JP2008151180A - Lubrication device for rolling bearing - Google Patents

Lubrication device for rolling bearing Download PDF

Info

Publication number
JP2008151180A
JP2008151180A JP2006337201A JP2006337201A JP2008151180A JP 2008151180 A JP2008151180 A JP 2008151180A JP 2006337201 A JP2006337201 A JP 2006337201A JP 2006337201 A JP2006337201 A JP 2006337201A JP 2008151180 A JP2008151180 A JP 2008151180A
Authority
JP
Japan
Prior art keywords
inner ring
lubricating oil
rolling bearing
circumferential groove
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006337201A
Other languages
Japanese (ja)
Inventor
Takashi Kawai
高志 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006337201A priority Critical patent/JP2008151180A/en
Publication of JP2008151180A publication Critical patent/JP2008151180A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/664Retaining the liquid in or near the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Support Of The Bearing (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubrication device for a rolling bearing inhibiting power loss by increasing cooling efficiency of an inner ring and making inner and outer ring temperature difference as small as possible, and making mixing resistance of lubricating oil low. <P>SOLUTION: A lubricating oil introduction member 7 includes a nozzle 10 opening toward an end surface side of an inner ring 3 of the rolling bearing 2 and delivering lubricating oil to the inner ring 3, and a flange part 12 positioned on an outer diameter side from the nozzle 10 and covering an outer circumference of the inner ring 3. The inner ring 3 includes a circumference groove 9 opposing to a section where the nozzle 10 is provided and opening along an axial direction from an end surface of the inner ring 3. An axial position of a groove bottom 9b of the circumference groove 9 is set near a raceway surface 3a of the inner ring 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば、工作機械主軸用のアンギュラ玉軸受等に適用され、超高速で回転する転がり軸受の潤滑装置に関し、特に定位置予圧方式、背面組み合わせの仕様に適用される技術に関する。   The present invention relates to a lubrication device for a rolling bearing that is applied to, for example, an angular ball bearing for a machine tool main shaft and rotates at an ultra-high speed, and more particularly to a technique that is applied to the specifications of a fixed position preloading system and a rear combination.

工作機械主軸では、加工能率を上げるため、ますます高速化の傾向にある。主軸の高速化に伴い、主軸装置ではトルクと発熱量が増加する。これに対処する潤滑装置が種々提案され、実用に供されている(特許文献1,2参照)。
特許文献1の技術を用いた軸受装置を図6に示す。この軸受の内輪80には、ジェット潤滑により内輪80を冷却する円周溝80a(いわゆるスクープ溝)が形成されている。特許文献2のものでは、内輪端面を運転上悪影響を与えない程度に短くし(軸方向に短くし)、その内輪端面に向けてノズル間座から潤滑油を噴射する。
Machine tool spindles tend to increase in speed in order to increase machining efficiency. As the spindle speed increases, torque and heat generation in the spindle device increase. Various lubrication devices for coping with this have been proposed and put into practical use (see Patent Documents 1 and 2).
FIG. 6 shows a bearing device using the technique of Patent Document 1. The inner ring 80 of this bearing is formed with a circumferential groove 80a (so-called scoop groove) for cooling the inner ring 80 by jet lubrication. In the thing of patent document 2, an inner ring end surface is shortened to such an extent that it does not have a bad influence on driving | operation (it shortens in an axial direction), and lubricating oil is injected from the nozzle spacer toward the inner ring end surface.

特開2006−118525号公報JP 2006-118525 A 特許第2740304号公報Japanese Patent No. 2740304

特許文献1では、内輪のスクープ溝の底面と、発熱体である内輪と転動体の接触位置とが離れているので、離れた位置から潤滑油による冷却を行うことになって、内輪の冷却効率が落ちてしまう。工作機械用の軸受を運転すると、外輪より内輪の温度上昇が大きくなり、内外輪温度差が大きくなる。前述のように、内輪の冷却効率が落ちると、内外輪温度差が大きくなることを解消し難くなる。定位置予圧方式では、この内外輪温度差によって過大予圧が発生するおそれがある。
特許文献2では、内輪を効果的に冷却することができるが、この特許文献2に係る技術をジェット潤滑で用いると、軸受内に多量の油が浸入し、動力損失や潤滑油の攪拌抵抗が増大する。
In Patent Document 1, since the bottom surface of the scoop groove of the inner ring and the contact position between the inner ring, which is a heating element, and the rolling element are separated from each other, cooling with the lubricating oil is performed from the separated position, thereby cooling the inner ring. Will fall. When a bearing for a machine tool is operated, the temperature rise of the inner ring becomes larger than that of the outer ring, and the temperature difference between the inner and outer rings becomes larger. As described above, when the cooling efficiency of the inner ring decreases, it becomes difficult to eliminate the increase in the temperature difference between the inner and outer rings. In the fixed position preload method, there is a possibility that an excessive preload may occur due to the temperature difference between the inner and outer rings.
In Patent Document 2, the inner ring can be effectively cooled. However, when the technique according to Patent Document 2 is used for jet lubrication, a large amount of oil enters the bearing, resulting in power loss and lubrication oil stirring resistance. Increase.

本発明の目的は、内輪の冷却効率を高めて内外輪温度差を極力小さくし、動力損失を抑制すると共に、潤滑油の攪拌抵抗を小さくすることができる転がり軸受の潤滑装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a rolling bearing lubrication device that can increase the cooling efficiency of the inner ring to reduce the temperature difference between the inner and outer rings as much as possible, suppress power loss, and reduce the stirring resistance of the lubricating oil. is there.

この発明の転がり軸受の潤滑装置は、転がり軸受内に潤滑油導入部材から潤滑油を吐出して潤滑する転がり軸受の潤滑装置において、前記潤滑油導入部材は、転がり軸受の内輪の端面側に対向して開口し、この内輪へ潤滑油を吐出する吐出口、およびこの吐出口よりも外径側に位置して前記内輪の外周に被さる鍔状部を有し、前記内輪は、潤滑油導入部材の吐出口が設けられた箇所に対向して、この内輪の端面から軸方向に沿って開口する円周溝を有し、この円周溝の溝底の軸方向位置が、前記内輪の軌道面付近に位置することを特徴とする。   The lubrication device for a rolling bearing according to the present invention is a lubrication device for a rolling bearing in which the lubricating oil is discharged from the lubricating oil introduction member into the rolling bearing and lubricated. And a discharge port for discharging the lubricating oil to the inner ring, and a hook-like portion that is positioned on the outer diameter side of the discharge port and covers the outer periphery of the inner ring, and the inner ring is a lubricating oil introduction member Opposite to the location where the discharge port is provided, has a circumferential groove that opens in the axial direction from the end face of the inner ring, and the axial position of the groove bottom of the circumferential groove is the raceway surface of the inner ring. It is located in the vicinity.

この構成によると、潤滑油導入部材の吐出口から内輪の端面に対して吐出された潤滑油は、円周溝に集油される。その集油された潤滑油の一部が、内輪の回転により作用する遠心力と表面張力とで、内輪の外周とこの外周に被さった鍔状部との間を案内され、軌道面に供給される。このように、潤滑油導入部材から吐出された潤滑油を、内輪の外周と鍔状部との間から軌道面に供給するものであるため、軸受内に多量の潤滑油が浸入することがなく、潤滑油の撹拌抵抗を小さくできるため、大きな動力損失が生じない。よって、動力損失を増大させないで高速運転が可能である。   According to this configuration, the lubricating oil discharged from the discharge port of the lubricating oil introduction member to the end surface of the inner ring is collected in the circumferential groove. Part of the collected lubricating oil is guided between the outer periphery of the inner ring and the hook-shaped portion covering the outer periphery by centrifugal force and surface tension acting by the rotation of the inner ring, and is supplied to the raceway surface. The As described above, since the lubricant discharged from the lubricant introduction member is supplied to the raceway surface from between the outer periphery of the inner ring and the bowl-shaped portion, a large amount of lubricant does not enter the bearing. Since the stirring resistance of the lubricating oil can be reduced, no large power loss occurs. Therefore, high speed operation is possible without increasing power loss.

また、上記吐出口から吐出された潤滑油が上記のように円周溝内に集油されて排出されるので、円周溝内に集油された潤滑油によって内輪が冷却される。この場合、円周溝の溝底の軸方向位置を、前記内輪の軌道面付近に位置させたので、この円周溝の溝底を、発熱部位である内輪と転動体との接触位置に近づけることができる。したがって、発熱部位の近くで潤滑油による冷却が行えて、熱伝導の効率低下が少なく、軸受の運転により発熱する内輪の冷却効率を高めることができる。これによって、軸受運転時、外輪に対する内輪の温度上昇を極力抑え、内外輪温度差を極力小さくすることが可能となる。この軸受を定位置予圧方式で用いる場合、内外輪温度差に起因する過大予圧の発生を未然に防止することができる。   Further, since the lubricating oil discharged from the discharge port is collected and discharged in the circumferential groove as described above, the inner ring is cooled by the lubricating oil collected in the circumferential groove. In this case, since the axial position of the groove bottom of the circumferential groove is positioned in the vicinity of the raceway surface of the inner ring, the groove bottom of the circumferential groove is brought close to the contact position between the inner ring that is the heat generating portion and the rolling element. be able to. Therefore, the cooling with the lubricating oil can be performed near the heat generating portion, the efficiency of heat conduction is hardly reduced, and the cooling efficiency of the inner ring that generates heat by the operation of the bearing can be increased. As a result, during bearing operation, the temperature increase of the inner ring relative to the outer ring can be suppressed as much as possible, and the temperature difference between the inner and outer rings can be minimized. When this bearing is used in a fixed position preload system, it is possible to prevent an excessive preload due to the temperature difference between the inner and outer rings.

この発明において、前記転がり軸受はアンギュラ玉軸受であり、前記内輪の外径部に、この内輪の端面側から軌道面側に向かう程大径となる斜面部であって、前記鍔状部に隙間を介して配設される斜面部を設け、前記円周溝の溝底の軸方向位置は、この内輪の軌道面付近のうち、斜面部と軌道面との交点の位置である第1の軸方向位置から、この軌道面のうち転動体との接触角をなす位置である第2の軸方向位置までの範囲に位置することが好ましい。この構成によると、斜面部、軌道面、および軌道面のうち転動体との接触角をなす位置に基づいて、円周溝の溝底の軸方向位置を規定している。これにより、主な発熱部位である軌道面と転動体との接触部の近傍で潤滑油による冷却が行えて、軸受の運転により発熱する内輪の冷却効率を格段にかつ確実に高めることができる。   In the present invention, the rolling bearing is an angular ball bearing, and is an inclined surface portion having a diameter that increases from the end surface side of the inner ring toward the raceway surface side at the outer diameter portion of the inner ring, and a gap is formed in the flange portion. And the axial position of the groove bottom of the circumferential groove is a first axis that is the position of the intersection of the slope and the raceway surface in the vicinity of the raceway surface of the inner ring. It is preferable to be located in a range from the direction position to a second axial position that is a position forming a contact angle with the rolling element in the raceway surface. According to this configuration, the axial position of the groove bottom of the circumferential groove is defined based on the slope portion, the raceway surface, and the position that forms the contact angle with the rolling element among the raceway surfaces. As a result, cooling with the lubricating oil can be performed in the vicinity of the contact portion between the raceway surface and the rolling element, which is the main heat generating part, and the cooling efficiency of the inner ring that generates heat by the operation of the bearing can be significantly and reliably increased.

この発明において、前記転がり軸受は定位置予圧で使用されることが好ましい。この構成によると、軸受の運転中、内外輪温度差に起因する過大予圧の発生を未然に防止し、適正な予圧を維持することができる。   In this invention, it is preferable that the rolling bearing is used at a fixed position preload. According to this configuration, during the operation of the bearing, it is possible to prevent an excessive preload caused by the inner and outer ring temperature differences from occurring and maintain an appropriate preload.

この発明の転がり軸受の潤滑装置によると、潤滑油を、内輪の外周と鍔状部との間から軌道面に供給するものであるため、軸受内に多量の潤滑油が浸入することがなく、潤滑油の撹拌抵抗を小さくできるため、大きな動力損失が生じない。また、円周溝の溝底の軸方向位置を、前記内輪の軌道面付近に位置させたので、内輪の冷却効率を高めることができる。この軸受を定位置予圧方式で用いる場合、内外輪温度差に起因する過大予圧の発生を未然に防止することができる。   According to the rolling bearing lubrication device of the present invention, since the lubricating oil is supplied to the raceway surface from between the outer periphery of the inner ring and the bowl-shaped portion, a large amount of lubricating oil does not enter the bearing, Since the stirring resistance of the lubricating oil can be reduced, a large power loss does not occur. Further, since the axial position of the groove bottom of the circumferential groove is positioned in the vicinity of the raceway surface of the inner ring, the cooling efficiency of the inner ring can be enhanced. When this bearing is used in a fixed position preload system, it is possible to prevent an excessive preload due to the temperature difference between the inner and outer rings.

この発明の第1の実施形態を図1〜図3と共に説明する。この第1の実施形態は、工作機械主軸用の多列転がり軸受装置に適用される。この多列転がり軸受装置1は、例えば、複数(ここでは2つ)のアンギュラ玉軸受を背面組み合わせで並べたものである。各転がり軸受2は、内輪3と外輪4の軌道面3a,4a間にボールからなる複数の転動体5を介在させたものであり、各転動体5は保持器6で保持される。
隣合う転がり軸受2,2の外輪4,4間には、一対の潤滑油導入部材7が介在する。各潤滑油導入部材7は、冷却油を吐出して、その一部を対応する転がり軸受2内に供給するものである。内輪3,3間には、内輪間座8が介在する。
A first embodiment of the present invention will be described with reference to FIGS. The first embodiment is applied to a multi-row rolling bearing device for a machine tool spindle. In this multi-row rolling bearing device 1, for example, a plurality (two in this case) of angular ball bearings are arranged in a rear combination. Each rolling bearing 2 has a plurality of rolling elements 5 made of balls interposed between raceway surfaces 3 a and 4 a of the inner ring 3 and the outer ring 4, and each rolling element 5 is held by a cage 6.
A pair of lubricating oil introduction members 7 are interposed between the outer rings 4 and 4 of the adjacent rolling bearings 2 and 2. Each lubricating oil introduction member 7 discharges cooling oil and supplies a part thereof into the corresponding rolling bearing 2. An inner ring spacer 8 is interposed between the inner rings 3 and 3.

保持器6は外輪案内タイプであり、その素材はフェノール樹脂,PEEK,PPS,ポリアミド樹脂,C/Cコンポジット,アルミ合金,Ti合金(高速時の強度向上)などが望ましい。内輪3の素材は、高速時の大きな嵌め合いフープ応力を考慮して、例えば浸炭鋼とされている。ただし、浸炭鋼に限定されるものではない。転動体5は、遠心力低減の観点からセラミック製が望ましい。   The cage 6 is an outer ring guide type, and the material thereof is preferably phenol resin, PEEK, PPS, polyamide resin, C / C composite, aluminum alloy, Ti alloy (strength improvement at high speed). The material of the inner ring 3 is, for example, carburized steel in consideration of a large fitting hoop stress at high speed. However, it is not limited to carburized steel. The rolling element 5 is preferably made of ceramic from the viewpoint of reducing centrifugal force.

各転がり軸受2における内輪3の反負荷側つまり軸受背面側の幅面(端面)には、軸方向に凹陥する円周溝9が形成されている。内輪3の円周溝9が形成される側の軌道面に続く外径面は、軌道面側が大径となる斜面部3bとされている。すなわち、内輪3のステップ面を設ける部分の外径面が上記斜面部3bとされる。
潤滑油導入部材7は、対応する外輪4の幅面(端面)に接することで、転がり軸受2に軸方向に隣接して設けられるリング状の外輪間座である。この潤滑油導入部材7は、内輪3の端面の前記円周溝9の設けられた箇所に対向して開口するノズル(吐出口に相当する)10、およびこのノズル10に連通する給油路11を有し、かつ鍔状部12が設けられている。給油路11に供給されノズル10から吐出される冷却油は、内輪3の円周溝9に吹き付けられ、その一部が遠心力と表面張力とで、円周溝9の外径面9aから斜面部3bに沿って内輪3の軌道面3aに潤滑油として流れる。鍔状部12は、潤滑油導入部材7の側面から対応する軸受2に向けて軸方向に延び、内輪3の斜面部3bに隙間(微小隙間)δを介して被さって、この隙間δから前記軌道面3aへ流れる潤滑油を案内する。鍔状部12は、保持器6の内径側まで延びるものとされている。
A circumferential groove 9 that is recessed in the axial direction is formed on the width surface (end surface) of the inner ring 3 on the side opposite to the load of each rolling bearing 2, that is, the bearing back side. The outer diameter surface following the raceway surface on the side where the circumferential groove 9 of the inner ring 3 is formed is a slope portion 3b having a larger diameter on the raceway surface side. That is, the outer diameter surface of the portion where the step surface of the inner ring 3 is provided is the slope portion 3b.
The lubricant introduction member 7 is a ring-shaped outer ring spacer provided adjacent to the rolling bearing 2 in the axial direction by contacting the corresponding width surface (end surface) of the outer ring 4. The lubricating oil introduction member 7 includes a nozzle (corresponding to a discharge port) 10 that opens to face the end surface of the inner ring 3 where the circumferential groove 9 is provided, and an oil supply path 11 that communicates with the nozzle 10. And a hook-like portion 12 is provided. The cooling oil supplied to the oil supply passage 11 and discharged from the nozzle 10 is blown to the circumferential groove 9 of the inner ring 3, and a part of the cooling oil is inclined from the outer diameter surface 9 a of the circumferential groove 9 by centrifugal force and surface tension. It flows as lubricating oil to the raceway surface 3a of the inner ring 3 along the portion 3b. The hook-shaped portion 12 extends in the axial direction from the side surface of the lubricating oil introduction member 7 toward the corresponding bearing 2 and covers the inclined surface portion 3b of the inner ring 3 via a gap (micro gap) δ. The lubricating oil flowing to the raceway surface 3a is guided. The hook-shaped portion 12 extends to the inner diameter side of the cage 6.

内輪3のうち、円周溝9の外径面9aと斜面部3bとが交差する環状の角部3baは、断面円弧状の曲面部とされている。前記角部3baを断面円弧状の曲面部とすることで、この角部3baから潤滑油が遠心力で内輪3から離れる(軌道面3aの潤滑に寄与しない)ことを防止するようになっている。
内輪3の円周溝9は有底の環状溝をなし、この溝底9bは軸線に垂直な底面を備えている。ただし、溝底9bは軸線に垂直な底面に限定されるものではない。特に、溝底9bの軸方向位置は、内輪3の軌道面3a付近に位置する。詳細には、円周溝9の溝底9bの軸方向位置は、この内輪3の軌道面3a付近のうち、斜面部3bと軌道面3aとの交点の位置である軸方向位置P1から、軌道面3aのうち最小径をなす位置である軸方向位置P2までの範囲(図2参照)に位置する。
In the inner ring 3, an annular corner 3ba where the outer diameter surface 9a of the circumferential groove 9 and the inclined surface portion 3b intersect is a curved surface portion having an arcuate cross section. By making the corner portion 3ba a curved surface portion having an arcuate cross section, the lubricating oil is prevented from leaving the inner ring 3 by centrifugal force from this corner portion 3ba (does not contribute to lubrication of the raceway surface 3a). .
The circumferential groove 9 of the inner ring 3 forms a bottomed annular groove, and the groove bottom 9b has a bottom surface perpendicular to the axis. However, the groove bottom 9b is not limited to the bottom surface perpendicular to the axis. In particular, the axial position of the groove bottom 9 b is located in the vicinity of the raceway surface 3 a of the inner ring 3. Specifically, the axial position of the groove bottom 9b of the circumferential groove 9 is determined from the axial position P1, which is the position of the intersection of the inclined surface portion 3b and the track surface 3a, in the vicinity of the track surface 3a of the inner ring 3. It is located in the range (refer FIG. 2) to the axial direction position P2 which is a position which makes the minimum diameter among the surfaces 3a.

円周溝9の外径面9a(つまり半径方向内方に臨み、後述する円周溝9の内径面9cよりも外径に位置する周面)は、ノズル位置、ノズル10の傾斜角度(軸方向に対する傾斜角度)等に基づいて、例えば、この内輪3の軌道面3aの最小径よりもやや小径に規定されている。円周溝9の内径面9cは、ノズル位置、ノズル10の前記傾斜角度等に基づいて、例えば、この内輪3の軌道面3aの直径d1と内輪内径d2との間であって、少なくとも前記外径面9aよりも小径に規定されている。さらに、円周溝9の内径面9cは、内輪間座8の外径面8aよりもやや小径となるように規定されている。前述のように、円周溝9の溝底9bの軸方向位置を規定すると共に、この円周溝9の外径面9aおよび内径面9cをも規定したので、内輪3の剛性強度を確保したうえで、内輪3の冷却効率を高め得る。   An outer diameter surface 9a of the circumferential groove 9 (that is, a circumferential surface facing inward in the radial direction and positioned at an outer diameter from an inner diameter surface 9c of the circumferential groove 9 described later) is a nozzle position, an inclination angle of the nozzle 10 (axis For example, the diameter is defined to be slightly smaller than the minimum diameter of the raceway surface 3a of the inner ring 3. The inner diameter surface 9c of the circumferential groove 9 is, for example, between the diameter d1 of the raceway surface 3a of the inner ring 3 and the inner ring inner diameter d2 based on the nozzle position, the inclination angle of the nozzle 10, and at least the outer ring surface 9c. The diameter is defined to be smaller than the diameter surface 9a. Further, the inner diameter surface 9 c of the circumferential groove 9 is defined to be slightly smaller than the outer diameter surface 8 a of the inner ring spacer 8. As described above, the axial position of the groove bottom 9b of the circumferential groove 9 is defined, and the outer diameter surface 9a and the inner diameter surface 9c of the circumferential groove 9 are also defined, so that the rigidity of the inner ring 3 is ensured. In addition, the cooling efficiency of the inner ring 3 can be increased.

各潤滑油導入部材7の互いに接触する側の側面には、内周側に開口した排油用凹部13がそれぞれ形成されており、これら排油用凹部13,13の内面と、内輪間座8の外径面8aとで囲まれた空間が排油空間14とされている。この排油空間14は、両側の転がり軸受2,2における前記ノズル10から吐出された潤滑油が排出される空間15に連通させてある。
また、各潤滑油導入部材7の互いに接触する側の側面には、前記排油用凹部13から外周側に向けて径方向に延びる溝状排油路16がそれぞれ形成されている。なお、潤滑油導入部材7は、打ち傷の発生防止や取扱性向上の見地から、焼入処理することが望ましい。
On the side surfaces of the lubricating oil introduction members 7 that are in contact with each other, there are formed oil drain recesses 13 that open to the inner periphery, and the inner surfaces of these oil drain recesses 13 and 13 and the inner ring spacer 8. The space surrounded by the outer diameter surface 8a is an oil drainage space 14. The oil discharge space 14 is communicated with a space 15 in which the lubricating oil discharged from the nozzle 10 in the rolling bearings 2 and 2 on both sides is discharged.
Further, groove-like oil drain passages 16 extending in the radial direction from the oil drain recess 13 toward the outer peripheral side are formed on the side surfaces of the lubricating oil introduction members 7 that are in contact with each other. In addition, it is desirable that the lubricating oil introducing member 7 is subjected to a quenching treatment from the viewpoint of preventing the occurrence of scratches and improving the handleability.

前記ノズル10から吐出された潤滑油のうち、前記微小隙間δへ流入する流入分を除く残りの潤滑油は、潤滑油排出経路17から外部に排出される。この潤滑油排出経路17は、両潤滑油導入部材7に形成された排油用凹部13からなる排油空間14や、前記溝状排油路16,18等で構成される。なお、溝状排油路16,18は、円周方向に複数分配して設けてもよい。使用する冷却油としては、動力損失の低減および冷却効率の向上の観点から、ISOの粘度がVG10,VG2以下が望ましい。また、動力損失の更なる低減および冷却効率の向上には、冷却油として粘度が小さく熱伝導率が大きい水溶性作動油の使用と、前記潤滑油導入部材7の材料として線膨張係数が低いステンレス鋼を使用することが望ましい。   Of the lubricating oil discharged from the nozzle 10, the remaining lubricating oil excluding the inflow flowing into the minute gap δ is discharged to the outside from the lubricating oil discharge path 17. The lubricating oil discharge path 17 is configured by an oil draining space 14 formed by a draining recess 13 formed in both the lubricating oil introduction members 7, the groove-shaped draining paths 16 and 18, and the like. Note that a plurality of the groove-like oil drain passages 16 and 18 may be provided in the circumferential direction. As the cooling oil to be used, the viscosity of ISO is preferably VG10 or VG2 or less from the viewpoint of reducing power loss and improving cooling efficiency. Further, for further reduction of power loss and improvement of cooling efficiency, use of water-soluble hydraulic oil having low viscosity and high thermal conductivity as cooling oil, and stainless steel having a low coefficient of linear expansion as the material of the lubricating oil introduction member 7 are used. It is desirable to use steel.

多列転がり軸受装置1の潤滑作用を説明する。
各潤滑油導入部材7の給油路11に圧送された冷却油は、ノズル10から吐出されて対向する内輪3の円周溝9の形成箇所に吹き付けられる。円周溝9に吹き付けられた冷却油の一部は、その表面張力と、内輪3の回転に伴い冷却油に作用する遠心力とにより、内輪3における円周溝9の外径側の内壁面から斜面部3bに沿って内輪3の軌道面3aに潤滑油として流入する。このように、ノズル10から吐出された冷却油が円周溝9に集油され、その一部が内輪3の斜面部3bから軌道面3aに流れるので、軌道面3aの全周に均等に潤滑油を供給できる。円周溝9の内壁から斜面部3bへの潤滑油の移動は、潤滑油の表面張力、潤滑油に作用する遠心力、および斜面部3bの傾斜角度を適正にバランスさせることにより円滑に行わせることができ、遠心力で潤滑油が飛散するのを回避できる。ここでは、内輪3のうち、円周溝9の外径面9aと斜面部3bとが交差する環状の角部3baは、断面円弧状の曲面部とされているので、この角部3baから潤滑油が遠心力で内輪3から離れることを防止し、斜面部3bへの潤滑油の移動がより円滑に行われる。
The lubricating action of the multi-row rolling bearing device 1 will be described.
The cooling oil pumped to the oil supply passage 11 of each lubricating oil introduction member 7 is discharged from the nozzle 10 and sprayed to the formation location of the circumferential groove 9 of the inner ring 3 facing. A part of the cooling oil sprayed on the circumferential groove 9 is caused by the surface tension and the inner wall surface on the outer diameter side of the circumferential groove 9 in the inner ring 3 due to the centrifugal force acting on the cooling oil as the inner ring 3 rotates. To the raceway surface 3a of the inner ring 3 along the slope 3b. In this way, the cooling oil discharged from the nozzle 10 is collected in the circumferential groove 9, and a part thereof flows from the slope portion 3b of the inner ring 3 to the raceway surface 3a, so that the entire circumference of the raceway surface 3a is evenly lubricated. Oil can be supplied. The lubricating oil is smoothly moved from the inner wall of the circumferential groove 9 to the inclined surface portion 3b by appropriately balancing the surface tension of the lubricating oil, the centrifugal force acting on the lubricating oil, and the inclination angle of the inclined surface portion 3b. It is possible to prevent the lubricating oil from being scattered by centrifugal force. Here, in the inner ring 3, the annular corner 3ba where the outer diameter surface 9a of the circumferential groove 9 and the inclined surface portion 3b intersect is a curved surface portion having an arcuate cross section. The oil is prevented from being separated from the inner ring 3 by centrifugal force, and the lubricating oil is moved more smoothly to the slope portion 3b.

内輪3の斜面部3bには、隙間δを介して潤滑油導入部材7の鍔状部12が被さっており、この隙間δから軌道面3aに流れる潤滑油が鍔状部12によって案内される。隙間δ内を流れる潤滑油は、回転速度や傾斜角度等の各種条件により、斜面部3bに付着した流れとならずに、遠心力の作用で鍔状部12の内径面側へ押し付けられた状態で流れることがある。この状態で流れる潤滑油は、鍔状部12の先端を出た箇所で、遠心力で外径側へ降り飛ばされることになる。しかし鍔状部12は保持器6の内径側まで延びているため、鍔状部12の先端から外径側へ降り飛ばされた潤滑油は、保持器6の内径面で受けられ、転動体5へ供給されることになる。このため、内輪3の斜面部3bと潤滑油導入部材7の鍔状部12との間の隙間δに供給された潤滑油が、無駄なく潤滑に供されることになる。
なお、前記隙間δを、斜面部3bに沿って流れる潤滑油の油膜よりも狭い微小隙間とした場合は、この隙間で流量調整できることから、前記給油路11への冷却油の流量を外部から調整することなく、前記微小隙間を流れる潤滑油の流量を簡単に調整することができる。
The inclined surface portion 3b of the inner ring 3 is covered with the flange portion 12 of the lubricating oil introducing member 7 through a gap δ, and the lubricating oil flowing from the gap δ to the raceway surface 3a is guided by the flange portion 12. The lubricating oil flowing in the gap δ is pressed against the inner diameter surface side of the bowl-shaped portion 12 by the action of centrifugal force without being flowed to the inclined surface portion 3b due to various conditions such as rotational speed and inclination angle. May flow in. The lubricating oil that flows in this state falls off to the outer diameter side by centrifugal force at a location where the tip of the bowl-shaped portion 12 is exited. However, since the hook-shaped portion 12 extends to the inner diameter side of the cage 6, the lubricating oil that has flowed down from the tip of the cage-shaped portion 12 to the outer diameter side is received by the inner diameter surface of the cage 6, and the rolling element 5. Will be supplied to. For this reason, the lubricating oil supplied to the gap δ between the slope portion 3b of the inner ring 3 and the flange portion 12 of the lubricating oil introducing member 7 is used for lubrication without waste.
When the gap δ is a minute gap narrower than the oil film of the lubricating oil flowing along the inclined surface portion 3b, the flow rate can be adjusted by this gap, so the flow rate of the cooling oil to the oil supply passage 11 is adjusted from the outside. Without this, the flow rate of the lubricating oil flowing through the minute gap can be easily adjusted.

前記微小隙間δへ流入する流入分を除く残りの潤滑油は、潤滑油排出経路17を構成する各潤滑油導入部材7の両排油用凹部13,13の内面と内輪間座8の外径面8aとで囲まれた排油空間14、各潤滑油導入部材7の溝状排油路16,18を経て排油ポンプ(図示せず)により外部に排出される。このような経路で排出される冷却油としての潤滑油により、多列転がり軸受装置1は効果的に冷却される。   The remaining lubricating oil excluding the inflow flowing into the minute gap δ is the inner diameter of the oil drain recesses 13 and 13 and the outer diameter of the inner ring spacer 8 of each lubricating oil introduction member 7 constituting the lubricating oil discharge path 17. The oil is discharged to the outside by an oil discharge pump (not shown) through the oil discharge space 14 surrounded by the surface 8a and the groove oil discharge passages 16 and 18 of each lubricating oil introduction member 7. The multi-row rolling bearing device 1 is effectively cooled by the lubricating oil as the cooling oil discharged through such a path.

以上説明した第1の実施形態によると、潤滑油導入部材7のノズル10から吐出された潤滑油は、円周溝9に集油される。その集油された潤滑油の一部が、内輪3の回転により作用する遠心力と表面張力とで、内輪3の外周とこの外周に被さった鍔状部12との間を案内され、軌道面3aに供給される。このように、潤滑油導入部材7から吐出された潤滑油を、内輪3の外周と鍔状部12との間から軌道面3aに供給するものであるため、軸受2内に多量の潤滑油が浸入することがなく潤滑油の撹拌抵抗を小さくできるため、大きな動力損失が生じない。よって、動力損失を増大させないで高速運転が可能である。   According to the first embodiment described above, the lubricating oil discharged from the nozzle 10 of the lubricating oil introducing member 7 is collected in the circumferential groove 9. A part of the collected lubricating oil is guided between the outer periphery of the inner ring 3 and the hook-shaped portion 12 covering the outer periphery by centrifugal force and surface tension acting by the rotation of the inner ring 3, and the raceway surface. 3a. Thus, since the lubricant discharged from the lubricant introduction member 7 is supplied to the raceway surface 3a from between the outer periphery of the inner ring 3 and the flange-shaped portion 12, a large amount of lubricant is contained in the bearing 2. Since it does not penetrate and the stirring resistance of the lubricating oil can be reduced, a large power loss does not occur. Therefore, high speed operation is possible without increasing power loss.

また、ノズル10から吐出された潤滑油が上記のように円周溝9内に集油されて排出されるので、円周溝9内に集油された潤滑油によって内輪3が冷却される。この場合に、円周溝9の溝底9bの軸方向位置を、内輪3の軌道面3a付近に位置させたので、この円周溝9の溝底9bを、発熱部位である内輪3と転動体5との接触位置に近づけることができる。したがって、発熱部位の近くで潤滑油による冷却が行えて、熱伝導の効率低下が少なく、軸受2の運転により発熱する内輪3の冷却効率を高めることができる。これによって、軸受運転時、外輪4に対する内輪3の相対的な温度上昇を極力抑え、内外輪温度差を極力小さくすることが可能となる。この軸受2を定位置予圧方式で用いる場合、内外輪温度差に起因する過大予圧の発生を未然に防止することができる。つまり軸受2の運転中、適正な予圧を維持することができる。   Further, since the lubricating oil discharged from the nozzle 10 is collected and discharged in the circumferential groove 9 as described above, the inner ring 3 is cooled by the lubricating oil collected in the circumferential groove 9. In this case, since the axial position of the groove bottom 9b of the circumferential groove 9 is positioned in the vicinity of the raceway surface 3a of the inner ring 3, the groove bottom 9b of the circumferential groove 9 is rotated with the inner ring 3 that is a heat generating portion. The position of contact with the moving body 5 can be approached. Therefore, the cooling with the lubricating oil can be performed near the heat generating portion, the efficiency of the heat conduction is reduced, and the cooling efficiency of the inner ring 3 that generates heat by the operation of the bearing 2 can be increased. As a result, during the bearing operation, it is possible to suppress the temperature rise of the inner ring 3 relative to the outer ring 4 as much as possible, and to reduce the temperature difference between the inner and outer rings as much as possible. When this bearing 2 is used in a fixed position preload system, it is possible to prevent an excessive preload caused by the temperature difference between the inner and outer rings. That is, an appropriate preload can be maintained during operation of the bearing 2.

円周溝9の内径面9cは、内輪間座8の外径面8aよりもやや小径となるように規定されるので、ノズル10から吐出される潤滑油が内輪端面で遮られることなくスムースにこの円周溝9に導入される。前述のように、円周溝9の外径面9aおよび内径面9cの直径寸法を、ノズル位置、ノズル10の傾斜角度等に基づいて規定し、内輪3の剛性強度を確保すると共に、冷却油を集油する必要十分な容積を確保することができる。円周溝9の溝底9bの軸方向位置を、内輪3の軌道面3a付近に位置させたことで、従来技術のものより内輪3の軽量化を図ることが可能となる。よって内輪3等を回転させる起動トルクを低く抑え、例えば、主軸を回転駆動するモータを定格出力の低いものにすることが可能となる。したがって製造コストの低減を図ることができる。また、円周溝9の溝底9bを、軸方向に垂直な底面ではなく、他端側端面に向かう程尖り状となる形状に形成した場合、溝底の軸方向位置および径方向位置をより軌道面3aに近づけることが可能となる。この場合、軸受の運転により発熱する内輪の冷却効率をより高めることができる。   Since the inner diameter surface 9c of the circumferential groove 9 is defined to be slightly smaller than the outer diameter surface 8a of the inner ring spacer 8, the lubricating oil discharged from the nozzle 10 is smoothly blocked without being blocked by the inner ring end surface. It is introduced into this circumferential groove 9. As described above, the diameter dimensions of the outer diameter surface 9a and the inner diameter surface 9c of the circumferential groove 9 are defined based on the nozzle position, the inclination angle of the nozzle 10, and the like, while ensuring the rigidity and strength of the inner ring 3, and cooling oil It is possible to secure a necessary and sufficient volume for collecting oil. By positioning the axial position of the groove bottom 9b of the circumferential groove 9 in the vicinity of the raceway surface 3a of the inner ring 3, the inner ring 3 can be made lighter than that of the prior art. Therefore, the starting torque for rotating the inner ring 3 and the like can be kept low, and for example, the motor that rotationally drives the main shaft can have a low rated output. Therefore, the manufacturing cost can be reduced. In addition, when the groove bottom 9b of the circumferential groove 9 is formed in a shape that becomes sharper toward the other end surface rather than a bottom surface perpendicular to the axial direction, the axial position and radial position of the groove bottom are further increased. It is possible to approach the track surface 3a. In this case, the cooling efficiency of the inner ring that generates heat by the operation of the bearing can be further increased.

図4は、図3に示した実施形態の多列転がり軸受装置1を備えたスピンドル装置の一例を示す。このスピンドル装置19は工作機械に応用されるものであり、主軸20の先端(図の左側の端部)に工具またはワークのチャックが取付けられる。主軸20は、軸方向に離れた複数(ここでは2つ)の多列転がり軸受装置1により支持されている。これらの多列転がり軸受装置1において、潤滑油導入部材7を介在させて隣合う転がり軸受2,2は、背面組み合わせとされ、かつ定位置予圧で使用される。   FIG. 4 shows an example of a spindle device provided with the multi-row rolling bearing device 1 of the embodiment shown in FIG. The spindle device 19 is applied to a machine tool, and a tool or workpiece chuck is attached to the tip of the main shaft 20 (the left end in the figure). The main shaft 20 is supported by a plurality (here, two) of multi-row rolling bearing devices 1 separated in the axial direction. In these multi-row rolling bearing devices 1, the rolling bearings 2 and 2 adjacent to each other with the lubricating oil introduction member 7 interposed therebetween are combined with the back surface and are used in a fixed position preload.

各多列転がり軸受1における両転がり軸受2の内輪3は、主軸20の外径面に嵌合し、外輪4はハウジング21の内径面に嵌合している。ハウジング21内における両多列転がり軸受装置1,1で挟まれる軸方向の中間位置には、主軸20を駆動するモータ22が配置されている。そのモータロータ23は主軸20に固定され、モータステータ24がハウジング21に固定されている。   The inner ring 3 of each rolling bearing 2 in each multi-row rolling bearing 1 is fitted to the outer diameter surface of the main shaft 20, and the outer ring 4 is fitted to the inner diameter surface of the housing 21. A motor 22 for driving the main shaft 20 is arranged at an intermediate position in the axial direction between the multi-row rolling bearing devices 1 and 1 in the housing 21. The motor rotor 23 is fixed to the main shaft 20, and the motor stator 24 is fixed to the housing 21.

各多列転がり軸受1における主軸軸端側に位置する転がり軸受2の内外輪3,4は、内輪押さえ25および外輪押さえ26により、主軸20およびハウジング21の軸方向を向く各段部20a,21aとの間で挟み付け状態で固定されている。主軸20の一端部には、内輪押さえ25に押し当てて多列転がり軸受装置1を固定する軸受固定ナット27が螺着されている。これら主軸20およびハウジング21の段部20a,21aと、各内輪押さえ25および外輪押さえ26の軸受当接面の位置を所定の位置に設定し、軸受固定ナット27を締め付けることで、2個並んだ転がり軸受2が定位置予圧される。   Inner and outer rings 3, 4 of the rolling bearing 2 positioned on the spindle shaft end side in each multi-row rolling bearing 1 are respectively provided with step portions 20 a, 21 a facing the axial direction of the main shaft 20 and the housing 21 by inner ring retainers 25 and outer ring retainers 26. It is fixed in a state of being sandwiched between. At one end portion of the main shaft 20, a bearing fixing nut 27 that is pressed against the inner ring presser 25 and fixes the multi-row rolling bearing device 1 is screwed. The main shaft 20 and the stepped portions 20a and 21a of the housing 21 and the positions of the bearing contact surfaces of the inner ring retainer 25 and the outer ring retainer 26 are set to predetermined positions, and two bearing fixing nuts 27 are tightened to align the two. The rolling bearing 2 is preloaded at a fixed position.

ハウジング21は、内周ハウジング21A、および外周ハウジング21Bからなる二重構造とされている。内周ハウジング21Aには、各潤滑油導入部材7の給油路11に連通する潤滑油供給路28と、排油回収路29と、ハウジング冷却用の給油路(図示せず)とが設けられている。各潤滑油供給路28は、軸方向に延びて内周ハウジング21Aの両端面に開口している。排油回収路29は軸方向に延びて内周ハウジング21Aの両端面に開口している。この排油回収路29に、各潤滑油導入部材7の潤滑油排出経路17(図3)が連通させてある。   The housing 21 has a double structure including an inner peripheral housing 21A and an outer peripheral housing 21B. The inner peripheral housing 21A is provided with a lubricating oil supply path 28 communicating with the oil supply path 11 of each lubricating oil introduction member 7, a drain oil recovery path 29, and a housing cooling oil supply path (not shown). Yes. Each lubricating oil supply path 28 extends in the axial direction and opens at both end faces of the inner peripheral housing 21A. The oil recovery path 29 extends in the axial direction and opens at both end faces of the inner peripheral housing 21A. Lubricating oil discharge paths 17 (FIG. 3) of the respective lubricating oil introduction members 7 are communicated with the drain oil recovery path 29.

前記排油回収路29に流出した排油は、排油ポンプにより油回収タンクに回収されて、冷却油供給装置(いずれも図示せず)に戻され、この冷却油供給装置から前記給油路11に冷却油が再び給油される。また、前記冷却油供給装置から前記給油路11にも冷却油が供給され、ハウジング21の冷却が行われる。ハウジング21を冷却した冷却油は油回収タンクに回収されて、再び冷却油供給装置に戻される。   The waste oil that has flowed out to the waste oil recovery passage 29 is recovered in an oil recovery tank by a waste oil pump and returned to a cooling oil supply device (none of which is shown), and the oil supply passage 11 is returned from this cooling oil supply device. The cooling oil is supplied again. Further, the cooling oil is also supplied from the cooling oil supply device to the oil supply passage 11, and the housing 21 is cooled. The cooling oil that has cooled the housing 21 is recovered in the oil recovery tank and returned to the cooling oil supply device again.

次に、本発明の第2の実施形態を、図5と共に説明する。ただし、図1〜図4で示した第1の実施形態と同一のものについては、同一符号を付してその説明を省略する場合がある。この第2の実施形態においても、アンギュラ玉軸受が採用されている。この内輪3Aの外径部に、端面側から軌道面3a側に向かう程大径となる斜面部3bであって、潤滑油導入部材7の鍔状部12に隙間δを介して配設される斜面部3bが設けられている。   Next, a second embodiment of the present invention will be described with reference to FIG. However, the same components as those in the first embodiment shown in FIG. 1 to FIG. Also in the second embodiment, angular ball bearings are employed. On the outer diameter portion of the inner ring 3A, there is a slope portion 3b that increases in diameter from the end surface side toward the raceway surface 3a side, and is disposed in the flange-like portion 12 of the lubricating oil introduction member 7 via a gap δ. A slope portion 3b is provided.

この内輪3Aの円周溝9Aの溝底9Abの軸方向位置は、当該内輪3Aの軌道面3a付近のうち、斜面部3bと軌道面3aとの交点の位置である第1の軸方向位置P1から、この軌道面3aのうち転動体5との接触角Axをなす位置である第2の軸方向位置PAxまでの範囲に位置する。斜面部3b、軌道面3a、および軌道面3aのうち転動体5との接触角Axをなす位置に基づいて、この円周溝9Aの溝底9Abの第1および第2の軸方向位置P1,PAxを規定している。   The axial position of the groove bottom 9Ab of the circumferential groove 9A of the inner ring 3A is the first axial position P1 that is the position of the intersection of the inclined surface portion 3b and the track surface 3a in the vicinity of the track surface 3a of the inner ring 3A. To the second axial position PAx that is the position that forms the contact angle Ax with the rolling element 5 in the raceway surface 3a. Based on the position of the inclined surface 3b, the raceway surface 3a, and the raceway surface 3a that forms the contact angle Ax with the rolling element 5, the first and second axial positions P1, of the groove bottom 9Ab of the circumferential groove 9A PAx is defined.

アンギュラ玉軸受において、その内輪3Aのうち円周溝9Aの開口を、転動体5との接触角Axをなす部分に近接する端面(図の右側の幅面)ではなく、前記接触角Axをなす部分から離隔した端面(図の左側の幅面)に形成した。これによって、円周溝9Aの溝底9Abの軸方向位置を、軌道面3aのうち転動体5との接触角Axをなす位置である第2の軸方向位置PAxまで深く到達させることができる。これにより、軸受の運転により発熱する内輪3Aの冷却効率を格段にかつ確実に高めることができる。その他第1の実施形態と同様の効果を奏する。   In the angular ball bearing, in the inner ring 3A, the opening of the circumferential groove 9A is not an end face (width surface on the right side of the drawing) adjacent to the part forming the contact angle Ax with the rolling element 5, but the part forming the contact angle Ax It formed in the end surface (width surface of the left side of a figure) separated from. As a result, the axial position of the groove bottom 9Ab of the circumferential groove 9A can be deeply reached to the second axial position PAx that is the position that forms the contact angle Ax with the rolling element 5 in the raceway surface 3a. Thereby, the cooling efficiency of the inner ring 3A that generates heat by the operation of the bearing can be remarkably increased. Other effects similar to those of the first embodiment are obtained.

本発明の第1の実施形態に係る転がり軸受の潤滑装置を示す断面図である。It is sectional drawing which shows the lubricating device of the rolling bearing which concerns on the 1st Embodiment of this invention. 図1における内輪等の要部拡大図である。It is a principal part enlarged view of the inner ring | wheel etc. in FIG. 背面組み合わせで転がり軸受を組み合わせた一例を示す断面図である。It is sectional drawing which shows an example which combined the rolling bearing with the back surface combination. 同転がり軸受を備えたスピンドル装置を示す断面図である。It is sectional drawing which shows the spindle apparatus provided with the rolling bearing. 本発明の第2の実施形態に係る転がり軸受の内輪等の拡大断面図である。It is an expanded sectional view of an inner ring etc. of a rolling bearing concerning a 2nd embodiment of the present invention. 従来の転がり軸受の潤滑装置を示す断面図である。It is sectional drawing which shows the lubricating device of the conventional rolling bearing.

符号の説明Explanation of symbols

1…多列転がり軸受装置
3…内輪
3a…軌道面
3b…斜面部
7…潤滑油導入部材
9…円周溝
10…ノズル
12…鍔状部
δ…隙間
P1…第1の軸方向位置
PAx…第2の軸方向位置
DESCRIPTION OF SYMBOLS 1 ... Multi row rolling bearing apparatus 3 ... Inner ring 3a ... Raceway surface 3b ... Slope part 7 ... Lubricating oil introduction member 9 ... Circumferential groove 10 ... Nozzle 12 ... Gutter-like part delta ... Gap P1 ... 1st axial position PAx ... Second axial position

Claims (3)

転がり軸受内に潤滑油導入部材から潤滑油を吐出して潤滑する転がり軸受の潤滑装置において、
前記潤滑油導入部材は、転がり軸受の内輪の端面側に対向して開口し、この内輪へ潤滑油を吐出する吐出口、およびこの吐出口よりも外径側に位置して前記内輪の外周に被さる鍔状部を有し、
前記内輪は、潤滑油導入部材の吐出口が設けられた箇所に対向して、この内輪の端面から軸方向に沿って開口する円周溝を有し、この円周溝の溝底の軸方向位置が、前記内輪の軌道面付近に位置することを特徴とする転がり軸受の潤滑装置。
In a rolling bearing lubrication device that discharges and lubricates lubricating oil from a lubricating oil introducing member into the rolling bearing,
The lubricating oil introduction member opens opposite to the end face side of the inner ring of the rolling bearing, and is disposed on the outer periphery of the inner ring, located on the outer diameter side of the discharge port that discharges the lubricating oil to the inner ring, and the discharge port. Has a bowl-shaped part to cover,
The inner ring has a circumferential groove that opens along the axial direction from the end surface of the inner ring so as to face a portion where the discharge port of the lubricating oil introduction member is provided, and the axial direction of the groove bottom of the circumferential groove A lubricating device for a rolling bearing, wherein the position is located in the vicinity of a raceway surface of the inner ring.
請求項1において、
前記転がり軸受はアンギュラ玉軸受であり、前記内輪の外径部に、この内輪の端面側から軌道面側に向かう程大径となる斜面部であって、前記鍔状部に隙間を介して配設される斜面部を設け、
前記円周溝の溝底の軸方向位置は、この内輪の軌道面付近のうち、斜面部と軌道面との交点の位置である第1の軸方向位置から、この軌道面のうち転動体との接触角をなす位置である第2の軸方向位置までの範囲に位置する転がり軸受の潤滑装置。
In claim 1,
The rolling bearing is an angular ball bearing, and is an inclined surface portion having a diameter increasing toward an outer diameter portion of the inner ring from the end surface side of the inner ring toward the raceway surface side. Provided a sloped part,
The axial position of the groove bottom of the circumferential groove is from the first axial position, which is the position of the intersection of the slope portion and the raceway surface, in the vicinity of the raceway surface of the inner ring, and the rolling element of the raceway surface. The rolling bearing lubrication device is located in a range up to a second axial position, which is a position that forms the contact angle.
請求項1または請求項2において、前記転がり軸受は定位置予圧で使用される転がり軸受の潤滑装置。   3. The lubricating device for a rolling bearing according to claim 1, wherein the rolling bearing is used with a fixed position preload.
JP2006337201A 2006-12-14 2006-12-14 Lubrication device for rolling bearing Pending JP2008151180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337201A JP2008151180A (en) 2006-12-14 2006-12-14 Lubrication device for rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337201A JP2008151180A (en) 2006-12-14 2006-12-14 Lubrication device for rolling bearing

Publications (1)

Publication Number Publication Date
JP2008151180A true JP2008151180A (en) 2008-07-03

Family

ID=39653566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337201A Pending JP2008151180A (en) 2006-12-14 2006-12-14 Lubrication device for rolling bearing

Country Status (1)

Country Link
JP (1) JP2008151180A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002519A (en) * 2011-06-15 2013-01-07 Ntn Corp Rolling bearing and rolling bearing device
US9033582B2 (en) 2010-10-19 2015-05-19 Ntn Corporation Rolling bearing device
CN107366681A (en) * 2016-05-11 2017-11-21 株式会社捷太格特 Rolling bearing system
CN107605945A (en) * 2017-11-03 2018-01-19 湖南崇德工业科技有限公司 Oil-water cooler and vertical type sliding bearing
CN109563878A (en) * 2016-08-03 2019-04-02 日本精工株式会社 Ball bearing and spindle device for machine tool
CN109563877A (en) * 2016-08-03 2019-04-02 日本精工株式会社 Ball bearing and spindle device for machine tool
EP3783240A4 (en) * 2018-08-31 2021-07-21 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Bearing assembly and compressor comprising same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579045U (en) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 Rolling bearing
JPH11141544A (en) * 1997-11-06 1999-05-25 Okuma Corp Angular ball bearing
JP2006118525A (en) * 2004-10-19 2006-05-11 Ntn Corp Lubrication device of rolling bearing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579045U (en) * 1992-03-31 1993-10-26 エヌティエヌ株式会社 Rolling bearing
JPH11141544A (en) * 1997-11-06 1999-05-25 Okuma Corp Angular ball bearing
JP2006118525A (en) * 2004-10-19 2006-05-11 Ntn Corp Lubrication device of rolling bearing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9033582B2 (en) 2010-10-19 2015-05-19 Ntn Corporation Rolling bearing device
JP2013002519A (en) * 2011-06-15 2013-01-07 Ntn Corp Rolling bearing and rolling bearing device
CN107366681A (en) * 2016-05-11 2017-11-21 株式会社捷太格特 Rolling bearing system
CN107366681B (en) * 2016-05-11 2021-03-09 株式会社捷太格特 Rolling bearing device
US10670078B2 (en) 2016-08-03 2020-06-02 Nsk Ltd. Ball bearing and main shaft device for machine tool
CN109563877A (en) * 2016-08-03 2019-04-02 日本精工株式会社 Ball bearing and spindle device for machine tool
CN109563878A (en) * 2016-08-03 2019-04-02 日本精工株式会社 Ball bearing and spindle device for machine tool
US10690180B2 (en) 2016-08-03 2020-06-23 Nsk Ltd. Ball bearing and main shaft device for machine tool
US10746227B2 (en) 2016-08-03 2020-08-18 Nsk Ltd. Ball bearing and main shaft device for machine tool
CN107605945A (en) * 2017-11-03 2018-01-19 湖南崇德工业科技有限公司 Oil-water cooler and vertical type sliding bearing
CN107605945B (en) * 2017-11-03 2024-04-02 湖南崇德科技股份有限公司 Oil-water cooler and vertical sliding bearing
EP3783240A4 (en) * 2018-08-31 2021-07-21 Gree Green Refrigeration Technology Center Co., Ltd. of Zhuhai Bearing assembly and compressor comprising same
US20210231175A1 (en) * 2018-08-31 2021-07-29 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Bearing assembly and compressor comprising same
US11802589B2 (en) * 2018-08-31 2023-10-31 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Bearing assembly and compressor with bearing assembly

Similar Documents

Publication Publication Date Title
JP2006118526A (en) Lubrication device of rolling bearing
JP2008151180A (en) Lubrication device for rolling bearing
JP6013112B2 (en) Cooling structure of bearing device
US20070003178A1 (en) Cylindrical roller bearing and retainer for cylindrical roller bearing
JP2007024256A (en) Lubricating device of rolling bearing
JP5183059B2 (en) Multi-row rolling bearing device
US20130336608A1 (en) Bearing assembly for use with a turbine engine
JPS63231021A (en) Lubricating device for roller bearing
JP2008291970A (en) Rolling bearing device
JP5675263B2 (en) Rolling bearing
JP4836852B2 (en) Angular contact ball bearing lubrication system
JP2007024252A (en) Lubricating device of rolling bearing
JP2007092860A (en) Double row angular ball bearing and pinion shaft supporting device for vehicle
JP2006125485A (en) Rolling bearing lubricating device
JP2007024258A (en) Lubricating device of rolling bearing
JP2006118525A (en) Lubrication device of rolling bearing
JP2006226486A (en) Lubricating device of rolling bearing
JP2005214330A (en) Four-point contact ball bearing and manufacturing method thereof
WO2007129441A1 (en) Multi-row rolling bearing device
US20190211874A1 (en) Bearing device, and spidle device for machine tool
JP2008240946A (en) Lubricating device for rolling bearing
JP2008082502A (en) Lubricating device of rolling bearing
JP4527622B2 (en) Rolling bearing lubrication system
US20090046973A1 (en) Bearing retention method and apparatus
JP4045291B2 (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705