of the flange-shaped portion is a tapered surface having a large diameter at the center in the width direction.

この構成によると、潤滑油導入部材の吐出口から内輪の幅面に対して吐出された潤滑油は、内輪の回転より作用する遠心力と表面張力とで、内輪の斜面部とこの斜面部に被さった鍔状部との間の隙間内を案内され、軌道面へに供給される。この隙間内を流れる潤滑油は、回転速度や傾斜角度等の各種の条件により、遠心力の作用で鍔状部の内径面側へ押し付けられた状態で流れることがある。この状態で流れる潤滑油は、鍔状部の先端を出た箇所で、遠心力で外径側へ降り飛ばされることになる。しかし、鍔状部は転動体を保持する保持器の内径側まで延び、かつ保持器の内径面が、幅方向の央側が大径となるテーパ状面とされているため、鍔状部の先端から外径側へ降り飛ばされた潤滑油は、保持器のテーパ状面で受けられ、転動体へ供給されることになる。このため、内輪の斜面部と上記鍔状部との間の隙間に供給された潤滑油が、無駄なく潤滑に供される。   According to this configuration, the lubricating oil discharged from the discharge port of the lubricating oil introduction member to the inner ring width surface is covered with the inclined surface of the inner ring and the inclined surface by centrifugal force and surface tension acting from the rotation of the inner ring. Guided in the gap between the ridges and supplied to the raceway surface. The lubricating oil flowing in the gap may flow in a state of being pressed against the inner diameter surface side of the bowl-shaped portion by the action of centrifugal force under various conditions such as the rotation speed and the inclination angle. The lubricating oil that flows in this state falls off to the outer diameter side by a centrifugal force at a position where it exits the tip of the bowl-shaped portion. However, the hook-shaped portion extends to the inner diameter side of the cage that holds the rolling elements, and the inner diameter surface of the cage is a tapered surface having a large diameter at the center in the width direction. The lubricating oil that has fallen off to the outer diameter side is received by the tapered surface of the cage and supplied to the rolling elements. For this reason, the lubricating oil supplied to the gap between the slope portion of the inner ring and the hook-like portion is used for lubrication without waste.

このように、潤滑油導入部材から吐出された潤滑油を、内輪斜面部と潤滑油導入部材の鍔状部の間の隙間から軌道面に供給するものであるため、大きな動力損失が生じず、動力損失を増大させないで高速運転が可能である。内輪の外径面の斜面部とこれに被さる鍔状部の間で潤滑油の案内を行うものであるため、内輪の端面に微小隙間を設けて案内するものと異なり、軸受サイズが小さい場合や、内輪の厚さが薄い場合等であっても、適用が可能である。また、鍔状部が保持器の内径側まで延び、かつ保持器の内径面がテーパ状面とされているため、上記のように無駄なく、効率良く潤滑油を軌道面へ案内できる。
また、潤滑油導入部材の吐出口から吐出された潤滑油のうち、内輪の斜面部と潤滑油導入部材の鍔状部間の隙間へ流入する流入分を除く残りの潤滑油は、軸受の冷却油として作用するので、複雑な給油機構を持たずに軸受の冷却を行うことができる。
Thus, since the lubricating oil discharged from the lubricating oil introduction member is supplied to the raceway surface from the gap between the inner ring slope portion and the flanged portion of the lubricating oil introduction member, a large power loss does not occur, High speed operation is possible without increasing power loss. Since the lubricant is guided between the slope of the outer diameter surface of the inner ring and the hook-shaped part covering it, unlike the case of guiding with a minute clearance on the end face of the inner ring, The present invention can be applied even when the inner ring is thin. Further, since the hook-shaped portion extends to the inner diameter side of the cage and the inner diameter surface of the cage is a tapered surface, the lubricating oil can be efficiently guided to the raceway surface as described above without waste.
In addition, of the lubricant discharged from the discharge port of the lubricant introduction member, the remaining lubricant excluding the inflow flowing into the gap between the slope portion of the inner ring and the flange portion of the lubricant introduction member is used for cooling the bearing. Since it acts as oil, the bearing can be cooled without having a complicated oil supply mechanism.

この発明において、前記内輪は前記幅面に円周溝を有し、前記吐出口は前記内輪の幅面のうちの円周溝の設けられた箇所に対向して開口するものとしても良い。
内輪幅面に円周溝を設けた場合、吐出口から吐出された潤滑油が円周溝に集油され、その一部が内輪の斜面部から軌道面に流れるので、軌道面の全周に均等に潤滑油を供給できる。
In the present invention, the inner ring may have a circumferential groove on the width surface, and the discharge port may be opened facing a portion of the width surface of the inner ring where the circumferential groove is provided.
When a circumferential groove is provided on the inner ring width surface, the lubricating oil discharged from the discharge port is collected in the circumferential groove, and part of it flows from the inclined surface of the inner ring to the raceway surface. Lubricating oil can be supplied.

前記潤滑油導入部材の鍔状部と内輪の斜面部との間の隙間は、この隙間で潤滑油の流量を規制する微小隙間としても良い。この構成の場合、微小隙間を流れる潤滑油の流量を隙間量で調整できるので、簡単な構造で給油量を調整できる。   The gap between the flange portion of the lubricating oil introduction member and the slope portion of the inner ring may be a minute gap that regulates the flow rate of the lubricating oil. In the case of this configuration, since the flow rate of the lubricating oil flowing through the minute gap can be adjusted by the gap amount, the oil supply amount can be adjusted with a simple structure.

前記潤滑油導入部材は、前記外輪の幅面に接して設けられるリング状の外輪間座であっても良い。潤滑油導入部材が外輪間座を兼用するものであると、潤滑油導入部材として特別な部材を設ける必要がなく、構成を簡略化できる。   The lubricating oil introduction member may be a ring-shaped outer ring spacer provided in contact with the width surface of the outer ring. If the lubricating oil introduction member also serves as an outer ring spacer, it is not necessary to provide a special member as the lubricating oil introduction member, and the configuration can be simplified.

前記潤滑油導入部材は、前記吐出口から円周方向に離れた位置に、内径面から外径面に貫通する排油路を有するものであっても良い。特に専用の排油路を設けなくても、前記斜面部と鍔状部間の隙間への流入分を除く残りの潤滑油は、周辺隙間から適宜排出される。しかし、潤滑油排出路を設けることで、潤滑油の排出の効率を高めたり、排出される潤滑油の流れを規制することができる。また、上記のように吐出口から円周方向に離れた位置に排油路を設けることで、軸受潤滑に使用されない潤滑油が排油路に流入するまでの経路が長くなるので、それだけ冷却効率を上げることができる。   The lubricating oil introducing member may have a drain oil passage that penetrates from the inner diameter surface to the outer diameter surface at a position away from the discharge port in the circumferential direction. Even if a dedicated oil drain passage is not provided, the remaining lubricating oil except for the inflow into the gap between the slope portion and the bowl-like portion is appropriately discharged from the peripheral gap. However, by providing the lubricating oil discharge passage, it is possible to increase the efficiency of discharging the lubricating oil or to regulate the flow of the discharged lubricating oil. In addition, by providing an oil drainage path at a position away from the discharge port in the circumferential direction as described above, the path until lubricating oil that is not used for bearing lubrication flows into the oil drainage path becomes longer, so that the cooling efficiency is increased accordingly. Can be raised.

前記潤滑油導入部材は、外輪の幅面に接する面に径方向に延びる溝状排油路を有するものであっても良い。
この構成の場合、潤滑に使用された潤滑油および軌道面に至らなかった潤滑油を含め、軸受内に一旦供給された潤滑油が前記溝状排油路から排出される。そのため、軸受内に供給された潤滑油の排出性を高めることができ、軸受内に汚れた潤滑油が蓄積することが防止される。
The lubricating oil introduction member may have a groove-like oil drain passage extending in a radial direction on a surface in contact with the width surface of the outer ring.
In the case of this configuration, the lubricating oil once supplied into the bearing, including the lubricating oil used for lubrication and the lubricating oil that has not reached the raceway surface, is discharged from the groove-like oil drain passage. For this reason, it is possible to improve the discharge performance of the lubricating oil supplied into the bearing, and to prevent the dirty lubricating oil from accumulating in the bearing.

この発明の転がり軸受の潤滑装置は、転がり軸受内に潤滑油導入部材から潤滑油を吐出して潤滑する転がり軸受の潤滑装置において、前記潤滑油導入部材は、内輪の幅面に対向して開口する吐出口を有し、前記内輪の外径面に、前記内輪の軌道面側が大径となり、前記吐出口から吐出された潤滑油をこの潤滑油に作用する遠心力と表面張力とで内輪の軌道面に導く斜面部を設け、この斜面部に隙間を介して被さってこの隙間から前記軌道面へ流れる潤滑油を案内する鍔状部を前記潤滑油導入部材に設け、この鍔状部は転動体を保持する保持器の内径側まで延びるものとし、前記保持器の前記鍔状部側の内径面を、幅方向の中央側が大径となるテーパ状面としたため、軸受サイズによらず動力損失を増大させないで高速運転できると共に、効率良く潤滑油を軌道面へ案内でき、かつ複雑な給油機構を持たずに軸受の冷却を行うことができる。   The lubrication device for a rolling bearing according to the present invention is a lubrication device for a rolling bearing in which the lubricating oil is discharged from the lubricating oil introduction member into the rolling bearing for lubrication, and the lubricating oil introduction member opens facing the width surface of the inner ring. The inner ring raceway has a discharge port, the outer ring surface of the inner ring has a larger diameter on the raceway side of the inner ring, and the lubricating oil discharged from the discharge port is subjected to centrifugal force and surface tension acting on the lubricating oil. A slope portion that leads to the surface is provided, and a flange-like portion that covers the slope portion through a gap and guides the lubricant flowing from the gap to the raceway surface is provided on the lubricant introduction member, and the flange-like portion is a rolling element. The inner diameter surface of the cage-like portion side of the cage is a tapered surface having a large diameter at the center in the width direction, so that power loss is reduced regardless of the bearing size. High speed operation without increasing, and efficiency Ku lubricating oil can guide the track surface, and can be cooled bearing without a complicated oil supply mechanism.

この発明の第1の実施形態を図1および図2と共に説明する。図1(A)はこの実施形態の転がり軸受の断面図を示す。この転がり軸受1の潤滑装置は、潤滑油導入部材7から吐出する冷却油の一部を潤滑油として、転がり軸受1内に供給するものである。転がり軸受1はアンギュラ玉軸受からなり、内輪2と外輪3の軌道面2a,3a間に複数の転動体4を介在させたものである。転動体4はボールからなり、保持器5で保持される。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1A shows a cross-sectional view of the rolling bearing of this embodiment. The lubricating device for the rolling bearing 1 supplies a part of the cooling oil discharged from the lubricating oil introducing member 7 into the rolling bearing 1 as lubricating oil. The rolling bearing 1 is formed of an angular ball bearing, and a plurality of rolling elements 4 are interposed between raceway surfaces 2 a and 3 a of the inner ring 2 and the outer ring 3. The rolling element 4 is a ball and is held by a cage 5.

保持器5の内径面は、幅方向の中央側が大径となるテーパ状面5aとされている。保持器5は外輪案内タイプであり、その素材はベーク,PEEK,C/Cコンポジット,アルミ合金,Ti合金(高速時の強度向上)などが望ましい。内輪2の素材は、高速時の大きな嵌め合いフープ応力を考慮して、例えば浸炭鋼とされている。転動体4は、遠心力低減の観点からセラミック製が望ましい。   The inner diameter surface of the cage 5 is a tapered surface 5a having a large diameter at the center in the width direction. The cage 5 is an outer ring guide type, and its material is preferably bake, PEEK, C / C composite, aluminum alloy, Ti alloy (strength improvement at high speed) or the like. The material of the inner ring 2 is, for example, carburized steel in consideration of a large fitting hoop stress at high speed. The rolling element 4 is preferably made of ceramic from the viewpoint of reducing centrifugal force.

この転がり軸受1における内輪2の反負荷側(軸受背面側)の幅面には軸方向に凹陥する円周溝6が形成されている。また、内輪2の前記円周溝6が形成される側の軌道面2aに続く外径面は、軌道面2a側が大径となる斜面部2bとされている。この斜面部2bの傾斜角度αの最小値は、次式の値に設置してある。
α≧0.0667×dn×10-4−1.8333
ただし、dn:軸受内径寸法(mm)と回転速度(min -1)の積である。
この式によると、転がり軸受1が、軸受内径70mmφ、回転速度300000min -1のアンギュラ玉軸受の場合には、前記斜面部2bの傾斜角度αは、
α≧12.8°
とされる。
A circumferential groove 6 that is recessed in the axial direction is formed on the width surface of the inner ring 2 on the side opposite to the load (bearing rear side) in the rolling bearing 1. Further, the outer diameter surface following the raceway surface 2a on the side where the circumferential groove 6 of the inner ring 2 is formed is a slope portion 2b having a larger diameter on the raceway surface 2a side. The minimum value of the inclination angle α of the slope portion 2b is set to the value of the following formula.
α ≧ 0.0667 × dn × 10 −4 −1.8333
Where dn is the product of the bearing inner diameter (mm) and the rotational speed (min −1 ).
According to this equation, when the rolling bearing 1 is an angular ball bearing having a bearing inner diameter of 70 mmφ and a rotation speed of 300,000 min −1 , the inclination angle α of the inclined surface portion 2b is:
α ≧ 12.8 °
It is said.

前記傾斜角度αの最大値は、アンギュラ玉軸受ではα≦25°とすることが好ましい。アンギュラ玉軸受の場合、傾斜角度αが25°を超えると、斜面部2bを設けた側の内輪端面の径方向幅が狭くなり、この端面が接する内輪間座16等との接触面積が小さくなって、大きな軸方向荷重を受けられなくなるからである。転がり軸受1がアンギュラ玉軸受である場合、内輪2のステップ面を設ける部分の外径面が上記斜面部2bとされる。   The maximum value of the inclination angle α is preferably α ≦ 25 ° in an angular ball bearing. In the case of an angular contact ball bearing, when the inclination angle α exceeds 25 °, the radial width of the inner ring end face on the side where the inclined surface portion 2b is provided becomes narrower, and the contact area with the inner ring spacer 16 and the like with which this end face comes into contact is reduced. This is because a large axial load cannot be received. When the rolling bearing 1 is an angular ball bearing, the outer diameter surface of the portion where the step surface of the inner ring 2 is provided is the inclined surface portion 2b.

潤滑油導入部材7は外輪3の幅面に接することで、転がり軸受1に軸方向に隣接して設けられるリング状の外輪間座であって、内輪2の幅面の前記円周溝6の設けられた箇所に対向して開口する吐出口8、およびこの吐出口8に連通する給油路9を有する。給油路9に供給され吐出口8から吐出される冷却油は、内輪の円周溝6に吹き付けられ、その一部が遠心力と表面張力とで、円周溝6の内径面から斜面部2bに沿って内輪2の軌道面2aに潤滑油として流れる。
図2は、前記潤滑油導入部材7を、軸受配置側から見た正面図である。この例では、給油路9およびこれに連通する吐出口8を一つとしているが、これに限らず複数個を潤滑油導入部材7の円周方向に分けて配置して、潤滑効率を上げるようにしても良い。
The lubricating oil introduction member 7 is a ring-shaped outer ring spacer provided adjacent to the rolling bearing 1 in the axial direction by contacting the width surface of the outer ring 3, and is provided with the circumferential groove 6 on the width surface of the inner ring 2. And an oil supply passage 9 communicating with the discharge port 8. The cooling oil supplied to the oil supply passage 9 and discharged from the discharge port 8 is sprayed to the circumferential groove 6 of the inner ring, and a part thereof is centrifugal force and surface tension, and the slope portion 2b from the inner diameter surface of the circumferential groove 6 Flows along the raceway surface 2a of the inner ring 2 as a lubricating oil.
FIG. 2 is a front view of the lubricating oil introduction member 7 as viewed from the bearing arrangement side. In this example, the oil supply path 9 and the discharge port 8 communicating with the oil supply path 9 are made one. However, the present invention is not limited to this, and a plurality of oil supply paths 9 are arranged separately in the circumferential direction of the lubricating oil introduction member 7 so as to increase the lubrication efficiency. Anyway.

吐出口8の口径は、吐出油のジェット速度を上げる観点から小さい方が好ましい。また、吐出口8のストレート部長さは、吐出油が拡散するのを防止する観点から、吐出口直径の4倍程度が好ましい。吐出口8の円周溝6側の内輪端面に対する角度は任意で良い。   The diameter of the discharge port 8 is preferably smaller from the viewpoint of increasing the jet speed of the discharged oil. The length of the straight portion of the discharge port 8 is preferably about 4 times the diameter of the discharge port from the viewpoint of preventing the discharge oil from diffusing. The angle of the discharge port 8 with respect to the inner ring end surface on the circumferential groove 6 side may be arbitrary.

図1に示すように、潤滑油導入部材7は、その側面から軸受1に向けて軸方向に延び、前記内輪2の斜面部2bに隙間δ(図1(B))を介して被さって、この隙間δから前記軌道面2aへ流れる潤滑油を案内する鍔状部10を有する。鍔状部10は、保持器5の内径側まで延びるものとされている。この実施形態では、保持器5におけるポケットを挟んだ両側の内径面5aが上記したテーパ状面とされているが、これに限らず、前記鍔状部10が延びる側の内径面5aだけをテーパ状面としても良い。前記吐出口8に対向する内輪2の幅面と前記斜面部2bとが交差する角部は、断面円弧状の曲面部2baとされている。曲面部2baとしたのは、この角部から潤滑油が遠心力で内輪2から離れることを防止するためである。なお、潤滑油導入部材7は、内傷の発生防止や取扱性向上の見地から、焼入処理することが望ましい。   As shown in FIG. 1, the lubricating oil introduction member 7 extends in the axial direction from the side surface toward the bearing 1, and covers the slope portion 2 b of the inner ring 2 via a gap δ (FIG. 1B). It has a bowl-shaped portion 10 for guiding the lubricating oil flowing from the gap δ to the raceway surface 2a. The hook-like portion 10 extends to the inner diameter side of the cage 5. In this embodiment, the inner diameter surfaces 5a on both sides of the cage 5 sandwiching the pockets are the tapered surfaces described above. However, the present invention is not limited to this, and only the inner diameter surface 5a on the side where the flange-shaped portion 10 extends is tapered. It may be a surface. A corner portion where the width surface of the inner ring 2 facing the discharge port 8 and the slope portion 2b intersect with each other is a curved surface portion 2ba having an arcuate cross section. The reason why the curved surface portion 2ba is used is to prevent the lubricating oil from leaving the inner ring 2 by centrifugal force from the corner portion. In addition, it is desirable that the lubricating oil introducing member 7 is subjected to a quenching treatment from the viewpoint of preventing the occurrence of internal damage and improving the handleability.

前記吐出口8から吐出された潤滑油のうち、前記微小隙間δへ流入する流入分を除く残りの潤滑油は、潤滑油排出経路11から外部に排出される。この潤滑油排出経路11は、前記潤滑油導入部材7に設けられた排油路12、溝状排油路13や、内輪2の負荷側に接して配置される外輪間座15の排油溝14などで構成される。潤滑油導入部材7の排油路12は、前記吐出口8から円周方向に離れた位置(ここでは吐出口8から180°離れた位置)に、内径面から外径面に貫通して形成されている。なお、排油路12、溝状排油路13、排油溝14は、円周方向に複数分配して設けても良い。   Of the lubricating oil discharged from the discharge port 8, the remaining lubricating oil excluding the inflow flowing into the minute gap δ is discharged to the outside from the lubricating oil discharge path 11. The lubricating oil discharge path 11 includes an oil draining path 12 provided in the lubricating oil introducing member 7, a grooved oil draining path 13, and an oil draining groove of an outer ring spacer 15 disposed in contact with the load side of the inner ring 2. 14 or the like. The oil discharge passage 12 of the lubricating oil introducing member 7 is formed so as to penetrate from the inner diameter surface to the outer diameter surface at a position away from the discharge port 8 in the circumferential direction (here, at a position 180 ° away from the discharge port 8). Has been. Note that a plurality of oil drain passages 12, groove-like oil drain passages 13, and oil drain grooves 14 may be provided in the circumferential direction.

潤滑油導入部材7の内径面は、前記吐出口8の形成部を除き、内輪2に対向する軸方向の一部分が残部分よりも大径となった段差面7aとされており、この段差面7aに前記排油路12が開口している。また、潤滑油導入部材7の溝状排油路13は、外輪3の幅面に接する面の一部に、径方向に延ばして形成されている。外輪間座15の排油溝14は、外輪3に接する端面の一部に、径方向に延ばして形成されている。
なお使用する冷却油としては、動力損失の低減および冷却効率の向上の観点から、ISOの粘度がVG10,VG2以下が望ましい。また、動力損失の更なる低減および冷却効率の向上には、冷却油として粘度が小さく熱伝導率が大きい水溶性作動油の使用と、前記潤滑油導入部材7の材料として線膨張係数が低いステンレスを使用することが望ましい。
The inner diameter surface of the lubricating oil introducing member 7 is a step surface 7a in which a part of the axial direction facing the inner ring 2 is larger in diameter than the remaining portion except for the portion where the discharge port 8 is formed. The oil drain passage 12 is open at 7a. Further, the groove-like oil discharge passage 13 of the lubricating oil introduction member 7 is formed to extend in the radial direction on a part of the surface in contact with the width surface of the outer ring 3. The oil draining groove 14 of the outer ring spacer 15 is formed to extend in the radial direction in a part of the end surface that is in contact with the outer ring 3.
The cooling oil to be used preferably has an ISO viscosity of VG10 or VG2 or less from the viewpoint of reducing power loss and improving cooling efficiency. Further, for further reduction of power loss and improvement of cooling efficiency, use of water-soluble hydraulic oil having low viscosity and high thermal conductivity as cooling oil, and stainless steel having a low coefficient of linear expansion as the material of the lubricating oil introduction member 7 are used. It is desirable to use

上記構成の潤滑装置の作用を説明する。潤滑油導入部材7の給油路9に圧送された冷却油は、吐出口8から吐出されて対向する内輪2の幅面の円周溝6の形成箇所に吹き付けられる。円周溝6に吹き付けられた冷却油の一部は、その表面張力と内輪2の回転に伴い冷却油に作用する遠心力とにより、内輪2における円周溝6の外径側の内壁面から斜面部2bに沿って内輪2の軌道面2aに潤滑油として流入する。このように、吐出口8から吐出された冷却油が円周溝6に集油され、その一部が内輪の斜面部から軌道面に流れるので、軌道面2aの全周に均等に潤滑油を供給できる。円周溝6の内壁面から斜面部2bへの潤滑油の移動は、潤滑油の表面張力、潤滑油に作用する遠心力、および斜面部2bの傾斜角度を適正にバランスさせることにより円滑に行わせることができ、遠心力で潤滑油が飛散するのを回避できる。ここでは、内輪2の幅面と斜面部2bとの交差部が曲面部2baとされているので、斜面部2bへの潤滑油の移動がより円滑に行われる。   The operation of the lubricating device having the above configuration will be described. The cooling oil pumped to the oil supply passage 9 of the lubricating oil introduction member 7 is discharged from the discharge port 8 and sprayed to the formation location of the circumferential groove 6 on the width surface of the inner ring 2 that faces the cooling oil. A part of the cooling oil sprayed on the circumferential groove 6 is separated from the inner wall surface on the outer diameter side of the circumferential groove 6 in the inner ring 2 by the surface tension and the centrifugal force acting on the cooling oil as the inner ring 2 rotates. It flows as lubricating oil into the raceway surface 2a of the inner ring 2 along the slope portion 2b. In this way, the cooling oil discharged from the discharge port 8 is collected in the circumferential groove 6, and a part thereof flows from the inclined surface portion of the inner ring to the raceway surface, so that the lubricating oil is evenly distributed over the entire circumference of the raceway surface 2a. Can supply. The lubricant is smoothly transferred from the inner wall surface of the circumferential groove 6 to the slope portion 2b by appropriately balancing the surface tension of the lubricant, the centrifugal force acting on the lubricant, and the slope angle of the slope portion 2b. It is possible to prevent the lubricating oil from being scattered by centrifugal force. Here, since the intersecting portion between the width surface of the inner ring 2 and the slope portion 2b is the curved portion 2ba, the lubricating oil moves to the slope portion 2b more smoothly.

内輪2の斜面部2bには、隙間δを介して潤滑油導入部材7の鍔状部10が被さっており、この隙間δから軌道面2aに流れる潤滑油が鍔状部10によって案内される。隙間δ内を流れる潤滑油は、回転速度や傾斜角度等の各種の条件により、斜面部2bに付着した流れとならずに、遠心力の作用で鍔状部10の内径面5a側へ押し付けられた状態で流れることがある。この状態で流れる潤滑油は、鍔状部10の先端を出た箇所で、遠心力で外径側へ降り飛ばされることになる。しかし、鍔状部10は保持器5の内径側まで延び、かつ保持器5の内径面5aが、幅方向の央側が大径となるテーパ状面とされているため、鍔状部10の先端から外径側へ降り飛ばされた潤滑油は、保持器5のテーパ状の内径面5aで受けられ、転動体4へ供給されることになる。このため、内輪2の斜面部2bと潤滑油導入部材7の鍔状部10との間の隙間δに供給された潤滑油が、無駄なく潤滑に供されることになる。
なお、前記隙間δを、斜面部2bに沿って流れる潤滑油の油膜よりも狭い微小隙間とした場合は、この隙間δで流量調整できることから、前記給油路9への冷却油の流量を外部から調整することなく、前記微小隙間δを流れる潤滑油の流量を簡単に調整することができる。
The slope portion 2b of the inner ring 2 is covered with the flange portion 10 of the lubricating oil introduction member 7 through the gap δ, and the lubricant oil flowing from the gap δ to the raceway surface 2a is guided by the flange portion 10. The lubricating oil flowing in the gap δ is pressed against the inner diameter surface 5a side of the bowl-shaped portion 10 by the action of centrifugal force, without being a flow adhering to the inclined surface portion 2b due to various conditions such as rotational speed and inclination angle. May flow in a wet state. The lubricating oil that flows in this state falls off to the outer diameter side by centrifugal force at the point where the tip of the bowl-shaped portion 10 is exited. However, since the hook-shaped portion 10 extends to the inner diameter side of the cage 5 and the inner diameter surface 5a of the cage 5 is a tapered surface having a large diameter at the center in the width direction, the tip of the cage-shaped portion 10 The lubricating oil that has flowed down from the outer diameter side to the outer diameter side is received by the tapered inner diameter surface 5 a of the cage 5 and supplied to the rolling elements 4. For this reason, the lubricating oil supplied to the gap δ between the inclined surface portion 2b of the inner ring 2 and the flange-shaped portion 10 of the lubricating oil introducing member 7 is used for lubrication without waste.
If the gap δ is a minute gap narrower than the oil film of the lubricating oil flowing along the inclined surface portion 2b, the flow rate can be adjusted by this gap δ, so that the cooling oil flow rate to the oil supply passage 9 is externally adjusted. Without adjustment, the flow rate of the lubricating oil flowing through the minute gap δ can be easily adjusted.

前記微小隙間δへ流入する流入分を除く残りの潤滑油は、潤滑油排出経路11を構成する潤滑油導入部材7の排油路12、溝状排油路13、および外輪間座15の排油溝14を経て排油ポンプ(図示せず)により外部に排出される。このような経路で排出される冷却油としての潤滑油により、転がり軸受1は効果的に冷却される。   The remaining lubricating oil excluding the inflow that flows into the minute gap δ is discharged from the oil drain passage 12, the groove-like drain passage 13 and the outer ring spacer 15 of the lubricant introduction member 7 constituting the lubricant drain passage 11. It is discharged to the outside through an oil groove 14 by a drain oil pump (not shown). The rolling bearing 1 is effectively cooled by the lubricating oil as the cooling oil discharged through such a path.

この転がり軸受の潤滑装置は、潤滑油導入部材7から吐出された潤滑油を、内輪2の斜面部2bとこの斜面部2bに被さる鍔状部10との隙間δで案内して供給するものであるため、大きな攪拌抵抗が生じず、動力損失を増大させないで高速運転が可能である。また内輪斜面部2bと鍔状部10との隙間δで潤滑油の案内を行うため、内輪2の幅面と微小隙間を形成するものと異なり、軸受サイズが小さい場合や、内輪2の厚さが薄い場合等でも適用可能である。
この実施形態では、潤滑油導入部材7の吐出口8から吐出された潤滑油を内輪2の幅面の内周溝6で受けて、その内壁面から斜面部2bへと潤滑油を移動させるようにしているが、内輪2の幅面に内周溝6を設けない場合でも、吐出口8から内輪2の幅面に吹き付けられた潤滑油を遠心力と表面張力とにより内輪幅面から斜面部2bへと移動させることができる。
This rolling bearing lubrication device guides and supplies the lubricating oil discharged from the lubricating oil introducing member 7 through a gap δ between the inclined surface portion 2b of the inner ring 2 and the flange portion 10 covering the inclined surface portion 2b. Therefore, a large stirring resistance does not occur, and high speed operation is possible without increasing power loss. In addition, since the lubricating oil is guided by the gap δ between the inner ring inclined surface portion 2b and the bowl-shaped portion 10, unlike the case of forming a minute gap with the width surface of the inner ring 2, when the bearing size is small or the thickness of the inner ring 2 is It can be applied even when it is thin.
In this embodiment, the lubricating oil discharged from the discharge port 8 of the lubricating oil introduction member 7 is received by the inner peripheral groove 6 on the width surface of the inner ring 2, and the lubricating oil is moved from the inner wall surface to the slope portion 2b. However, even when the inner circumferential groove 6 is not provided in the width surface of the inner ring 2, the lubricating oil sprayed from the discharge port 8 to the width surface of the inner ring 2 is moved from the inner ring width surface to the slope portion 2b by centrifugal force and surface tension. Can be made.

前記隙間δへ流入する流入分を除く残りの潤滑油は、潤滑油排出経路11を構成する潤滑油導入部材7の排油路12、溝状排油路13、および外輪間座15の排油溝14を経て外部に排出することで、転がり軸受1を効果的に冷却するので、複雑な給油機構を持たずに転がり軸受1の冷却を行うことができる。   The remaining lubricating oil excluding the inflow flowing into the gap δ is drained from the drain oil passage 12, the groove-like drain passage 13 and the outer ring spacer 15 of the lubricant introduction member 7 constituting the lubricant drain passage 11. Since the rolling bearing 1 is effectively cooled by discharging to the outside through the groove 14, the rolling bearing 1 can be cooled without having a complicated oil supply mechanism.

潤滑油導入部材7は外輪3の幅面に接して設けられるリング状の外輪間座であるため、潤滑油導入部材7として特別な部材を設ける必要がなく、構成を簡略化できる。   Since the lubricating oil introducing member 7 is a ring-shaped outer ring spacer provided in contact with the width surface of the outer ring 3, it is not necessary to provide a special member as the lubricating oil introducing member 7, and the configuration can be simplified.

潤滑油導入部材7は、吐出口8から円周方向に離れた位置に、内径面から外径面に貫通する排油路12を有するものとしているので、軸受潤滑に使用されない潤滑油が排油路12に流入するまでの経路が長くなり、それだけ冷却効率を上げることができる。   Since the lubricant introduction member 7 has a drain oil passage 12 that penetrates from the inner diameter surface to the outer diameter surface at a position away from the discharge port 8 in the circumferential direction, lubricant oil that is not used for bearing lubrication is drained. The path to flow into the path 12 becomes longer, and the cooling efficiency can be increased accordingly.

また、潤滑油導入部材7は、前記排油路12とは別に、外輪3の幅面に接する面に径方向に延びる溝状排油路13を有するので、軸受潤滑に使用されない潤滑油の流出経路が増え、さらに冷却効率を上げることができる。   Further, the lubricant introduction member 7 has a groove-like oil passage 13 extending in the radial direction on the surface in contact with the width surface of the outer ring 3, separately from the oil passage 12, and therefore, a lubricant oil outflow route that is not used for bearing lubrication. This increases the cooling efficiency.

図3は、この発明の他の実施形態を示す。この実施形態の転がり軸受の潤滑装置は、図1および図2に示す第1の実施形態において、内輪2における斜面部2b側の幅面を外輪3の対応する幅面よりも軸受内側に後退させて、内輪2の幅寸法を短くしたものである。これに対応させて、潤滑油導入部材7の側面における吐出口8および鍔状部10の形成部分は軸受内側に張り出させてある。その他の構成は第1の実施形態の場合と同じである。   FIG. 3 shows another embodiment of the present invention. In the first embodiment shown in FIG. 1 and FIG. 2, the rolling bearing lubrication device of this embodiment is configured to retract the width surface on the slope portion 2 b side of the inner ring 2 to the inside of the bearing relative to the corresponding width surface of the outer ring 3. The width of the inner ring 2 is shortened. Correspondingly, the portion where the discharge port 8 and the flange-shaped portion 10 are formed on the side surface of the lubricating oil introducing member 7 is projected to the inside of the bearing. Other configurations are the same as those in the first embodiment.

この実施形態の場合、内輪2の斜面部2bの形成側の幅寸法を短くした分だけ、斜面部2bを設けた側の内輪端面の径方向幅が狭くなるのを軽減できるので、この端面が接する内輪間座16等との接触面積が小さくならず、大きな軸方向荷重を受けることができる。   In the case of this embodiment, it is possible to reduce the reduction in the radial width of the inner ring end surface on the side where the inclined surface portion 2b is provided by reducing the width dimension on the side where the inclined surface portion 2b of the inner ring 2 is formed. The contact area with the inner ring spacer 16 and the like in contact with each other is not reduced, and a large axial load can be received.

図4は、図1および図2に示した第1の実施形態の転がり軸受の軸受装置を備えたスピンドル装置の一例を示す。このスピンドル装置24は工作機械に応用されるものであり、主軸25の端部に工具またはワークのチャックが取付けられる。主軸25は、軸方向に離れた複数(ここでは2つ)の転がり軸受1により支持されている。各転がり軸受1の内輪2は主軸25の外径面に嵌合し、外輪3はハウジング26の内径面に嵌合している。これら内外輪2,3は、内輪押さえ27および外輪押さえ28により、ハウジング26内に固定されている。ハウジング26は、内周ハウジング26Aと外周ハウジング26Bの二重構造とされている。両転がり軸受1の外輪3間には外輪間座30および潤滑油導入部材7が、また内輪2間には内輪間座31がそれぞれ設けられている。主軸25の一端部には、内輪押さえ27に押し当てて転がり軸受1を固定する軸受固定ナット32が螺着されている。内周ハウジング26Aには各潤滑油導入部材7の給油路9に連通する2つの潤滑油供給路33と、1つの排油回収路34とが設けられている。各潤滑油供給路33は軸方向に延びて内周ハウジング26Aの両端面に開口している。排油回収路34は軸方向に延びて内輪押さえ27および外輪押さえ28を貫通している。この排油回収路34に、各潤滑油導入部材7の排油路12および溝状排油路13が連通させてある。また、第1の実施形態では、外輪間座15に排油溝14を形成したが、この例では各外輪押さえ28に排油溝14が形成され、これらの排油溝14が前記排油回収路34に連通させてある。   FIG. 4 shows an example of a spindle device provided with the bearing device of the rolling bearing of the first embodiment shown in FIGS. 1 and 2. The spindle device 24 is applied to a machine tool, and a tool or workpiece chuck is attached to an end of a main shaft 25. The main shaft 25 is supported by a plurality of (here, two) rolling bearings 1 separated in the axial direction. The inner ring 2 of each rolling bearing 1 is fitted to the outer diameter surface of the main shaft 25, and the outer ring 3 is fitted to the inner diameter surface of the housing 26. These inner and outer rings 2 and 3 are fixed in the housing 26 by an inner ring retainer 27 and an outer ring retainer 28. The housing 26 has a double structure of an inner peripheral housing 26A and an outer peripheral housing 26B. An outer ring spacer 30 and a lubricant introduction member 7 are provided between the outer rings 3 of the both rolling bearings 1, and an inner ring spacer 31 is provided between the inner rings 2. At one end portion of the main shaft 25, a bearing fixing nut 32 that is pressed against the inner ring retainer 27 and fixes the rolling bearing 1 is screwed. The inner peripheral housing 26A is provided with two lubricating oil supply passages 33 communicating with the oil supply passages 9 of the respective lubricating oil introduction members 7 and one drain oil recovery passage 34. Each lubricating oil supply path 33 extends in the axial direction and opens at both end faces of the inner peripheral housing 26A. The oil recovery path 34 extends in the axial direction and penetrates the inner ring retainer 27 and the outer ring retainer 28. The oil discharge passages 12 and the grooved oil discharge passages 13 of the respective lubricating oil introduction members 7 are communicated with the oil discharge recovery passage 34. Further, in the first embodiment, the oil drain grooves 14 are formed in the outer ring spacer 15, but in this example, the oil drain grooves 14 are formed in each outer ring retainer 28, and these oil drain grooves 14 are used for the oil recovery. It is connected to the road 34.

転がり軸受1の潤滑装置は、冷却油供給装置35の吐出冷却油の一部を、フィルタ36、潤滑油供給路33および上記潤滑油導入部材7の給油路9を介して受け、先述したように、その冷却油の一部を潤滑油として、残りを冷却油として転がり軸受1内に供給する。冷却油となって、前記排油路12、溝状排油路13および排油溝14から排油回収路34に流出した排油は、排油ポンプ37により油回収タンク38に回収されて、再び冷却油供給装置35に戻される。前記ハウジング26には、別にハウジング冷却用の給油路(図示せず)が設けられ、この給油路に前記冷却油供給装置35から冷却油が供給される。また、ハウジング26を冷却した冷却油は油回収タンク38に回収されて、再び冷却油供給装置35に戻される。   The lubricating device of the rolling bearing 1 receives a part of the discharged cooling oil of the cooling oil supply device 35 via the filter 36, the lubricating oil supply passage 33 and the oil supply passage 9 of the lubricating oil introducing member 7, as described above. A part of the cooling oil is supplied to the rolling bearing 1 as lubricating oil and the rest as cooling oil. Waste oil that has become cooling oil and has flowed out of the drain oil passage 12, the groove-like oil passage 13, and the oil drain groove 14 into the oil recovery passage 34 is recovered by an oil recovery pump 38 in an oil recovery tank 38, It is returned to the cooling oil supply device 35 again. The housing 26 is separately provided with an oil supply passage (not shown) for cooling the housing, and cooling oil is supplied from the cooling oil supply device 35 to the oil supply passage. The cooling oil that has cooled the housing 26 is recovered in the oil recovery tank 38 and returned to the cooling oil supply device 35 again.

(A)はこの発明の第1の実施形態にかかる転がり軸受の潤滑装置を示す断面図、(B)は(A)におけるA部の拡大図である。(A) is sectional drawing which shows the lubricating device of the rolling bearing concerning 1st Embodiment of this invention, (B) is an enlarged view of the A section in (A). 同潤滑装置における潤滑油導入部材の軸受配置側から見た正面図である。It is the front view seen from the bearing arrangement | positioning side of the lubricating oil introduction member in the lubricating device. この発明の他の実施形態にかかる転がり軸受の潤滑装置の断面図である。It is sectional drawing of the lubricating device of the rolling bearing concerning other embodiment of this invention. この発明の第1の実施形態にかかる転がり軸受の潤滑装置を備えたスピンドル装置およびこれに接続される油供給装置を示す構成図である。It is a block diagram which shows the spindle apparatus provided with the lubricating device of the rolling bearing concerning 1st Embodiment of this invention, and the oil supply apparatus connected to this. 従来例の断面図である。It is sectional drawing of a prior art example. 図5におけるV部の拡大図である。It is an enlarged view of the V section in FIG. 従来例の変形例を示す断面図である。It is sectional drawing which shows the modification of a prior art example. 転がり軸受の潤滑装置の提案例を示す断面図である。It is sectional drawing which shows the example of a proposal of the lubrication apparatus of a rolling bearing.

符号の説明Explanation of symbols

1…転がり軸受
2…内輪
2a…軌道面
2b…斜面部
3…外輪
5…保持器
5a…内径面
6…円周溝
7…潤滑油導入部材
8…吐出口
10…鍔状部
11…潤滑油排出経路
12…排油路
13…溝状排油路
δ…隙間
DESCRIPTION OF SYMBOLS 1 ... Rolling bearing 2 ... Inner ring 2a ... Raceway surface 2b ... Slope part 3 ... Outer ring 5 ... Retainer 5a ... Inner diameter surface 6 ... Circumferential groove 7 ... Lubricating oil introduction member 8 ... Discharge port 10 ... Gutter-shaped part 11 ... Lubricating oil Discharge path 12 ... drainage path 13 ... groove-like drainage path δ ... clearance

Claims (6)

転がり軸受内に潤滑油導入部材から潤滑油を吐出して潤滑する転がり軸受の潤滑装置において、前記潤滑油導入部材は、内輪の幅面に対向して開口する吐出口を有し、前記内輪の外径面に、前記内輪の軌道面側が大径となり、前記吐出口から吐出された潤滑油をこの潤滑油に作用する遠心力と表面張力とで内輪の軌道面に導く斜面部を設け、この斜面部に隙間を介して被さってこの隙間から前記軌道面へ流れる潤滑油を案内する鍔状部を前記潤滑油導入部材に設け、この鍔状部は転動体を保持する保持器の内径側まで延びるものとし、前記保持器の前記鍔状部側の内径面を、幅方向の中央側が大径となるテーパ状面としたことを特徴とする転がり軸受の潤滑装置。   In a rolling bearing lubrication device that discharges and lubricates lubricating oil from a lubricating oil introducing member into a rolling bearing, the lubricating oil introducing member has a discharge port that opens to face a width surface of the inner ring, and is provided outside the inner ring. On the diameter surface, a raceway surface side of the inner ring has a large diameter, and a slope portion is provided that guides the lubricating oil discharged from the discharge port to the raceway surface of the inner ring by centrifugal force and surface tension acting on the lubricating oil. A lug-like part that covers the part via a gap and guides the lubricating oil flowing from the gap to the raceway surface is provided in the lubricating oil introduction member, and the saddle-like part extends to the inner diameter side of the cage that holds the rolling elements. A rolling bearing lubrication device, wherein an inner diameter surface of the cage on the side of the flange-shaped portion is a tapered surface having a large diameter in the center in the width direction. 請求項1において、前記内輪は前記幅面に円周溝を有し、前記吐出口は前記内輪の幅面のうちの円周溝の設けられた箇所に対向して開口するものとした転がり軸受の潤滑装置。   2. The lubrication of a rolling bearing according to claim 1, wherein the inner ring has a circumferential groove on the width surface, and the discharge port is opened facing a portion of the width surface of the inner ring where the circumferential groove is provided. apparatus. 請求項1または請求項2において、前記鍔状部と前記内輪の斜面部との間の隙間を、この隙間で潤滑油の流量を規制する微小隙間とした転がり軸受の潤滑装置。   The rolling bearing lubrication device according to claim 1 or 2, wherein a gap between the flange portion and the slope portion of the inner ring is a minute gap that regulates a flow rate of the lubricating oil. 請求項1ないし請求項3のいずれか1項において、前記潤滑油導入部材が、前記外輪の幅面に接して設けられるリング状の外輪間座である転がり軸受の潤滑装置。   4. The lubricating device for a rolling bearing according to claim 1, wherein the lubricating oil introducing member is a ring-shaped outer ring spacer provided in contact with a width surface of the outer ring. 5. 請求項4において、前記潤滑油導入部材が、前記吐出口から円周方向に離れた位置に、内径面から外径面に貫通する排油路を有する転がり軸受の潤滑装置。   The rolling bearing lubrication device according to claim 4, wherein the lubricating oil introduction member has an oil drain passage penetrating from the inner diameter surface to the outer diameter surface at a position away from the discharge port in the circumferential direction. 請求項4または請求項5において、前記潤滑油導入部材が、外輪の幅面に接する面に径方向に延びる溝状排油路を有する転がり軸受の潤滑装置。
6. The rolling bearing lubrication device according to claim 4 or 5, wherein the lubricating oil introduction member has a groove-like oil drain passage extending in a radial direction on a surface in contact with a width surface of the outer ring.
JP2004303778A 2004-10-19 2004-10-19 Lubrication device of rolling bearing Pending JP2006118525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303778A JP2006118525A (en) 2004-10-19 2004-10-19 Lubrication device of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303778A JP2006118525A (en) 2004-10-19 2004-10-19 Lubrication device of rolling bearing

Publications (1)

Publication Number Publication Date
JP2006118525A true JP2006118525A (en) 2006-05-11

Family

ID=36536608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303778A Pending JP2006118525A (en) 2004-10-19 2004-10-19 Lubrication device of rolling bearing

Country Status (1)

Country Link
JP (1) JP2006118525A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151180A (en) * 2006-12-14 2008-07-03 Ntn Corp Lubrication device for rolling bearing
JP2008164118A (en) * 2006-12-28 2008-07-17 Aisin Aw Co Ltd Lubricating oil supply structure and automatic transmission equipped with the same
DE112007001043T5 (en) 2006-05-01 2009-04-02 Ntn Corporation Multi-row rolling bearing arrangement
JP2010090916A (en) * 2008-10-03 2010-04-22 Jtekt Corp Rolling bearing
CN105889329A (en) * 2016-06-16 2016-08-24 中国船舶重工集团公司第七�三研究所 Inner shaft and outer shaft coaxial rotation inner rolling bearing oil injection structure
CN106247148A (en) * 2016-09-26 2016-12-21 李洪 A kind of axle and bearing are fixedly linked the bearing oil charging point of structure and using method thereof
EP3783240A4 (en) * 2018-08-31 2021-07-21 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Bearing assembly and compressor comprising same
CN114909402A (en) * 2021-02-07 2022-08-16 中国航发商用航空发动机有限责任公司 Bearing and aircraft engine

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112007001043T5 (en) 2006-05-01 2009-04-02 Ntn Corporation Multi-row rolling bearing arrangement
JP2008151180A (en) * 2006-12-14 2008-07-03 Ntn Corp Lubrication device for rolling bearing
JP2008164118A (en) * 2006-12-28 2008-07-17 Aisin Aw Co Ltd Lubricating oil supply structure and automatic transmission equipped with the same
JP2010090916A (en) * 2008-10-03 2010-04-22 Jtekt Corp Rolling bearing
CN105889329A (en) * 2016-06-16 2016-08-24 中国船舶重工集团公司第七�三研究所 Inner shaft and outer shaft coaxial rotation inner rolling bearing oil injection structure
CN106247148A (en) * 2016-09-26 2016-12-21 李洪 A kind of axle and bearing are fixedly linked the bearing oil charging point of structure and using method thereof
EP3783240A4 (en) * 2018-08-31 2021-07-21 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Bearing assembly and compressor comprising same
US11802589B2 (en) 2018-08-31 2023-10-31 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Bearing assembly and compressor with bearing assembly
CN114909402A (en) * 2021-02-07 2022-08-16 中国航发商用航空发动机有限责任公司 Bearing and aircraft engine
CN114909402B (en) * 2021-02-07 2023-08-08 中国航发商用航空发动机有限责任公司 Bearing and aeroengine

Similar Documents

Publication Publication Date Title
JP2006118526A (en) Lubrication device of rolling bearing
WO2012053366A1 (en) Roller bearing
WO2007010926A1 (en) Lubricating device of rolling bearing
US20080063331A1 (en) Lubricating Structure Of Rolling Bearing
JP2008286270A (en) Lubricating device for roller bearing
JP2006125485A (en) Rolling bearing lubricating device
JP5675263B2 (en) Rolling bearing
JP2008240938A (en) Lubrication device for rolling bearing
JP2006118525A (en) Lubrication device of rolling bearing
JP2008151180A (en) Lubrication device for rolling bearing
JP2003278773A (en) Air/oil lubricating structure of rolling bearing and spindle device
JP5183059B2 (en) Multi-row rolling bearing device
JP4836852B2 (en) Angular contact ball bearing lubrication system
JP2006226486A (en) Lubricating device of rolling bearing
JP4339265B2 (en) Rolling bearing lubrication system
JP2008240946A (en) Lubricating device for rolling bearing
JP2009092147A (en) Lubricating device of rolling bearing
JPH11336767A (en) Cylindrical roller bearing
JP2008082496A (en) Lubricating device of roll bearing
JP2006118527A (en) Lubrication device of rolling bearing
JP2005090692A (en) Retainer for rolling bearing and rolling bearing having the retainer
JP2008082502A (en) Lubricating device of rolling bearing
KR20190030716A (en) Bearing devices and spindle devices for machine tools
JP4527622B2 (en) Rolling bearing lubrication system
WO2007129441A1 (en) Multi-row rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209