JP2004183781A - Rotation supporting device for turbocharger - Google Patents

Rotation supporting device for turbocharger Download PDF

Info

Publication number
JP2004183781A
JP2004183781A JP2002351481A JP2002351481A JP2004183781A JP 2004183781 A JP2004183781 A JP 2004183781A JP 2002351481 A JP2002351481 A JP 2002351481A JP 2002351481 A JP2002351481 A JP 2002351481A JP 2004183781 A JP2004183781 A JP 2004183781A
Authority
JP
Japan
Prior art keywords
lubricating oil
turbocharger
pocket
ball bearing
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351481A
Other languages
Japanese (ja)
Inventor
Sukitto Deiienyan
ディーイエンヤン・スキット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002351481A priority Critical patent/JP2004183781A/en
Publication of JP2004183781A publication Critical patent/JP2004183781A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/38Ball cages
    • F16C33/3837Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages
    • F16C33/3843Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/3856Massive or moulded cages having cage pockets surrounding the balls, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6681Details of distribution or circulation inside the bearing, e.g. grooves on the cage or passages in the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotation supporting device for a turbocharger capable of inhibiting the increase of the manufacturing cost, and improving the durability and reliability of the turbocharger by improving the lubricating performance of a ball bearing used under a strict use condition. <P>SOLUTION: This rotation supporting device for the turbocharger is provided with the ball bearing 32 comprising an annular ball-cage 33 mounted between an inner ring and an outer ring 10, 12, rotatably holding a plurality of balls 13 in a pocket 15, and guided by the outer ring for rotatably supporting a rotating shaft having a turbine on its one end and an impeller on the other end, inside of a bearing housing. A nozzle 20 is mounted for injecting and supplying the lubricant from an outer side of the ball bearing 32 toward an outer peripheral face of the inner ring 12 to lubricate the ball bearing 32. Lubricant guide grooves 35 connected to the pocket 15 from an end face of the ball-cage 33 are respectively formed on an inner peripheral face of the ball-cage 33 at a nozzle 20 side by every pocket 15. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば自動車用エンジン等に装着されるターボチャージャに組み込み、インペラとタービンとが接続された回転軸を軸受ハウジングに対して回転自在に支持する為のターボチャージャ用回転支持装置の改良に関するものである。
【0002】
【従来の技術】
エンジンの出力を排気量を変えずに増大させる為、エンジンに送り込む空気を排気のエネルギーにより圧縮するターボチャージャが、広く使用されている。このターボチャージャは、排気のエネルギーを、排気通路の途中に設けたタービンにより回収し、このタービンをその端部に固定した回転軸により、給気通路の途中に設けたコンプレッサのインペラを回転させる。このインペラは、エンジンの運転に伴って数万〜十数万min−1(r.p.m.)の速度で回転し、上記供給通路を通じてエンジンに送り込まれる空気を圧縮する。
【0003】
図4及び図5は、この様なターボチャージャ用回転支持装置の一例を示している。ターボチャージャ100は、排気流路1を流通する排気により、回転軸2の一端(図4中、右端)に固定したタービン3を回転させる。この回転軸2の回転は、他端に固定したインペラ4に伝わり、該インペラ4が給気流路5内で回転する。
この結果、前記給気流路5の上流端開口から吸引された空気が圧縮されてガソリン、軽油等の燃料と共にエンジンのシリンダ室内に送り込まれる。
【0004】
この様なターボチャージャの回転軸2は、数万〜十数万min−1(r.p.m.)もの高速で回転し、しかも、エンジンの運転状況に応じてその回転速度が頻繁に変化する。
従って、上記回転軸2は、軸受ハウジング6に対し、小さな回転抵抗で支持し、しかも回転支持部の潤滑を十分に考慮する必要がある。
【0005】
この為に従来から、上記軸受ハウジング6の内側に上記回転軸2を第1及び第2の玉軸受7,8により、回転自在に支持する回転支持装置を用いている。これら第1及び第2の玉軸受7,8は、それぞれ図6に示すように、内外輪12,10間に配置された複数個の玉13をポケット15内に回転自在に保持する外輪案内の保持器14を備えたアンギュラ型玉軸受である。
【0006】
これら第1及び第2の玉軸受7,8の構成は、基本的には同じであるが、高温の排気が流通する排気流路1に近く、温度上昇が著しい第1の玉軸受7の潤滑条件は、低温の空気が流通する給気流路5に近く、温度上昇がそれ程著しくはない第2の玉軸受8に比べて厳しくなる。
この為、上記第1の玉軸受7の潤滑を十分に行って、この第1の玉軸受7に焼き付き等の損傷が発生するのを防止している。本発明は、この様な第1の玉軸受7の潤滑性能の向上を図るものである。就いては、以下の説明は、この第1の玉軸受7を中心に行う。
【0007】
前記第1の玉軸受7は、内周面に外輪軌道9を有する外輪10と、外周面に内輪軌道11を有する内輪12と、これら外輪軌道9と内輪軌道11との間に転動自在に設けた複数個の玉13とを備える。
これら玉13は、円環状の保持器14に設けた複数のポケット15内に、それぞれ1個ずつ転動自在に保持されている。図示の例の場合には、上記内輪12が、片側の肩部をなくした所謂カウンタボアとされている。又、上記保持器14の外周面が、上記外輪10の内周面に近接対向させられる事により、この保持器14の直径方向位置がこの外輪10により規制される外輪案内とされている。
【0008】
前記第1の玉軸受7は、上記外輪10を前記軸受ハウジング6の一端部に内嵌すると共に、上記内輪12を上記回転軸2の一端部に外嵌固定する事により、この回転軸2の一端部を上記軸受ハウジング6に対し、回転自在に支持している。又、上述した様に、同様の構成を有する上記第2の玉軸受8は、外輪10を軸受ハウジング6の他端部に内嵌すると共に、内輪12を上記回転軸2の他端部に外嵌固定する事により、この回転軸2の他端部を上記軸受ハウジング6に対し、回転自在に支持している。
【0009】
また、上記第1及び第2の玉軸受7,8を構成する一対の外輪10,10には、圧縮ばね16により互いに離れる方向の弾力を付与している。即ち、これら両外輪10,10の互いに対向する端面にそれぞれ押圧環17,17を突き合わせ、これら両押圧環17,17同士の間に上記圧縮ばね16を挟持している。従って、上記第1及び第2の玉軸受7,8には、背面組合せ(DB)型の接触角が付与された状態となる。
【0010】
更に、上記軸受ハウジング6を納めたケーシング18内に給油通路を設けて、上記各玉軸受7,8を潤滑自在としている。ターボチャージャを装着したエンジンの運転時に潤滑油は、フィルタ19により異物を除去されてから、上記ケーシング18の内周面と上記軸受ハウジング6の外周面との間の隙間空間を通過して、上記外輪10に隣接する押圧環17に設けたノズル孔20から、上記第1の玉軸受7を構成する内輪12の外周面に向け、径方向外方から斜めに噴出し、この第1の玉軸受7を潤滑(オイルジェット潤滑)する。
この様にして第1の玉軸受7に向けて噴出した潤滑油は、この第1の玉軸受7の他、上記第2の玉軸受8も潤滑してから、排油口21から排出される。
【0011】
しかしながら、上述した様なターボチャージャ用回転支持装置の場合、ノズル孔20から噴出した潤滑油が、必ずしも第1の玉軸受7の潤滑の為に有効に利用できない。即ち、上述した従来構造の場合には、上記ノズル孔20からこの第1の玉軸受7を構成する内輪12の外周面に向け噴出した潤滑油の多くの部分が、高速で回転している該内輪12の外周面に跳ね飛ばされて、上記第1の玉軸受7を潤滑する事なく、周囲に飛散してしまう。
【0012】
この結果、各玉13の転動面と、外輪軌道9及び内輪軌道11、各ポケット15の内面との転がり接触部又は滑り接触部に存在する潤滑油が不足する可能性がある。そして、不足した場合には、上記各ポケット15の内面等、各部の摩耗が著しくなり、ターボチャージャ用回転支持装置の耐久性が損なわれるだけでなく、極端な場合には焼き付き等の損傷を発生する。
【0013】
この様な不都合を解消する為に、例えば、高速で十分な潤滑油供給を行えない場合にも、十分な潤滑性を確保して耐久性向上を図るため、保持器を繊維強化ポリイミド樹脂製とし、バレル加工により表面に存在する角部に、微小曲面を形成すると共に内部に潤滑油を含浸させるものがある(例えば、特許文献1参照)。ところが、高温度及び高速の回転条件では、保持器に含浸させた潤滑油だけでは十分な潤滑が行えず、焼き付きや摩耗等の不具合を生じる可能性があった。
【0014】
又、図6に示した玉軸受7の代わりに、図7に示すような玉軸受22を使用したターボチャージャ用回転支持装置も提案されている(例えば、特許文献2参照)。
上記玉軸受22では、内輪12の外周面で反射して保持器23の内周面に付着した潤滑油が高速回転時の遠心力等で吹き飛ばされないように、該保持器23のノズル20側の端部に、径方向内方に突出する小径突部25を全周にわたって設けると共に、該小径突部25の中央側を円すい凹面状の傾斜面26としている。
【0015】
即ち、上述の如く保持器23を改良した玉軸受22では、内輪12の外周面で反射して保持器23の内周面に付着した潤滑油が、高速回転時の遠心力の作用で、小径突部25の傾斜面26に沿って回転半径の大きなポケット側に向かって進むようになる。
そこで、前記保持器23の内周面に付着した潤滑油を、上記各玉13が存在する部分(内部空間28の部分)の潤滑に有効に働かせることができ、潤滑性能の向上によって、ターボチャージャの寿命の向上や、更なる高回転化による過給性能の向上等を達成することができる。
【0016】
【特許文献1】
特開平10−96426号公報
【特許文献2】
特開2002−54449号公報
【0017】
【発明が解決しようとする課題】
ところが、上記保持器23は、小径突部25を設けたことによって形状が複雑になると共に、基本構造が図6に示した保持器14と大きく異なるため、新たに専用の成形用金型等を準備する必要が生じ、製造コストの上昇を招くという問題がある。
また、前記内輪12の外周面で反射して上記保持器23の内周面に付着した潤滑油は、高速回転時の遠心力の作用で、小径突部25の傾斜面26を回転半径が大きなポケット15側に向かって進むようになるが、遠心力によって保持器23の周方向に向かう速度成分も大きくなるため、無駄な周回運動によって潤滑油が昇温し、潤滑油による冷却性能が十分に発揮できなくなる虞もあった。
【0018】
従って、本発明の目的は上記課題を解消することに係り、製造コストの上昇を抑えると共に、使用条件が厳しい玉軸受の潤滑性を向上させて、ターボチャージャの耐久性及び信頼性の向上を図ることができる良好なターボチャージャ用回転支持装置を提供することである。
【0019】
【課題を解決するための手段】
本発明の目的は、一端にタービンが固定されると共に他端にインペラが固定された回転軸を、軸受ハウジングの内側に回転自在に支持する為、内外輪間に配置された複数個の玉をポケット内に転動自在に保持して外輪案内される円環状の保持器を備えた玉軸受を設け、該玉軸受の外部側方から内輪の外周面に向けて潤滑油を噴射供給するノズルを設けることにより、該玉軸受の潤滑を行う様に構成したターボチャージャ用回転支持装置において、
前記ノズルを設けた側の前記保持器の内周面に、該保持器の端面からポケットに連なる潤滑油誘導溝を各ポケット毎に設けたことを特徴とするターボチャージャ用回転支持装置により達成される。
【0020】
上記構成のターボチャージャ用回転支持装置によれば、ノズルから噴射されて内輪の外周面で跳ね返った潤滑油の多くの部分は、各玉が存在する部分や保持器の内周面に設けられた潤滑油誘導溝に取り込まれる。即ち、保持器の回転によって該保持器の内周面に付着した潤滑油に作用する遠心力は、該潤滑油を保持器の周方向に移動させて、最寄りの潤滑油誘導溝に速やかに落とす。
【0021】
そして、周方向と交差している前記潤滑油誘導溝内に保持された潤滑油は、界面張力及び遠心力によって周方向に周回したり、剥離して飛散することが防止され、保持器の各ポケットに供給される。このポケット内に保持された潤滑油は、前記各玉の転動面に付着し、各ポケットの内面並びに内外輪軌道との接触面を潤滑することができる。
【0022】
従って、保持器の内周面に付着した潤滑油は、保持器内周面上に滞留することもなく、潤滑油が滞留によって無駄に昇温することが無いため、供給先である各玉が存在する部分の潤滑及び冷却に有効に働かせることができ、潤滑性能及び冷却性能の向上によって、ターボチャージャの寿命の向上や、更なる高回転化による過給性能の向上等を達成することもできる。
【0023】
又、前記保持器は、基本的に従来と同構造の保持器に潤滑油誘導溝を追加工するだけで良く、新たに専用の成形用金型等を準備せずとも製造することができるので、製造コストの上昇を抑えることができる。
【0024】
尚、好ましくは前記潤滑油誘導溝が、前記ポケットの中心を通り回転方向とは逆方向側に軸方向から角度θだけ傾いた直線に沿って形成されると共に、前記角度θが、0≦θ≦45゜の範囲に設定される。
【0025】
この場合、潤滑油を前記潤滑油誘導溝に取り込み易くすることができる。即ち、回転軸の回転時には内輪が一体回転し、内輪の回転に伴って、軸受内の玉が内輪の外周面上を転動しながら公転し、この玉の公転に伴って、保持器が内輪よりも遅い回転速度で内輪と同方向に回転する。
従って、ノズルから噴射されて内輪の外周面に吹き付けられた潤滑油の多くの部分は、保持器内周面に対して回転方向とは逆方向側に傾いた直線に沿って跳ね返るので、保持器内周面に対して回転方向とは逆方向側に傾いて形成された前記潤滑油誘導溝には潤滑油を取り込み易くすることができる。
【0026】
【発明の実施の形態】
以下、添付図面に基づいて本発明の一実施形態に係るターボチャージャ用回転支持装置を詳細に説明する。
尚、本発明のターボチャージャ用回転支持装置は、一端にタービンが固定されると共に他端にインペラが固定された回転軸を回転自在に支持する為の玉軸受を改良したものであり、本発明が適用されるターボチャージャの構成及び上記改良点以外のターボチャージャ用回転支持装置の構成は、図4及び図5に示した従来構成と略同一であるので、詳細な説明は省略する。
【0027】
図1は、本発明の一実施形態に係るターボチャージャ用回転支持装置を構成する玉軸受の部分断面図である。
図1に示した玉軸受32は、図5に示したターボチャージャ用回転支持装置における玉軸受7に相当し、回転軸2のタービン3寄りの位置を回転自在に軸受ハウジング6に支承するものである。
【0028】
前記玉軸受32は、図1に示したように、内周面に外輪軌道9を有する外輪10と、外周面に内輪軌道11を有する内輪12と、これら外輪軌道9と内輪軌道11との間に転動自在に設けた複数個の玉13とを備える。
これら玉13は、円環状の保持器33に設けた複数のポケット15内に、それぞれ1個ずつ転動自在に保持されている。図示の例の場合には、上記内輪12が、片側の肩部をなくした所謂カウンタボアとされている。又、上記保持器33の外周面が、上記外輪10の内周面に近接対向させられる事により、この保持器33の直径方向位置がこの外輪10により規制される外輪案内とされている。
【0029】
そして、前記軸受ハウジング6内で外輪10を押さえる押圧環17に、玉軸受32に潤滑油を供給するノズル20が装備される点も従来と共通である。
前記ノズル20は、図1に矢印αに示すように、内輪12の外周面に向けて所定の角度で潤滑油を噴射供給する。そして、内輪12の外周面で跳ね返った潤滑油が、矢印βで示すように、保持器33の内周面に付着する。
【0030】
前記保持器33は、板厚が一定の円筒状の周壁に玉13を収容するポケット15を貫通形成した金属製或いは耐熱合成樹脂製のもみ抜き型であり、その内周面には、図2に示すように、各ポケット15毎に潤滑油誘導溝35が形成されている。
前記潤滑油誘導溝35は、前記ノズル20を設けた側の端面から玉13を保持するポケット15の内面に連なる直線状に形成されており、その横断面形状は例えば半円形又は矩形である。
【0031】
即ち、上記玉軸受32を組み込んだ本実施形態のターボチャージャ用回転支持装置によれば、ノズル20から噴射されて内輪12の外周面で跳ね返った潤滑油の多くの部分は、各玉13が存在する部分や保持器33の内周面に設けられた潤滑油誘導溝35に取り込まれる。即ち、保持器33の回転によって該保持器33の内周面に付着した潤滑油に作用する遠心力は、該潤滑油を保持器33の周方向に移動させて、最寄りの潤滑油誘導溝35に速やかに落とす。
【0032】
そして、周方向と交差している前記潤滑油誘導溝35内に保持された潤滑油は、界面張力及び遠心力によって周方向に周回したり、剥離して飛散することが防止され、保持器33の各ポケット15に供給される。このポケット15内に保持された潤滑油は、前記各玉13の転動面に付着し、各ポケット15の内面並びに内外輪軌道9,11との接触面を潤滑することができる。
【0033】
従って、保持器33の内周面に付着した潤滑油は、保持器内周面上に滞留することもなく、潤滑油が滞留によって無駄に昇温することが無いため、供給先である各玉13が存在する部分(内部空間36の部分)の潤滑及び冷却に有効に働かせることができ、潤滑性能及び冷却性能の向上によって、ターボチャージャの寿命の向上や、更なる高回転化による過給性能の向上等を達成することもできる。
【0034】
更に、前記保持器33は、基本的に従来の保持器14と同構造の保持器に潤滑油誘導溝35を追加工するだけで良く、新たに専用の成形用金型等を準備せずとも製造することができるので、製造コストの上昇を抑えることができる。
【0035】
又、潤滑油誘導溝35が、図3に示したように、前記ポケット15の中心を通り回転方向とは逆方向側に軸方向から角度θだけ傾いた直線39に沿って形成されると共に、前記角度θが、0≦θ≦45゜の範囲に設定されることにより、ノズル20から噴射された潤滑油を該潤滑油誘導溝35に取り込み易くすることができる。
【0036】
即ち、回転軸2の回転時には内輪12が一体回転し、内輪12の回転に伴って、軸受内の玉13が内輪12の内輪軌道11上を転動しながら公転し、この玉13の公転に伴って、保持器33が内輪12よりも遅い回転速度で内輪12と同方向に回転する。
【0037】
そこで、前記ノズル20から噴射されて内輪12の外周面に吹き付けられた潤滑油の多くの部分は、保持器内周面に対して回転方向とは逆方向側に傾いた直線39に沿って跳ね返るので、該直線39に沿って形成された前記潤滑油誘導溝35には潤滑油を取り込み易くすることができ、内部空間36の潤滑及び冷却を更に向上させることができる。
【0038】
尚、本発明のターボチャージャ用回転支持装置における回転軸、玉軸受、保持器及び潤滑油誘導溝等の構成は、上記実施形態の構成に限定されるものではなく、本発明の趣旨に基づいて種々の形態を採りうることは云うまでもない。
【0039】
【発明の効果】
上述したように、本発明のターボチャージャ用回転支持装置によれば、ノズルから噴射されて内輪の外周面で跳ね返った潤滑油の多くの部分は、各玉が存在する部分や保持器の内周面に設けられた潤滑油誘導溝に取り込まれる。即ち、保持器の回転によって該保持器の内周面に付着した潤滑油に作用する遠心力は、該潤滑油を保持器の周方向に移動させて、最寄りの潤滑油誘導溝に速やかに落とす。
【0040】
そして、周方向と交差している前記潤滑油誘導溝内に保持された潤滑油は、界面張力及び遠心力によって周方向に周回したり、剥離して飛散することが防止され、保持器の各ポケットに供給される。このポケット内に保持された潤滑油は、前記各玉の転動面に付着し、各ポケットの内面並びに内外輪軌道との接触面を潤滑することができる。
【0041】
従って、保持器の内周面に付着した潤滑油は、保持器内周面上に滞留することもなく、潤滑油が滞留によって無駄に昇温することが無いため、供給先である各玉が存在する部分の潤滑及び冷却に有効に働かせることができ、潤滑性能及び冷却性能の向上によって、ターボチャージャの寿命の向上や、更なる高回転化による過給性能の向上等を達成することもできる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係るターボチャージャ用回転支持装置を構成する玉軸受の部分断面図である。
【図2】図1に示した保持器内周面の展開図である。
【図3】図2に示した潤滑油誘導溝の他の実施形態を示す保持器内周面の展開図である。
【図4】ターボチャージャの全体構成を示す縦断面図である。
【図5】図4のA部拡大図である。
【図6】図5に示したターボチャージャ用回転支持装置に使用されている玉軸受の拡大断面図である。
【図7】従来の別のターボチャージャ用回転支持装置に使用されている玉軸受の部分断面図である。
【符号の説明】
2 回転軸
3 タービン
4 インペラ
10 外輪
12 内輪
13 玉
20 ノズル
32 玉軸受
33 保持器
35 潤滑油誘導溝
36 内部空間
100 ターボチャージャ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement of a rotation support device for a turbocharger incorporated in a turbocharger mounted on, for example, an automobile engine or the like, for rotatably supporting a rotation shaft connected to an impeller and a turbine with respect to a bearing housing. Things.
[0002]
[Prior art]
2. Description of the Related Art In order to increase the output of an engine without changing the displacement, a turbocharger that compresses air sent to the engine by the energy of the exhaust is widely used. This turbocharger recovers the energy of exhaust gas by a turbine provided in the middle of the exhaust passage, and rotates an impeller of a compressor provided in the middle of the air supply passage by a rotating shaft fixed to an end of the turbine. The impeller rotates at a speed of tens of thousands to several hundred thousand min -1 (rpm) with the operation of the engine, and compresses the air sent to the engine through the supply passage.
[0003]
4 and 5 show an example of such a turbocharger rotation support device. The turbocharger 100 rotates the turbine 3 fixed to one end (the right end in FIG. 4) of the rotating shaft 2 by the exhaust gas flowing through the exhaust passage 1. The rotation of the rotating shaft 2 is transmitted to the impeller 4 fixed to the other end, and the impeller 4 rotates in the air supply flow path 5.
As a result, the air sucked from the upstream end opening of the air supply passage 5 is compressed and sent into the cylinder chamber of the engine together with fuel such as gasoline or light oil.
[0004]
The rotating shaft 2 of such a turbocharger rotates at a high speed of several tens of thousands to several hundred thousand min -1 (rpm), and its rotational speed frequently changes according to the operating condition of the engine. I do.
Therefore, it is necessary to support the rotating shaft 2 with a small rotation resistance with respect to the bearing housing 6, and to sufficiently consider the lubrication of the rotation supporting portion.
[0005]
For this purpose, conventionally, a rotation support device that rotatably supports the rotating shaft 2 by first and second ball bearings 7 and 8 inside the bearing housing 6 is used. These first and second ball bearings 7 and 8 have outer ring guides for rotatably holding a plurality of balls 13 disposed between the inner and outer rings 12 and 10 in a pocket 15 as shown in FIG. This is an angular ball bearing provided with a retainer 14.
[0006]
The configuration of the first and second ball bearings 7 and 8 is basically the same, but is close to the exhaust passage 1 through which high-temperature exhaust flows, and lubrication of the first ball bearing 7 with a remarkable temperature rise. The condition is closer to the air supply passage 5 through which low-temperature air flows, and is more severe than that of the second ball bearing 8 whose temperature rise is not so remarkable.
For this reason, the first ball bearing 7 is sufficiently lubricated to prevent the first ball bearing 7 from being damaged such as seizure. The present invention aims to improve the lubrication performance of the first ball bearing 7 as described above. Therefore, the following description will focus on the first ball bearing 7.
[0007]
The first ball bearing 7 includes an outer race 10 having an outer raceway 9 on an inner peripheral surface, an inner race 12 having an inner raceway 11 on an outer peripheral surface, and rolling between the outer raceway 9 and the inner raceway 11. And a plurality of balls 13 provided.
Each of the balls 13 is held in a plurality of pockets 15 provided in an annular holder 14 so as to be able to roll one by one. In the illustrated example, the inner race 12 is a so-called counterbore without one shoulder. The outer peripheral surface of the retainer 14 is made to face the inner peripheral surface of the outer ring 10 so as to be close to the inner peripheral surface of the outer ring 10, so that the outer ring guide restricts the diametrical position of the retainer 14 by the outer ring 10.
[0008]
The first ball bearing 7 is configured such that the outer ring 10 is internally fitted to one end of the bearing housing 6, and the inner ring 12 is externally fitted and fixed to one end of the rotary shaft 2, so that One end is rotatably supported by the bearing housing 6. As described above, in the second ball bearing 8 having the same configuration, the outer ring 10 is fitted inside the other end of the bearing housing 6, and the inner ring 12 is fitted to the other end of the rotary shaft 2. The other end of the rotating shaft 2 is rotatably supported on the bearing housing 6 by being fitted and fixed.
[0009]
Further, a pair of outer races 10, 10 constituting the first and second ball bearings 7, 8 are provided with elasticity in a direction away from each other by a compression spring 16. That is, the pressing rings 17, 17 abut against the end faces of the outer rings 10, 10 facing each other, and the compression spring 16 is sandwiched between the pressing rings 17, 17. Therefore, the first and second ball bearings 7 and 8 are in a state where a back-to-back (DB) type contact angle is provided.
[0010]
Further, an oil supply passage is provided in a casing 18 containing the bearing housing 6 so that the ball bearings 7 and 8 can be lubricated freely. During operation of the engine equipped with the turbocharger, the lubricating oil passes through a clearance space between the inner peripheral surface of the casing 18 and the outer peripheral surface of the bearing housing 6 after foreign substances are removed by the filter 19, and From the nozzle hole 20 provided in the pressing ring 17 adjacent to the outer ring 10, the first ball bearing is squirted obliquely outward from the radial direction toward the outer peripheral surface of the inner ring 12 constituting the first ball bearing 7. 7 is lubricated (oil jet lubrication).
The lubricating oil that has been ejected toward the first ball bearing 7 in this way lubricates not only the first ball bearing 7 but also the second ball bearing 8, and then is discharged from the oil discharge port 21. .
[0011]
However, in the case of the turbocharger rotation support device as described above, the lubricating oil ejected from the nozzle hole 20 cannot always be used effectively for lubrication of the first ball bearing 7. That is, in the case of the above-described conventional structure, most of the lubricating oil that has been jetted from the nozzle hole 20 toward the outer peripheral surface of the inner ring 12 constituting the first ball bearing 7 is rotating at a high speed. The first ball bearing 7 is scattered around without being lubricated to the outer peripheral surface of the inner ring 12 without lubricating the first ball bearing 7.
[0012]
As a result, there is a possibility that the lubricating oil existing in the rolling contact portion or the sliding contact portion between the rolling surface of each ball 13 and the inner surfaces of the outer raceway 9, the inner raceway 11, and each pocket 15 may be insufficient. If it is insufficient, wear of each part such as the inner surface of each pocket 15 becomes remarkable, and not only does the durability of the rotary support device for turbocharger deteriorate, but in extreme cases, damage such as seizure occurs. I do.
[0013]
In order to eliminate such inconveniences, for example, when sufficient lubricating oil cannot be supplied at high speed, the retainer is made of fiber-reinforced polyimide resin to secure sufficient lubrication and improve durability. In addition, there is one in which a fine curved surface is formed at a corner portion existing on the surface by barrel processing and a lubricating oil is impregnated inside (for example, see Patent Document 1). However, under high-temperature and high-speed rotation conditions, lubricating oil impregnated in the cage alone cannot provide sufficient lubrication, which may cause problems such as seizure and wear.
[0014]
Further, instead of the ball bearing 7 shown in FIG. 6, a rotary support device for a turbocharger using a ball bearing 22 as shown in FIG. 7 has been proposed (for example, see Patent Document 2).
In the ball bearing 22, the lubricating oil reflected on the outer peripheral surface of the inner ring 12 and adhered to the inner peripheral surface of the cage 23 is prevented from being blown off by the centrifugal force or the like during high-speed rotation. At the end, a small-diameter projection 25 projecting radially inward is provided over the entire circumference, and the central side of the small-diameter projection 25 is formed as a conical concave inclined surface 26.
[0015]
That is, in the ball bearing 22 in which the retainer 23 is improved as described above, the lubricating oil reflected on the outer peripheral surface of the inner ring 12 and adhered to the inner peripheral surface of the retainer 23 has a small diameter due to the effect of centrifugal force during high-speed rotation. Along the inclined surface 26 of the protruding portion 25, the protruding portion 25 moves toward the pocket side having a large turning radius.
Therefore, the lubricating oil adhering to the inner peripheral surface of the cage 23 can be effectively used for lubricating the portion where the balls 13 exist (the portion of the internal space 28), and the improvement of the lubricating performance allows the turbocharger to be improved. , The supercharging performance can be improved by further increasing the rotation speed, and the like.
[0016]
[Patent Document 1]
JP-A-10-96426 [Patent Document 2]
JP-A-2002-54449
[Problems to be solved by the invention]
However, since the retainer 23 has a complicated shape due to the provision of the small-diameter protrusion 25 and has a fundamental structure that is significantly different from that of the retainer 14 shown in FIG. 6, a dedicated molding die or the like is newly required. There is a problem that the necessity of preparation is required, which causes an increase in manufacturing cost.
Further, the lubricating oil reflected on the outer peripheral surface of the inner ring 12 and adhered to the inner peripheral surface of the cage 23 acts on the inclined surface 26 of the small-diameter projection 25 with a large radius of rotation by the action of centrifugal force during high-speed rotation. Although it proceeds toward the pocket 15, the speed component in the circumferential direction of the retainer 23 increases due to the centrifugal force, so that the temperature of the lubricating oil is increased by useless orbital motion, and the cooling performance by the lubricating oil is sufficiently increased. There was also a possibility that it would not be possible to demonstrate.
[0018]
Accordingly, an object of the present invention is to solve the above-described problems, suppress an increase in manufacturing cost, improve lubrication of a ball bearing having severe use conditions, and improve durability and reliability of a turbocharger. It is an object of the present invention to provide a good turbocharger rotation supporting device.
[0019]
[Means for Solving the Problems]
An object of the present invention is to provide a rotary shaft having a turbine fixed to one end and an impeller fixed to the other end, and a plurality of balls arranged between inner and outer rings to rotatably support a rotating shaft inside a bearing housing. A ball bearing having an annular retainer that is rotatably held in a pocket and guided by an outer ring is provided, and a nozzle that supplies lubricant oil from an outer side of the ball bearing toward an outer peripheral surface of the inner ring is provided. By providing, in the rotation support device for a turbocharger configured to lubricate the ball bearing,
This is achieved by a rotary support device for a turbocharger, wherein a lubricating oil guide groove continuous from an end surface of the retainer to a pocket is provided for each pocket on an inner peripheral surface of the retainer on a side where the nozzle is provided. You.
[0020]
According to the turbocharger rotation support device having the above-described configuration, most of the lubricating oil injected from the nozzle and bounced off on the outer peripheral surface of the inner ring is provided on the portion where each ball exists or on the inner peripheral surface of the retainer. It is taken into the lubricating oil guide groove. That is, the centrifugal force acting on the lubricating oil attached to the inner peripheral surface of the retainer due to the rotation of the retainer moves the lubricating oil in the circumferential direction of the retainer and quickly drops into the nearest lubricating oil guide groove. .
[0021]
And the lubricating oil held in the lubricating oil guide groove intersecting with the circumferential direction is prevented from circling in the circumferential direction due to interfacial tension and centrifugal force, or from being separated and scattered, and Supplied in pocket. The lubricating oil held in the pocket adheres to the rolling surface of each ball, and can lubricate the inner surface of each pocket and the contact surface with the inner and outer raceways.
[0022]
Therefore, the lubricating oil adhering to the inner peripheral surface of the retainer does not stay on the inner peripheral surface of the retainer, and since the lubricating oil does not needlessly rise in temperature due to the retention, each ball as the supply destination is It can effectively work for lubrication and cooling of existing parts, and by improving lubrication and cooling performance, it is also possible to achieve an improvement in the life of the turbocharger and an improvement in supercharging performance by further increasing the rotation speed. .
[0023]
In addition, the cage can be manufactured by simply adding a lubricating oil guiding groove to a cage having basically the same structure as the conventional one, and can be manufactured without preparing a new dedicated molding die or the like. In addition, an increase in manufacturing cost can be suppressed.
[0024]
Preferably, the lubricating oil guide groove is formed along a straight line passing through the center of the pocket and in a direction opposite to the rotation direction and inclined by an angle θ from an axial direction, and the angle θ is 0 ≦ θ. ≤45 ° is set.
[0025]
In this case, the lubricating oil can be easily taken into the lubricating oil guide groove. That is, when the rotating shaft rotates, the inner ring rotates integrally, and as the inner ring rotates, the ball in the bearing revolves while rolling on the outer peripheral surface of the inner ring. It rotates in the same direction as the inner ring at a lower rotation speed.
Therefore, most of the lubricating oil sprayed from the nozzle and sprayed on the outer peripheral surface of the inner race rebounds along a straight line inclined in the direction opposite to the rotation direction with respect to the inner peripheral surface of the retainer. Lubricating oil can be easily taken into the lubricating oil guide groove formed to be inclined in the direction opposite to the rotation direction with respect to the inner peripheral surface.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a rotation support device for a turbocharger according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
The rotary support device for a turbocharger according to the present invention is an improved ball bearing for rotatably supporting a rotary shaft having a turbine fixed at one end and an impeller fixed at the other end. Since the configuration of the turbocharger to which is applied and the configuration of the rotary support device for the turbocharger other than the above-described improvements are substantially the same as the conventional configuration shown in FIGS. 4 and 5, detailed description will be omitted.
[0027]
FIG. 1 is a partial cross-sectional view of a ball bearing constituting a rotation supporting device for a turbocharger according to an embodiment of the present invention.
The ball bearing 32 shown in FIG. 1 corresponds to the ball bearing 7 in the rotary support device for a turbocharger shown in FIG. 5, and rotatably supports the position of the rotating shaft 2 near the turbine 3 on the bearing housing 6. is there.
[0028]
As shown in FIG. 1, the ball bearing 32 includes an outer race 10 having an outer race 9 on an inner peripheral surface, an inner race 12 having an inner race 11 on an outer peripheral surface, and a space between the outer race 9 and the inner race 11. And a plurality of balls 13 provided so as to freely roll.
Each of these balls 13 is held in a plurality of pockets 15 provided in an annular holder 33 so as to be able to roll one by one. In the illustrated example, the inner race 12 is a so-called counterbore without one shoulder. The outer peripheral surface of the retainer 33 is made to face the inner peripheral surface of the outer ring 10 so as to be an outer ring guide in which the diametrical position of the retainer 33 is regulated by the outer ring 10.
[0029]
In addition, the pressing ring 17 for holding the outer ring 10 in the bearing housing 6 is provided with a nozzle 20 for supplying the lubricating oil to the ball bearing 32 in the same manner as the related art.
The nozzle 20 injects and supplies the lubricating oil at a predetermined angle toward the outer peripheral surface of the inner ring 12 as shown by an arrow α in FIG. Then, the lubricating oil that has bounced off the outer peripheral surface of the inner ring 12 adheres to the inner peripheral surface of the retainer 33 as indicated by an arrow β.
[0030]
The retainer 33 is a metal or heat-resistant synthetic resin punched through a pocket 15 for accommodating the ball 13 on a cylindrical peripheral wall having a constant plate thickness. As shown in FIG. 3, a lubricating oil guide groove 35 is formed for each pocket 15.
The lubricating oil guide groove 35 is formed in a straight line extending from the end surface on the side where the nozzle 20 is provided to the inner surface of the pocket 15 holding the ball 13, and has a semicircular or rectangular cross section, for example.
[0031]
That is, according to the turbocharger rotary support device of the present embodiment incorporating the ball bearing 32, most of the lubricating oil injected from the nozzle 20 and rebounding on the outer peripheral surface of the inner ring 12 has the respective balls 13. To the lubricating oil guide groove 35 provided on the inner peripheral surface of the retainer 33 or the portion to be lubricated. That is, the centrifugal force acting on the lubricating oil attached to the inner peripheral surface of the retainer 33 due to the rotation of the retainer 33 causes the lubricating oil to move in the circumferential direction of the retainer 33, and the nearest lubricating oil guide groove 35 Drop quickly.
[0032]
The lubricating oil held in the lubricating oil guide groove 35 intersecting with the circumferential direction is prevented from circling in the circumferential direction due to interfacial tension and centrifugal force, or from being separated and scattered. Is supplied to each pocket 15. The lubricating oil held in the pockets 15 adheres to the rolling surface of each ball 13 and can lubricate the inner surface of each pocket 15 and the contact surfaces with the inner and outer raceways 9 and 11.
[0033]
Therefore, the lubricating oil adhering to the inner peripheral surface of the retainer 33 does not stay on the inner peripheral surface of the retainer, and the lubricating oil does not needlessly rise in temperature due to the accumulation, so that each of the balls to which the lubricating oil is supplied is supplied. 13 can effectively work for lubrication and cooling of the portion where the 13 is present (the portion of the internal space 36), and by improving the lubrication and cooling performance, the life of the turbocharger can be improved, and the supercharging performance by further increasing the rotation speed can be improved. Can also be improved.
[0034]
Further, the retainer 33 basically requires only additional processing of the lubricating oil guide groove 35 to the retainer having the same structure as the conventional retainer 14 without the need to newly prepare a dedicated molding die or the like. Since it can be manufactured, an increase in manufacturing cost can be suppressed.
[0035]
Further, as shown in FIG. 3, the lubricating oil guide groove 35 is formed along a straight line 39 passing through the center of the pocket 15 and inclining by an angle θ from the axial direction in a direction opposite to the rotational direction, and By setting the angle θ in the range of 0 ≦ θ ≦ 45 °, the lubricating oil injected from the nozzle 20 can be easily taken into the lubricating oil guide groove 35.
[0036]
That is, when the rotating shaft 2 rotates, the inner ring 12 rotates integrally. With the rotation of the inner ring 12, the ball 13 in the bearing revolves while rolling on the inner ring raceway 11 of the inner ring 12. Accordingly, the retainer 33 rotates in the same direction as the inner ring 12 at a rotation speed lower than that of the inner ring 12.
[0037]
Therefore, a large part of the lubricating oil injected from the nozzle 20 and sprayed on the outer peripheral surface of the inner ring 12 rebounds along a straight line 39 inclined in a direction opposite to the rotation direction with respect to the inner peripheral surface of the cage. Therefore, the lubricating oil can be easily taken into the lubricating oil guide groove 35 formed along the straight line 39, and the lubrication and cooling of the internal space 36 can be further improved.
[0038]
The configurations of the rotary shaft, the ball bearings, the cage, the lubricating oil guide groove, and the like in the rotary support device for a turbocharger of the present invention are not limited to the configurations of the above-described embodiment, but are based on the gist of the present invention. It goes without saying that it can take various forms.
[0039]
【The invention's effect】
As described above, according to the rotary support device for a turbocharger of the present invention, most of the lubricating oil injected from the nozzle and rebounding on the outer peripheral surface of the inner ring is formed in a portion where each ball is present and an inner peripheral portion of the retainer. It is taken into the lubricating oil guide groove provided on the surface. That is, the centrifugal force acting on the lubricating oil attached to the inner peripheral surface of the retainer due to the rotation of the retainer moves the lubricating oil in the circumferential direction of the retainer and quickly drops into the nearest lubricating oil guide groove. .
[0040]
And the lubricating oil held in the lubricating oil guide groove intersecting with the circumferential direction is prevented from circling in the circumferential direction due to interfacial tension and centrifugal force, or from being separated and scattered, and Supplied in pocket. The lubricating oil held in the pocket adheres to the rolling surface of each ball, and can lubricate the inner surface of each pocket and the contact surface with the inner and outer raceways.
[0041]
Therefore, the lubricating oil adhering to the inner peripheral surface of the retainer does not stay on the inner peripheral surface of the retainer, and since the lubricating oil does not needlessly rise in temperature due to the retention, each ball as the supply destination is It can effectively work for lubrication and cooling of existing parts, and by improving lubrication and cooling performance, it is also possible to achieve an improvement in the life of the turbocharger and an improvement in supercharging performance by further increasing the rotation speed. .
[Brief description of the drawings]
FIG. 1 is a partial sectional view of a ball bearing constituting a rotation support device for a turbocharger according to an embodiment of the present invention.
FIG. 2 is a developed view of an inner peripheral surface of the cage shown in FIG.
FIG. 3 is a developed view of an inner circumferential surface of a retainer showing another embodiment of the lubricating oil guide groove shown in FIG. 2;
FIG. 4 is a longitudinal sectional view showing the entire configuration of the turbocharger.
FIG. 5 is an enlarged view of a portion A in FIG. 4;
6 is an enlarged sectional view of a ball bearing used in the turbocharger rotation support device shown in FIG. 5;
FIG. 7 is a partial sectional view of a ball bearing used in another conventional turbocharger rotation support device.
[Explanation of symbols]
2 Rotary shaft 3 Turbine 4 Impeller 10 Outer ring 12 Inner ring 13 Ball 20 Nozzle 32 Ball bearing 33 Cage 35 Lubricant guide groove 36 Internal space 100 Turbocharger

Claims (2)

一端にタービンが固定されると共に他端にインペラが固定された回転軸を、軸受ハウジングの内側に回転自在に支持する為、内外輪間に配置された複数個の玉をポケット内に転動自在に保持して外輪案内される円環状の保持器を備えた玉軸受を設け、該玉軸受の外部側方から内輪の外周面に向けて潤滑油を噴射供給するノズルを設けることにより、該玉軸受の潤滑を行う様に構成したターボチャージャ用回転支持装置において、
前記ノズルを設けた側の前記保持器の内周面に、該保持器の端面からポケットに連なる潤滑油誘導溝を各ポケット毎に設けたことを特徴とするターボチャージャ用回転支持装置。
A plurality of balls arranged between the inner and outer rings can be rolled into the pocket to rotatably support the rotating shaft with the turbine fixed at one end and the impeller at the other end inside the bearing housing. A ball bearing provided with an annular retainer that is held and guided by the outer ring, and a nozzle that supplies lubricating oil from the outer side of the ball bearing toward the outer peripheral surface of the inner ring is provided. In a rotation support device for a turbocharger configured to lubricate a bearing,
A rotary support device for a turbocharger, wherein a lubricating oil guide groove is provided for each pocket on an inner peripheral surface of the retainer on a side where the nozzle is provided, from the end face of the retainer to a pocket.
前記潤滑油誘導溝が、前記ポケットの中心を通り回転方向とは逆方向側に軸方向から角度θだけ傾いた直線に沿って形成されると共に、前記角度θが、0≦θ≦45゜の範囲に設定されることを特徴とする請求項1に記載のターボチャージャ用回転支持装置。The lubricating oil guide groove is formed along a straight line that passes through the center of the pocket and is inclined from the axial direction by an angle θ in a direction opposite to the rotation direction, and the angle θ is 0 ≦ θ ≦ 45 °. The rotation support device for a turbocharger according to claim 1, wherein the rotation support device is set to a range.
JP2002351481A 2002-12-03 2002-12-03 Rotation supporting device for turbocharger Pending JP2004183781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351481A JP2004183781A (en) 2002-12-03 2002-12-03 Rotation supporting device for turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351481A JP2004183781A (en) 2002-12-03 2002-12-03 Rotation supporting device for turbocharger

Publications (1)

Publication Number Publication Date
JP2004183781A true JP2004183781A (en) 2004-07-02

Family

ID=32753385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351481A Pending JP2004183781A (en) 2002-12-03 2002-12-03 Rotation supporting device for turbocharger

Country Status (1)

Country Link
JP (1) JP2004183781A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850019A1 (en) * 2005-01-17 2007-10-31 JTEKT Corporation Rolling bearing device and rotary device
JP2011001990A (en) * 2009-06-17 2011-01-06 Jtekt Corp Roller bearing device and rolling bearing used therefor
JP2012092934A (en) * 2010-10-28 2012-05-17 Nsk Ltd Ball bearing unit for turbocharger
EP2981694A4 (en) * 2013-04-04 2016-09-21 Borgwarner Inc Exhaust-gas turbocharger
CN107208542A (en) * 2015-09-10 2017-09-26 三菱重工业株式会社 The bearing arrangement and turbocharger of turbocharger
US9784315B2 (en) * 2013-10-22 2017-10-10 Ntn Corporation Bearing assembly for a turbocharger, and a method for manufacturing a bearing assembly for a turbocharger

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1850019A1 (en) * 2005-01-17 2007-10-31 JTEKT Corporation Rolling bearing device and rotary device
EP1850019A4 (en) * 2005-01-17 2009-04-22 Jtekt Corp Rolling bearing device and rotary device
US7883271B2 (en) 2005-01-17 2011-02-08 Jtekt Corporation Rolling bearing device and rotary apparatus
JP2011001990A (en) * 2009-06-17 2011-01-06 Jtekt Corp Roller bearing device and rolling bearing used therefor
JP2012092934A (en) * 2010-10-28 2012-05-17 Nsk Ltd Ball bearing unit for turbocharger
EP2981694A4 (en) * 2013-04-04 2016-09-21 Borgwarner Inc Exhaust-gas turbocharger
US9784315B2 (en) * 2013-10-22 2017-10-10 Ntn Corporation Bearing assembly for a turbocharger, and a method for manufacturing a bearing assembly for a turbocharger
CN107208542A (en) * 2015-09-10 2017-09-26 三菱重工业株式会社 The bearing arrangement and turbocharger of turbocharger

Similar Documents

Publication Publication Date Title
US8016554B2 (en) Combination hydrodynamic and rolling bearing system
US8740465B2 (en) Bearing system
US6733181B2 (en) Bearing unit
US10316691B2 (en) Bearing structure and turbocharger
JP5071150B2 (en) Bearing device for turbocharger
US20140270614A1 (en) Bearing system
KR910010159B1 (en) Centrifugal lubricating oil pump of an exhaust gas turbocharger
JPH1019045A (en) Deep groove ball bearing and supercharger employing it
WO2019135326A1 (en) Turbocharger
JP2004183781A (en) Rotation supporting device for turbocharger
JP2002039191A (en) Rotating support device for turbocharger
JP2009174701A (en) Rolling bearing
JP2002054450A (en) Rotary support device for turbo-charger
JP2005256893A (en) Rolling bearing for turbo charger
JP2002129969A (en) Rotation supporting device for turbocharger
JP2005127270A (en) Rolling bearing device for supporting impeller
JP2002129967A (en) Rotation supporting device for turbocharger
JP2005003187A (en) Rotatingly supporting device for turbocharger
JP2005106108A (en) Rolling bearing unit
JP6539507B2 (en) Bearing unit
US10544834B1 (en) Bearing for use in high speed application
JP2004100890A (en) Air oil lubricating structure for roller bearing
JP2002242937A (en) Cage of rolling bearing for turbocharger, manufacturing method thereof, and rotational support apparatus for turbocharger
JP4239536B2 (en) Bearing device for turbocharger
JP2003003856A (en) Rotary support means for turbocharger