JP4260597B2 - Fermentation processed product and production method thereof - Google Patents

Fermentation processed product and production method thereof Download PDF

Info

Publication number
JP4260597B2
JP4260597B2 JP2003346282A JP2003346282A JP4260597B2 JP 4260597 B2 JP4260597 B2 JP 4260597B2 JP 2003346282 A JP2003346282 A JP 2003346282A JP 2003346282 A JP2003346282 A JP 2003346282A JP 4260597 B2 JP4260597 B2 JP 4260597B2
Authority
JP
Japan
Prior art keywords
fermented
fermentation
absorbance
inhibitory activity
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003346282A
Other languages
Japanese (ja)
Other versions
JP2004141163A (en
Inventor
盛雄 稲福
哲也 藤野
恵 与那覇
興博 有銘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ryukyu Bio Resource Development Co Ltd
Original Assignee
Ryukyu Bio Resource Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ryukyu Bio Resource Development Co Ltd filed Critical Ryukyu Bio Resource Development Co Ltd
Priority to JP2003346282A priority Critical patent/JP4260597B2/en
Publication of JP2004141163A publication Critical patent/JP2004141163A/en
Application granted granted Critical
Publication of JP4260597B2 publication Critical patent/JP4260597B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、街路樹等に利用されているモモタマナの葉を、乳酸菌、酵母、枯草菌等により発酵させることで、優れた抗酸化活性や血糖値上昇抑制効果や肥満抑制効果や、生体内NO産生抑制活性を有する発酵処理物やその製造方法、これを含有する食品素材や食品に関する。   The present invention ferments the leaves of Momotamana used for street trees and the like with lactic acid bacteria, yeast, Bacillus subtilis, etc., so that it has excellent antioxidant activity, blood glucose level increase inhibitory effect, obesity suppressive effect, in vivo NO The present invention relates to a fermented product having production inhibitory activity, a method for producing the same, a food material containing the same, and a food.

モモタマナ(Terminalia catappa)はシクンシ科(Combretaceae)に属し、熱帯から亜熱帯にかけて植生する高木で、種子は海流によって散布され、沖縄では街路樹として広く利用されている。モモタマナの種子はアーモンドに似た風味があり食用されているが、種子以外の部分、例えば、25cm程度にもなる葉は皮革質であり食用には用いられてはいない。   Momotamana (Terminalia catappa) belongs to the family Combretaceae and is a vegetation that grows from the tropics to the subtropics. Seeds are scattered by ocean currents and are widely used as roadside trees in Okinawa. Momotamana seeds have a flavor similar to almonds and are edible, but portions other than the seeds, for example, leaves of about 25 cm, are leathery and are not used for edible purposes.

また、モモタマナを灰化して水や海水等で抽出した抽出物を、食品の殺菌・抗菌用としての日持向上剤(例えば、特許文献1参照。)や、食塩の代替え用としての植物ミネラル塩(例えば、特許文献2参照。)として使用することが知られている。しかしながら、この食品用殺菌剤等は灰化処理をして食品に適用されるものであり、皮革質のモモタマナの生葉あるいは乾燥葉を、食品や食品素材として活用することは全く考えられていなかった。   Further, an extract obtained by ashing Momotamana and extracting it with water or seawater is used as a shelf life improving agent for food sterilization and antibacterial use (for example, see Patent Document 1), or a plant mineral salt as a substitute for salt. (For example, refer to Patent Document 2). However, these food disinfectants and the like are applied to food after ashing, and it has not been considered at all to utilize raw or dried leaves of leather-like Momotamana as food or food materials. .

一方、哺乳類の細胞内において、一酸化窒素(NO)は重要な作用を有することが分かっている。NO合成酵素(nitric oxide synthetase、NOS)の触媒作用によってL−アルギニンからL−シトルリンとNOが産生される。ここで、NOSは、恒常型(constitutive NOS、cNOS)と誘導型(inducible NOS、iNOS)に分類され、cNOSは、血管内皮細胞や胃粘膜細胞において恒常的に低濃度のNOを産生する恒常型触媒作用を有し、他方、iNOSは、マクロファージや好中球などの炎症に関与する細胞、肝細胞や血管平滑筋において、リポポリサッカライド(LPS)、サイトカイン又は病原体等の刺激によって活性化されて非恒常的に多量のNOを産生する誘導型触媒作用を有する。例えば、生体内のマクロファージが病原体からの刺激を受けると、iNOSの発現量が増加し、L−アルギニンからNO産生が促進されることが明らかにされている。産生されたNOは、腫瘍細胞のミトコンドリア系内の電子伝達系酵素に作用してその活性を阻害し(免疫応答調節作用)、感染を阻害する。生体内でのNOの他の有効な作用としては、血管を弛緩させ血圧低下させたり、あるいは多核白血球や血小板の接着を阻止して血小板の凝集を妨ぐことが挙げられる。   On the other hand, nitric oxide (NO) has been found to have an important effect in mammalian cells. L-citrulline and NO are produced from L-arginine by the catalytic action of NO synthase (NOS). Here, NOS is classified into a constitutive type (constitutive NOS, cNOS) and an inductive type (inducible NOS, iNOS), and cNOS constantly produces a low concentration of NO in vascular endothelial cells and gastric mucosal cells. On the other hand, iNOS is activated by stimulation of lipopolysaccharide (LPS), cytokine or pathogen in cells involved in inflammation such as macrophages and neutrophils, hepatocytes and vascular smooth muscle. It has an inductive catalytic action that produces a large amount of NO non-constantly. For example, it has been clarified that when macrophages in a living body are stimulated by a pathogen, the expression level of iNOS increases and NO production is promoted from L-arginine. The produced NO acts on an electron transport enzyme in the mitochondrial system of tumor cells to inhibit its activity (immune response regulating action) and inhibit infection. Other effective actions of NO in vivo include relaxing blood vessels and lowering blood pressure, or preventing adhesion of multinucleated leukocytes and platelets to prevent platelet aggregation.

しかしながら、腎炎、肝障害や潰瘍性大腸炎、または慢性関節リウマチ、更にはアレルギー性疾患等の炎症性疾患によって、マクロファージから高濃度のNOが産生されると、NOによって周辺組織が傷害され、自己免疫現象と類似の症状が発現することがあり、例えば、敗血症を患っている場合には、大量のNOの産生により心筋収縮力によるショック症状(敗血症性ショック)が引き起こされる等、別の疾患の発症を誘発することもある。NOの過剰産生による組織や細胞の傷害、又は誘発される疾患の発現を防ぐため、NOが有効な濃度で生体内に存在するようにNOの産生を抑制する必要がある場合がある。このため、NOの産生に関与するNOSの作用を阻害するNOS阻害剤や、NO産生抑制剤の開発が進められており、代表的なNOS阻害剤としては、NG−モノメチル−L−アルギニン(L−NMMA)やNG−ニトロ−L−アルギニンメチルエステル(L−NAME)等のL−アルギニン誘導体(ここで、NGは、グアニジノ基のN原子にニトロ基などが付いていることを表す。)等、基質であるL−アルギニンの構造式と類似の構造式を有する化合物が挙げられる。iNOS誘導阻害剤としては、コルチコステロイドやセリン、システイン・プロテアーゼ阻害剤等があり、あるいは天然物由来のiNOS誘導阻害に基づくNO産生抑制作用を有する、月桂樹由来セスキテルペンのコスツノライド(costunolide)やデヒドロコスツラクトン(dehydrocostus lactone)(例えば、非特許文献1参照。)、ルバーブ由来スチルベンのルハポンチゲニン(rhapontigenin)、ピシアタンノール(piceatannol)、レスベラトロール(resveratrol)(例えば、非特許文献2参照。)、タクシャ由来トリテルペンのアリソール(alisol)F(例えば、非特許文献3参照。)等も報告されている。
特開2000−135074号公報 特開2000−4823号公報 Matsuda H., Kageura T., Toguchida I., UedaH., Morikawa T., Yoshikawa M.著 Life Sciences, 66巻, p. 2151−2157、2000年 Matsuda H., Kageura T., Morikawa T., Toguchida I., Harima S., Yoshikawa M.著Bioorganic&Medicinal Chemistry Letters, 10巻, p. 323−327、2000年 Matsuda H., Kageura T., Toguchida I., Murakami T., Kishi A., Yoshikawa M.著Bioorganic&Medicinal Chemistry Letters, 9巻, p. 3081−3086、1999年
However, when high concentrations of NO are produced from macrophages due to inflammatory diseases such as nephritis, liver damage, ulcerative colitis, rheumatoid arthritis, and allergic diseases, the surrounding tissues are damaged by NO and self- Symptoms similar to the immune phenomenon may occur. For example, when suffering from sepsis, the production of a large amount of NO causes shock symptoms due to myocardial contractility (septic shock). It can also trigger onset. In order to prevent tissue or cell damage due to excessive production of NO, or the development of induced diseases, it may be necessary to suppress the production of NO so that NO is present in the living body at an effective concentration. For this reason, the development of NOS inhibitors that inhibit the action of NOS involved in NO production and NO production inhibitors are being promoted. As typical NOS inhibitors, NG-monomethyl-L-arginine (L -NMMA) and L-arginine derivatives such as NG-nitro-L-arginine methyl ester (L-NAME) (where NG represents that a nitro group is attached to the N atom of the guanidino group). And a compound having a structural formula similar to that of L-arginine as a substrate. Examples of iNOS induction inhibitors include corticosteroids, serine, cysteine protease inhibitors and the like, or laurel derived sesquiterpene costunolide and dehydro having a NO production inhibitory action based on iNOS induction inhibition derived from natural products. Dehydrocostus lactone (see, for example, Non-Patent Document 1), rhubarb-derived stilbene, rhapontigenin, piceatannol, resveratrol (see, for example, Non-Patent Document 2), taxa A derived triterpene, alisol F (for example, see Non-Patent Document 3) and the like have also been reported.
Japanese Unexamined Patent Publication No. 2000-135074 JP 2000-4823 A Matsuda H., Kageura T., Toguchida I., UedaH., Morikawa T., Yoshikawa M. Life Sciences, 66, p. 2151-2157, 2000 Matsuda H., Kageura T., Morikawa T., Toguchida I., Harima S., Yoshikawa M. Bioorganic & Medicinal Chemistry Letters, 10, 323-327, 2000 Matsuda H., Kageura T., Toguchida I., Murakami T., Kishi A., Yoshikawa M., Bioorganic & Medicinal Chemistry Letters, 9, 3081-3086, 1999

本発明の課題は、抗酸化活性や血糖値上昇抑制作用を有する成分を含有する優れた天然資源の開発を目的とし、その硬さのため、食品や食品素材として利用することは考えるに至らなかったモモタマナの、食品や食品素材としての有効利用を図り、植物を発酵処理することにより、食感や食味を改善し、優れた抗酸化活性、血糖値上昇抑制作用や、肥満抑制作用を有する発酵処理物やその製造方法、発酵処理物を含有する食品素材や食品を提供することにある。   An object of the present invention is to develop an excellent natural resource containing a component having an antioxidant activity and a blood glucose level increase inhibitory activity, and due to its hardness, it is not considered to be used as a food or a food material. Fermented with peach molybana as a food or food material, fermented with plants to improve texture and taste, and have excellent antioxidant activity, blood glucose level increase inhibitory effect, and obesity inhibitory effect The object is to provide a processed food, a production method thereof, and a food material or food containing a fermented product.

本発明者らは、抗酸化活性作用等を有する有効成分を含有する優れた天然資源の開発のため、沖縄に自生する植物について、食材として利用されていない植物の有効利用を図る研究を行ない、アミラーゼ阻害活性や、抗酸化活性を有する成分を、葉に含有するグアバについて、発酵させた葉の薬効が増進されつつ渋味やえぐ味が抑制され食味が改善されることを見い出し、発酵させたグアバの葉を含む発酵食材を既に開発し(特願2001−63142号)、更に、ニガナ等のキク科植物の葉やシークワーサー等のミカン科植物の外果皮を乳酸菌等により発酵処理すると、食味が向上され、摂取しやすくなると共に、抗酸化性を有する有効成分のケルセチンの含量の増加に伴い抗酸化作用が増加し、血圧上昇抑制作用が強化されることを見い出し、乳酸発酵処理物等を開発した(特願2002−236155号)。本発明者らはミネラルを多く含有しながらその利用が十分にされていない植物について鋭意研究を重ね、沖縄で街路樹としてよく見られるモモタマナを研究の対象として選択し、モモタマナの葉等を乳酸菌等を用いて発酵させることにより得られる発酵処理物が発酵前には含有されないケルセチンを含有し、優れた抗酸化活性を有することを見い出し、本発明を完成するに至った。   In order to develop excellent natural resources containing active ingredients having an antioxidant activity and the like, the present inventors have conducted research aimed at effective use of plants that are not used as food materials for plants that naturally grow in Okinawa, For guava containing amylase inhibitory activity and antioxidant activity in the leaf, it was found that the medicinal effect of the fermented leaf was enhanced and the astringency and gummy taste were suppressed and the taste was improved and fermented. When fermented foods containing guava leaves have already been developed (Japanese Patent Application No. 2001-63142), and leaves of Asteraceae plants such as Japanese algae and pericarp of citrus plants such as Shikuwasa are fermented with lactic acid bacteria etc. It is improved and easy to take, and it is found that the antioxidant effect increases with the increase in the content of quercetin, which is an antioxidant, and the antihypertensive effect is enhanced. And have developed a lactic acid fermentation process or the like (Japanese Patent Application No. 2002-236155). The present inventors have conducted extensive research on plants that contain a large amount of minerals but have not been fully utilized, and have selected Momotamana, which is often found as a roadside tree in Okinawa, as a subject of research, and leaves of Momotamana, etc. It has been found that the fermented product obtained by fermenting with keratin contains quercetin, which is not contained before fermentation, and has excellent antioxidant activity, thereby completing the present invention.

すなわち本発明は、モモタマナ(Terminalia catappa)の葉を乾燥して粉砕し、該粉砕物に水と、炭水化物及び蛋白質とを添加し、ラクトバシルス・プランタリム(L. plantarum)、ストレプトコッカス・サーモフィルス(S. thermophilus)及びバシルス・ズブチルス(B. subtilis)の混合菌により発酵させて得られる、アミラーゼ阻害活性が保持され、ケルセチンが含有されていることを特徴とする発酵処理物(請求項1)や、生体内NO産生抑制活性が、未発酵処理モモタマナの葉に比して上昇していることを特徴とする請求項1記載の発酵処理物(請求項2)に関する。 That is, the present invention is to dry and pulverize the leaves of Momotamana (Terminalia catappa), add water, carbohydrates and proteins to the pulverized product, L. plantarum (L. plantarum), Streptococcus thermophilus (S thermophilus) and Bacillus subtilis (B. subtilis) fermented product obtained by fermentation, characterized in that amylase inhibitory activity is retained and quercetin is contained (claim 1) , vivo NO production inhibitory activity, relates to a fermentation process of claim 1, wherein that the elevated compared to leaves of unfermented processing Terminalia catappa (claim 2).

また、本発明は、請求項1又は2記載の発酵処理物を含有することを特徴とする食品素材又は食品(請求項)に関する。 The present invention also relates to a food material or food (claim 3 ), characterized by containing the fermented product according to claim 1 or 2 .

また本発明は、モモタマナ(Terminalia catappa)の葉を乾燥して粉砕し、該粉砕物に水と、炭水化物及び蛋白質とを添加し、ラクトバシルス・プランタリム(L. plantarum)、ストレプトコッカス・サーモフィルス(S. thermophilus)及びバシルス・ズブチルス(B. subtilis)の混合菌を使用して発酵させ、アミラーゼ阻害活性を保持し、ケルセチンを生じさせる発酵工程と、発酵後の処理物を乾燥させる乾燥工程を含むことを特徴とする発酵処理物の製造方法(請求項)や、生体内NO産生抑制活性を、未発酵処理モモタマナの葉に比して上昇させたことを特徴とする請求項記載の発酵処理物の製造方法(請求項)や、蛋白質が、米ぬか及び/又はふすまであることを特徴とする請求項4又は5記載の発酵処理物の製造方法(請求項)に関する。 In addition, the present invention also includes drying and crushing leaves of Momotamana (Terminalia catappa), adding water, carbohydrates and proteins to the pulverized product, and adding Lactobacillus plantarum, Streptococcus thermophilus (S Fermentation using a mixed bacterium of thermophilus and B. subtilis, including a fermentation process that retains amylase inhibitory activity and produces quercetin, and a drying process that dries the processed product after fermentation. method for producing a fermented product according to claim (claim 4) and, in vivo NO production inhibitory activity, fermentation treatment according to claim 4, wherein the raised compared to leaves of unfermented processing Terminalia catappa manufacturing method (claim 5) or of the object, proteins, a process for producing according to claim 4 or 5 fermentation treated according characterized in that it is a rice bran and / or wheat bran (claim 6)

本発明の発酵処理物やその製造方法によれば、有効成分を含有するモモタマナ植物について、発酵により食感や食味の改善を図り、ミネラルの豊富な食材として利用でき、ケルセチンの含有量を増加させ、優れた抗酸化活性を備え、アミラーゼ阻害活性を保持することにより血糖値上昇抑制効果や肥満抑制効果を有し、食品や食品素材としての利用価値が大きい。   According to the fermented product of the present invention and the method for producing the same, it is possible to improve the texture and taste by fermentation for the peach tamana plant containing the active ingredient, and can be used as a mineral-rich food, increasing the content of quercetin. Since it has excellent antioxidant activity and retains amylase inhibitory activity, it has an effect of suppressing the increase in blood glucose level and the effect of suppressing obesity, and has great utility as a food or food material.

本発明はモモタマナ(Terminalia catappa)の葉の乳酸発酵処理物であれば、特に制限されることはない。本発明に適用されるモモタマナは、シクンシ科に属し、熱帯から亜熱帯にかけて植生し、高さが20m以上にもなる高木であり、紅葉する植物である。モモタマナの発酵処理の対象となる部分は、葉、種子、果皮等いずれであってもよいが、葉が好適であり、生体であっても、乾燥体であってもよい。   The present invention is not particularly limited as long as it is a lactic acid fermentation processed product of leaves of Momotamana (Terminalia catappa). Momotamana, which is applied to the present invention, belongs to the family Sequimidae, is a vegetation that grows from the tropics to the subtropics, has a height of 20 m or more, and is a plant that turns red. The portion to be subjected to the fermentation process of peach tamana may be any of leaves, seeds, fruit peels, etc., but the leaves are suitable, and may be a living body or a dried body.

本発明の発酵処理物は、ケルセチン含量が3.00×10-3重量%以上であることを特徴とする。未発酵のモモタマナ中にはケルセチンは全く含有されないが、未発酵植物に含有されるケルセチン配糖体が発酵菌により加水分解を受けることで発酵処理物中に生成される。ケルセチンはアグリコンである抗酸化活性作用を有するため、モモタマナの発酵処理物においては、ケルセチンに起因する抗酸化活性が増大する。発酵によりケルセチンの含有量が3.00×10-3重量%以上、特に5.78×10-3重量%以上増大したものが好ましい。尚、ケルセチンの含有量の測定は、100%メタノールで抽出し、高速液体クロマトグラフィーで測定した値であり、発酵前後におけるケルセチン含量を図1に示す。 The fermented product of the present invention is characterized in that the quercetin content is 3.00 × 10 −3 wt% or more. Quercetin is not contained at all in the unfermented peach tamanana, but is produced in the fermented product by hydrolysis of the quercetin glycoside contained in the unfermented plant by the fermenting bacteria. Since quercetin has an antioxidant activity, which is an aglycon, the antioxidant activity caused by quercetin is increased in the fermented product of Momotamana. It is preferable that the content of quercetin is increased by 3.00 × 10 −3 wt% or more, particularly 5.78 × 10 −3 wt% or more by fermentation. The quercetin content was measured by extraction with 100% methanol and measured by high performance liquid chromatography. The quercetin content before and after fermentation is shown in FIG.

本発明の発酵処理物は抗酸化活性が優れたものである。抗酸化活性の強度はβカロテン法、DPPH法、ロダン鉄法等により測定することができる。ここで、βカロテン法とは、容易に酸化されることにより黄色が退色して透明になるβカロテンを利用した測定法であって、βカロテンとリノール酸及び被検体の混合液を自然酸化させ、一定時間における吸光度の減少が酸化されたβカロテンの量に相当することから、吸光度の変化を測定しβカロテンの酸化率を求める方法である。このβカロテンの酸化率は、その値が小さいものほど、即ち、βカロテンの酸化量が少ないものほど被検体の酸化反応が高速に進行したことを示し、その値が小さいと被検体の抗酸化活性が高いことを表す。また、DPPH法とは、1,1−ジフェニル−2−ピクリルヒドラジル(DPPH)を利用したラジカル消去能の測定による方法であり、ラジカルを容易に捕捉することにより黒紫色が退色するDPPHを使用し、被検体を加えた液にDPPHを添加すると即時に酸化され、吸光度の変化はラジカルを捕捉したDPPHの量に相当することから、吸光度の変化を測定しDPPHによるラジカル消費率を求める方法である。このラジカル消費率は、その値が小さいものほど、即ち、DPPHの消費量が少ないものほど被検体のラジカル捕捉反応(酸化反応)が高速に進行したことを示し、被検体の抗酸化活性が高いことを表す。   The fermented product of the present invention has excellent antioxidant activity. The strength of the antioxidant activity can be measured by β-carotene method, DPPH method, rhodan iron method and the like. Here, the β-carotene method is a measurement method using β-carotene, which is easily oxidized and fades yellow and becomes transparent, and naturally oxidizes a mixture of β-carotene, linoleic acid, and a specimen. Since the decrease in absorbance over a certain period of time corresponds to the amount of oxidized β-carotene, this is a method for measuring the change in absorbance and determining the oxidation rate of β-carotene. The lower the value of β-carotene oxidation rate, that is, the smaller the β-carotene oxidation amount, the faster the oxidation reaction of the specimen, and the smaller the value, the lower the oxidation rate of the specimen. Represents high activity. Further, the DPPH method is a method based on measurement of radical scavenging ability using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and DPPH whose black purple color fades by capturing radicals easily. When DPPH is added to the liquid to which the analyte has been added, it is immediately oxidized, and the change in absorbance corresponds to the amount of DPPH that has captured radicals. Therefore, the method of measuring the absorbance change and determining the radical consumption rate by DPPH It is. This radical consumption rate indicates that the smaller the value, that is, the smaller the DPPH consumption, the faster the radical capture reaction (oxidation reaction) of the specimen progressed, and the higher the antioxidant activity of the specimen. Represents that.

尚、ロダン鉄法とは、リノール酸の自動酸化の度合いを分光光度計(500nm)で測定する方法である。   The rhodan iron method is a method for measuring the degree of auto-oxidation of linoleic acid with a spectrophotometer (500 nm).

本発明の発酵処理物の抗酸化活性は、βカロテン法又はDPPH法のいずれの方法によって測定しても高い値を示している。上述のβカロテン法による本発明の発酵処理物の抗酸化活性の測定は、発酵処理物の80%エタノール抽出液又は熱水抽出液とβカロテンとの混合液からなるサンプルを数時間、例えば、4時間自然酸化させ、自然酸化前後における吸光を測定し、この吸光度の差から、発酵処理物の抽出液無添加のコントロールにおける吸光度の減少を100として換算した吸光度の減少率、即ち、酸化率を求めることができる。このようにして得られた本発明の発酵処理物の酸化率は、図2に示すように、80%エタノール抽出、熱水抽出のいずれの場合もコントロールと比較して低く、本発明の発酵処理物は発酵により抗酸化活性を損なわず、特に、熱水抽出による場合は、抗酸化剤として使用されるt−ブチル−4−オキシアニソール(BHA)又はビタミンE(α−Toc)に匹敵する優れた抗酸化活性を示す。尚、βカロテン法を適用するに当たり、サンプルの80%エタノール抽出は、サンプル1mgにつき1mLの80%エタノールによる抽出であり、熱水抽出は、サンプルの50倍重量の80℃の熱水による抽出である。   The antioxidant activity of the fermented product of the present invention shows a high value even when measured by either the β-carotene method or the DPPH method. The measurement of the antioxidant activity of the fermented processed product of the present invention by the β-carotene method described above is performed by using a sample consisting of an 80% ethanol extract of the fermented processed product or a mixture of hot water extract and β-carotene for several hours, for example, After 4 hours of natural oxidation, the absorbance before and after the natural oxidation was measured. From this difference in absorbance, the rate of decrease in absorbance in terms of the decrease in absorbance in the control without addition of the extract of the fermented product was calculated as 100, that is, the oxidation rate. Can be sought. As shown in FIG. 2, the oxidation rate of the fermented product of the present invention thus obtained is lower than that of the control in both 80% ethanol extraction and hot water extraction. The product does not impair the antioxidant activity by fermentation, and in particular, by hot water extraction, it is superior to t-butyl-4-oxyanisole (BHA) or vitamin E (α-Toc) used as an antioxidant. Antioxidant activity. In applying the β-carotene method, 80% ethanol extraction of a sample is extraction with 1 mL of 80% ethanol per 1 mg of sample, and hot water extraction is extraction with hot water at 80 ° C. that is 50 times the weight of the sample. is there.

また、DPPH法による本発明の発酵処理物の抗酸化活性の測定は、発酵処理物の80%エタノール抽出液又は熱水抽出液にDPPHを添加して30秒後における吸光度を測定し、DPPH添加前における吸光度との差から、発酵処理物の抽出液無添加のコントロールにおける吸光度の減少を100として換算した吸光度の減少率、即ち、ラジカル消費率を求めることができる。このようにして得られた本発明の発酵処理物のラジカル消費率は、図3に示すように、80%エタノール抽出、熱水抽出のいずれの場合もコントロールと比較して低く、本発明の発酵処理物は、DPPH法による測定においても、発酵により抗酸化活性は損なわれず、AsA又はα−Tocに匹敵する優れた抗酸化活性を示す。尚、DPPH法を適用するに当たり、サンプルの80%エタノール抽出、熱水抽出はβカロテン法における抽出と同様の方法によるものである。   Moreover, the measurement of the antioxidant activity of the fermented product of the present invention by the DPPH method is performed by adding DPPH to the 80% ethanol extract or hot water extract of the fermented product, measuring the absorbance after 30 seconds, and adding DPPH. From the difference from the previous absorbance, the rate of decrease in absorbance, that is, the radical consumption rate, can be determined by converting the decrease in absorbance in the control without addition of the extract of the fermented processed product to 100. As shown in FIG. 3, the radical consumption rate of the fermented product of the present invention thus obtained is lower than that of the control in both 80% ethanol extraction and hot water extraction, and the fermentation of the present invention. Even in the measurement by the DPPH method, the treated product does not impair the antioxidant activity by fermentation, and exhibits excellent antioxidant activity comparable to AsA or α-Toc. In applying the DPPH method, 80% ethanol extraction and hot water extraction of the sample are performed by the same method as the extraction in the β-carotene method.

本発明の発酵処理物はアミラーゼ阻害活性を有する。本発明の発酵処理物のアミラーゼ阻害活性は発酵処理により低減されず、特に、優れたα−アミラーゼ阻害活性を有する。マイクロプレート法により測定した本発明の発酵処理物のα−アミラーゼ阻害活性は図4に示すとおりである。マイクロプレート法とは、溶液中のデンプン濃度が濁度に比例することを利用してアミラーゼにより分解されたデンプンの量を、溶液の吸光度を測定してアミラーゼ阻害活性を検出する方法であり、その吸光度の値をアミラーゼ標準液を用いて作成した検量線を用い、被検体の見かけ上のアミラーゼ濃度を求め、実際のアミラーゼ濃度に対する割合からアミラーゼ活性値を求める。アミラーゼ活性値が小さいほど被検体のアミラーゼ阻害活性が高いものとなる。本発明の発酵処理物は発酵によってもアミラーゼ阻害活性を保持しており、アミラーゼ阻害活性に基づく血糖値上昇抑制剤や肥満抑制剤として適用することができる。   The fermented product of the present invention has amylase inhibitory activity. The amylase inhibitory activity of the fermented product of the present invention is not reduced by the fermentation treatment, and particularly has excellent α-amylase inhibitory activity. The α-amylase inhibitory activity of the fermented product of the present invention measured by the microplate method is as shown in FIG. The microplate method is a method for detecting the amylase inhibitory activity by measuring the amount of starch decomposed by amylase by utilizing the fact that the starch concentration in the solution is proportional to the turbidity, and measuring the absorbance of the solution. The apparent amylase concentration of the subject is determined using a calibration curve prepared using the amylase standard solution as the absorbance value, and the amylase activity value is determined from the ratio to the actual amylase concentration. The smaller the amylase activity value, the higher the amylase inhibitory activity of the subject. The fermented product of the present invention retains amylase inhibitory activity even by fermentation, and can be applied as a blood sugar level increase inhibitor or an obesity inhibitor based on the amylase inhibitory activity.

本発明の発酵処理物は生体内におけるNO産生抑制活性を有する。本発明の発酵処理物は生体内で種々の要因により過剰に発現し過剰なNOを生産するiNOSの発現を抑制することによりNO産生抑制活性を有する。本発明の発酵処理物のNO産生抑制活性は発酵処理により未発酵のモモタマナと比較して上昇しており、生体内、特にマクロファージにおける優れた過剰NO産生抑制活性を有し、マクロファージのNO産生に起因する疾病、例えば、毒性ショックや、LPSやIFN−γ等のサイトカインによる治療等による全身性血圧低下、血圧応答低下、自己免疫疾患、炎症、関節炎、リウマチ性関節炎、糖尿病、炎症性腸疾患、血管機能不全、病因性血管拡張、組織損傷、心臓血管系虚血、痛感過敏症、脳虚血、血管新生を伴う疾病、がん等に有用であり、これらの疾病の治療、予防剤として適用することができる。   The fermented product of the present invention has NO production suppressing activity in vivo. The fermented product of the present invention has NO production inhibitory activity by suppressing the expression of iNOS which is excessively expressed in vivo and produces excessive NO. The NO production inhibitory activity of the fermented product of the present invention is increased compared to unfermented peach tamana by fermentation treatment, and has an excellent excessive NO production inhibitory activity in vivo, particularly in macrophages. Diseases resulting from, for example, toxic shock, systemic blood pressure decrease by treatment with cytokines such as LPS and IFN-γ, blood pressure response decrease, autoimmune disease, inflammation, arthritis, rheumatoid arthritis, diabetes, inflammatory bowel disease, It is useful for vascular dysfunction, pathologic vasodilation, tissue damage, cardiovascular ischemia, hyperalgesia, cerebral ischemia, angiogenesis-related diseases, cancer, etc. can do.

かかるNO産生抑制作用は、化学発光法や電極法、電子スピン共鳴(ESR)法、Griess法等により測定することができる。Griess法はNOの代謝物であるNO2 -とGriess試薬(スルファニルアミドとN−(1−ナフチル)エチレンジアミン)とのジアゾ化カップリング反応により生成する赤色のアゾ化合物について吸光度を測定してその量を検出し、アゾ化合物の生成量からNO2 -量を算出し、コントロールにおけるNO2 -量の算出値を100として換算してNO2 -の生成量、即ち、NO生成量を求め、これから被検体のNO産生抑制率を算出し、NO産生抑制活性の評価の指標とするものである。 Such NO production inhibitory action can be measured by a chemiluminescence method, an electrode method, an electron spin resonance (ESR) method, a Griess method, or the like. Griess method is a metabolite of NO NO 2 - and Griess reagent the amount by measuring the absorbance for (sulfanilamide and N-(1-naphthyl) ethylenediamine) and red azo compound produced by diazotization coupling reaction detects, NO 2 from the amount of the azo compound - to calculate the amount, NO 2 in the control - by converting the calculated value of the amount as 100 NO 2 - production of, i.e., obtains the NO generation amount, the now The NO production suppression rate of the specimen is calculated and used as an index for evaluating the NO production inhibitory activity.

更に、これと併用して、MTT法等により生存細胞数を検出することにより、産生されたNO産生量を検出することができ、NO産生抑制活性の程度を求めることができる。かかるMTT法とは、3−(4,5−ジメチル−2−チアゾリル)−2,5−ジフェニル−2Hテトラゾリウムブロミド(MTT)が細胞内のミトコンドリアの脱水酵素の基質であり、生存能の高い細胞ほど還元されるMTT量が多く、その結果生じる黄色〜赤色のホルマザン量が生存細胞数とよく対応することを利用した方法であり、生細胞のみを測定することができる方法であり、630nmを参照波長とし570nmの波長におけるサンプルの吸光度を測定し、以下の計算式によりサンプルの細胞生存率を求めることができる。   Further, in combination with this, by detecting the number of viable cells by MTT method or the like, the amount of NO produced can be detected, and the degree of NO production inhibitory activity can be determined. In this MTT method, 3- (4,5-dimethyl-2-thiazolyl) -2,5-diphenyl-2H tetrazolium bromide (MTT) is a substrate for intracellular mitochondrial dehydrase, and has high viability. It is a method that utilizes the fact that the amount of MTT that is reduced to a large extent and the resulting yellow to red formazan amount corresponds well to the number of viable cells, and can measure only living cells, see 630 nm The absorbance of the sample at a wavelength of 570 nm is measured as the wavelength, and the cell viability of the sample can be determined by the following calculation formula.

細胞生存率=100×B/A
式中、Aはコントロールの570nmの吸光度から630nm吸光度を除した値、Bはサンプルの570nmの吸光度から630nm吸光度を除した値を示す。本発明の発酵処理物についてMTT法により検出した細胞生存率は、コントロールより高く、コントロールより多量の細胞が増殖されていることから、本発明の発酵処理物はNO産生抑制活性を有することが明かにされている。
Cell viability = 100 × B / A
In the formula, A represents a value obtained by dividing the absorbance at 570 nm from the absorbance at 570 nm for the control, and B represents a value obtained by dividing the absorbance at 570 nm for the sample from the absorbance at 630 nm. The cell viability detected by the MTT method for the fermented product of the present invention is higher than that of the control, and a larger amount of cells are grown than the control. Therefore, it is clear that the fermented product of the present invention has NO production inhibitory activity. Has been.

本発明の発酵処理物の製造方法は、モモタマナ植物を発酵させる方法であれば特に制限されるものではないが、発酵処理するために使用される微生物としては、乳酸菌、酵母、枯草菌を挙げることができ、これらを単独又は2種以上を適宜組み合わせて使用することもでき、これらのうち乳酸菌を用いることが好ましく、乳酸菌単独、乳酸菌と酵母、乳酸菌と枯草菌、又は乳酸菌と酵母と枯草菌等の組み合わせとして使用することができる。   The method for producing a fermented processed product of the present invention is not particularly limited as long as it is a method for fermenting a peach tamana plant, but examples of microorganisms used for fermenting include lactic acid bacteria, yeasts, and Bacillus subtilis. These can be used alone or in combination of two or more, and lactic acid bacteria are preferably used among them, lactic acid bacteria alone, lactic acid bacteria and yeast, lactic acid bacteria and Bacillus subtilis, or lactic acid bacteria and yeast and Bacillus subtilis, etc. Can be used as a combination.

本発明の発酵処理物の製造方法に用いられる乳酸菌としては、ストレプトコッカス属(Storeptococcus)、ラクトバシルス属(Lactobacillus)、ロイコノストック属(Leuconostoc)、ペディオコッカス属(Pediococcus)、ビフィドバクテリウム属(Bifidobacterium)又はテトラジェノコッカス属(Tetragenococcus)のいずれかに属する菌が好ましく、特にラクトバシルス属が好ましい。上記ストレプトコッカス属に属する菌としては、ストレプトコッカス・サーモフィルス(S. thermophilus)であることが好ましく、ストレプトコッカス・サーモフィルスIFO13957菌株を具体的に例示することができる。また、ラクトバシリルス属に属する菌としては、ラクトバシルス・プランタリム(L. plantrum)、ラクトバシルス・デルブリッキ(L. delbruckii)、ラクトバシルス・ペントサス(L. pentosus)又はラクトバシルス・カセイ(L. casei)のいずれかに属する菌であることが好ましく、これらの菌のうち、特にラクトバシルス・プランタリムが好ましい。かかるラクトバシルス・プランタリムとしてIFO14712菌株やIFO14713菌株を、ラクトバシルス・デルブリッキとしてIFO13953菌株を、ラクトバシルス・ペントサスとしてIFO12011菌株を、ラクトバシルス・カセイとしてIFO15883菌株を、それぞれ具体的に例示することができる。また、テトラジェノコッカス属に属する菌としては、テトラジェノ・ハロフィルス(T. halophilus)であることが好ましく、テトラジェノ・ハロフィルスIFO12172菌株を具体的に例示することができる。これら乳酸菌は、モモタマナの葉の乾物1gあたり、通常103〜107個、特に106〜107個用いることが好ましい。 Examples of lactic acid bacteria used in the method for producing a fermented product of the present invention include Streptococcus, Lactobacillus, Leuconostoc, Pediococcus, Bifidobacterium ( Bifidobacterium) or bacteria belonging to the genus Tetragenococcus are preferred, and the genus Lactobacillus is particularly preferred. The bacterium belonging to the genus Streptococcus is preferably Streptococcus thermophilus (S. thermophilus), and specific examples include Streptococcus thermophilus IFO13957 strain. In addition, as a bacterium belonging to the genus Lactobacillus, any of Lactobacillus plantarim (L. plantrum), Lactobacillus delbruckii (L. delbruckii), Lactobacillus pentosus (L. pentosus) or Lactobacillus casei (L. casei) Among these bacteria, Lactobacillus plantarim is particularly preferable. Specific examples of such Lactobacillus plantarim include IFO14712 and IFO14713 strains, Lactobacillus delbriqui as IFO13953 strain, Lactobacillus pentosus as IFO12011 strain, and Lactobacillus casei as IFO15883 strain. Moreover, as a microbe which belongs to Tetragenococcus genus, it is preferable that it is Tetrageno halophyllus (T. halophilus), and tetrageno halophyllus IFO12172 strain can be illustrated concretely. These lactic acid bacteria are preferably used in an amount of usually 10 3 to 10 7 , particularly 10 6 to 10 7 , per 1 g of dry matter of leaves of Momotamana.

また、本発明の発酵処理物の製造方法において用いられる酵母は、主として香りの改善のために添加され、かかる酵母としては、カンジダ属(Candida)又はサッカロマイセス属(Saccharomyces)に属する菌が好ましい。かかるカンジダ属に属する菌として、カンジダ・ビルサチルス(Candida versatilis)であることが好ましく、カンジダ・ビルサチルスとしてIFO10038菌株を具体的に例示することができる。サッカロマイセス属に属する菌として、サッカロマイセス・セレビシアエ(S. cerevisiae)であることが好ましく、サッカロマイセス・セレビシアエとしてIFO0555菌株を具体的に例示することができる。これら酵母菌は、モモタマナの葉の乾物1gあたり、通常103〜107個、特に106〜107個用いることが好ましい。 The yeast used in the method for producing a fermented product of the present invention is added mainly for the improvement of aroma, and as such yeast, a bacterium belonging to the genus Candida or Saccharomyces is preferable. As such a bacterium belonging to the genus Candida, Candida versatilis is preferable, and IFO10038 strain can be specifically exemplified as Candida versatilis. The bacterium belonging to the genus Saccharomyces is preferably S. cerevisiae, and IFO0555 strain can be specifically exemplified as Saccharomyces cerevisiae. It is preferable to use 10 3 to 10 7 , especially 10 6 to 10 7 , of these yeasts per 1 g of dry matter of Momotamana leaves.

更に、本発明の発酵処理物の製造方法において用いられる枯草菌としては、バシルス・ズブチルス(B. subtilis)IFO3013菌株を具体的に例示することができる。これら枯草菌は、モモタマナの葉の乾物1gあたり、通常103〜107個、特に106〜107個用いることが好ましい。 Furthermore, as a Bacillus subtilis used in the manufacturing method of the fermented material of this invention, a Bacillus subtilis (B. subtilis) IFO3013 strain can be illustrated specifically. It is preferable to use 10 3 to 10 7 , especially 10 6 to 10 7 of these Bacillus subtilis per gram of dry matter of Momotamana leaves.

本発明の発酵処理物の製造方法において、好ましく用いられる微生物群としては、乳酸菌、酵母及び枯草菌を含む微生物群が好ましく、これら微生物群の中でも、ラクトバシルス・プランタリム、ストレプトコッカス・サーモフィルス、バシルス・ズブチルスの混合菌であることが好ましく、これらはモモタマナの葉の乾物に対し、菌数として同数を使用することが好ましい。このような菌数の組合せにおいて菌を使用することにより、発酵時間の短縮を図り、ひいては雑菌の繁殖を抑制することができる。   In the method for producing a fermented product of the present invention, the microorganism group preferably used is a microorganism group including lactic acid bacteria, yeast and Bacillus subtilis, and among these microorganism groups, Lactobacillus plantarim, Streptococcus thermophilus, Bacillus. It is preferable that they are mixed bacteria of subtilis, and it is preferable to use the same number as the number of bacteria for the dry matter of the leaves of Momotamana. By using the bacteria in such a combination of the number of bacteria, the fermentation time can be shortened and consequently the propagation of various bacteria can be suppressed.

本発明の発酵処理物の製造方法においては、上記モモタマナの葉の乾燥体を、3mm以下、好ましくは0.5〜1.0mmの粒径まで粉砕する。3mm以下の粒径とすることにより、発酵菌との接触面積を十分に確保することができ、発酵を効果的に進行させることができ、0.5〜1.0mmの範囲の粒径であれば、かかる効果がより顕著に得られる。このような植物の粉砕物に、発酵の進行を促進するため、乾物1重量部に対し、1〜10重量部、特に4〜6重量部程度の水分を添加することが好ましい。かかる粉砕植物に、上述の菌又は菌群を添加する。菌群は各々菌を培養後、培地へ添加する前に予め混合し、乾燥体である場合の植物の重量に対して、1〜10重量%添加することが好ましい。発酵は、温度20〜50℃、好ましくは40℃で行なわれることが好ましく、発酵時間は、pHや、菌数等の条件による発酵の進行状況や、嗜好により適宜選択することができ、例えば、pH4〜5、菌数106以上であれば、約72時間とすることが好ましい。発酵処理時、必要に応じてエアレーションや脱酸素処理を行なうことができるが、脱酸素処理後に静置培養において発酵させることができる。発酵形式は、液体培養でなく固体培養が好ましい。 In the method for producing a fermented product of the present invention, the dried leaf of the above-mentioned Momotamana is pulverized to a particle size of 3 mm or less, preferably 0.5 to 1.0 mm. By setting the particle size to 3 mm or less, a sufficient contact area with the fermenting bacteria can be secured, fermentation can proceed effectively, and the particle size in the range of 0.5 to 1.0 mm. This effect can be obtained more remarkably. In order to promote the progress of fermentation, it is preferable to add 1 to 10 parts by weight, particularly about 4 to 6 parts by weight, of water to 1 part by weight of dry matter. To the pulverized plant, the above-mentioned fungus or fungus group is added. It is preferable to add 1 to 10% by weight of each fungus group after culturing each fungus before mixing to the medium and adding to the medium in advance. Fermentation is preferably performed at a temperature of 20 to 50 ° C., preferably 40 ° C., and the fermentation time can be appropriately selected depending on the progress of fermentation under conditions such as pH and the number of bacteria, and preference. If the pH is 4 to 5 and the number of bacteria is 10 6 or more, it is preferably about 72 hours. At the time of fermentation treatment, aeration and deoxygenation treatment can be performed as necessary, but after the deoxygenation treatment, fermentation can be performed in stationary culture. The fermentation format is preferably solid culture rather than liquid culture.

かかる発酵処理において、発酵菌の資化剤として炭水化物や蛋白質を添加することができる。資化剤としての炭水化物は市販のブドウ糖、蔗糖、廃糖蜜等の糖が好ましく、これらの添加量としては培地当たり1〜10重量%が好ましく、特に3重量%前後が適当である。資化剤としての蛋白質は米糠、ふすま等が好ましく、これらの添加量としては培地当たり1〜5重量%が好ましい。これらの資化剤は1種を単独で、又は2種以上を混合して用いてもよい。   In such a fermentation treatment, carbohydrates and proteins can be added as an agent for fermenting bacteria. The carbohydrate as the assimilating agent is preferably a commercially available sugar such as glucose, sucrose, molasses, etc., and the amount of these added is preferably 1 to 10% by weight per medium, particularly around 3% by weight. The protein as an assimilating agent is preferably rice bran, bran or the like, and the addition amount thereof is preferably 1 to 5% by weight per medium. These assimilating agents may be used alone or in combination of two or more.

発酵終了後、乾燥機により水分値が10重量%以下となるように乾燥させることが好ましく、乾燥方法としては、加熱乾燥や凍結乾燥によることができ、加熱乾燥の場合は、品温が100℃以下で行われることが、生理活性成分の失活を防止することができるため好ましい。乾燥後、必要に応じて加熱等公知の方法により滅菌処理を行ない、食品素材や、エキスの原料として使用される発酵処理物が得られる。   After completion of fermentation, it is preferable to dry with a dryer so that the moisture value is 10% by weight or less. As a drying method, heat drying or freeze drying can be used. In the case of heat drying, the product temperature is 100 ° C. It is preferable that the following is performed because the deactivation of the physiologically active ingredient can be prevented. After drying, if necessary, sterilization is performed by a known method such as heating to obtain a food material or a fermented product used as an extract raw material.

本発明の発酵処理物は、食品素材としては発酵処理物自体や、飲用水に抽出したエキスから作製するタブレット、顆粒、カプセル等や、ティーバック、ペットボトル、缶、ドリンク剤用の茶葉を挙げることができる。また、発酵処理物自体や抽出したエキスから作製する顆粒等をふりかけ等の食品素材として利用したり、健康食品として利用することもできる。また、かかるエキスや顆粒を飲用水や、ジュース等に溶解した飲料や、パン、ケーキ、煎餅などの焼き菓子、羊羹などの和菓子、冷菓、チューインガム、ゼリー等のパン・菓子類や、うどん、そば等の麺類や、かまぼこ、ハム、魚肉ソーセージ等の魚肉練り製品や、みそ、しょう油、ドレッシング、マヨネーズ、甘味料等の調味類や、チーズ、バター、ヨーグルト、アイスクリーム、プディング等の乳製品や、豆腐、こんにゃく、その他佃煮等の各種総菜に配合した食品として使用することができる。   The fermented processed product of the present invention includes, as food materials, fermented processed products themselves, tablets, granules, capsules, etc. prepared from extracts extracted into drinking water, tea bags, plastic bottles, cans, tea leaves for drinks be able to. In addition, the fermented product itself or granules produced from the extracted extract can be used as a food material such as sprinkles, or as a health food. In addition, beverages in which such extracts and granules are dissolved in drinking water or juice, baked confectionery such as bread, cakes, rice crackers, Japanese confectionery such as sheep confectionery, bread and confectionery such as frozen confectionery, chewing gum, jelly, udon, soba Noodles such as kamaboko, ham and fish sausage, seasonings such as miso, soy sauce, dressing, mayonnaise, sweeteners, dairy products such as cheese, butter, yogurt, ice cream, pudding, and tofu It can be used as a food blended with various side dishes such as konjac and other boiled salmon.

また、本発明の発酵処理物のエキス等を抗酸化活性組成物や肥満抑制剤や、マクロファージのNO産生に起因する疾病、炎症、がん等の治療・予防剤等の医薬品として用いることもでき、その場合は、薬学的に許容される通常の担体、結合剤、安定化剤、賦形剤、希釈剤、pH緩衝剤、崩壊剤、可溶化剤、溶解補助剤、等張剤などの各種調剤用配合成分を添加することができる。またこれら予防若しくは治療剤は、経口的又は非経口的に投与することができる。すなわち通常用いられる投与形態、例えば粉末、顆粒、カプセル剤、シロップ剤、懸濁液等の剤型で経口的に投与することができ、あるいは、例えば溶液、乳剤、懸濁液等の剤型にしたものを注射の型で非経口投与することもできる他、スプレー剤の型で鼻孔内投与することもできる。   In addition, the extract of the fermented product of the present invention can also be used as a pharmaceutical agent such as an antioxidant active composition, an obesity inhibitor, or a therapeutic / preventive agent for diseases, inflammation, cancer, etc. caused by macrophage NO production. In that case, various pharmaceutically acceptable carriers, binders, stabilizers, excipients, diluents, pH buffers, disintegrants, solubilizers, solubilizers, isotonic agents, etc. Formulation ingredients can be added. These preventive or therapeutic agents can be administered orally or parenterally. That is, it can be administered orally in commonly used dosage forms, such as powders, granules, capsules, syrups, suspensions, etc., or, for example, in dosage forms such as solutions, emulsions, suspensions, etc. These can be administered parenterally in the form of injections, or can be administered intranasally in the form of sprays.

以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, the technical scope of this invention is not limited to these illustrations.

[発酵処理物の製造]
乾燥したモモタマナの葉30gを0.1〜3mmの粒径に粉砕し容器に入れた。モモタマナを入れた容器に水150g、糖蜜0.9g、米ぬか0.9gを添加した。かかる粉砕モモタマナを収納した容器に、ラクトバシルス・プランタリム、ストレプトコッカス・サーモフィルス、バシルス・ズブチルスの各々の菌を培養後、菌数1:1:1の割合で混合し、モモタマナの重量に対し、10重量%を添加し、容器を密閉し、静置培養により発酵を行った。発酵温度は40℃、発酵時間は72時間とした。その後、乾燥機により水分値が10重量%以下になるまで60℃で乾燥した後、滅菌処理(130℃蒸気、5〜15秒)を行い、発酵モモタマナ30gを得た。
[Manufacture of fermented products]
30 g of dried Momotamana leaves were pulverized to a particle size of 0.1 to 3 mm and placed in a container. 150 g of water, 0.9 g of molasses, and 0.9 g of rice bran were added to a container containing Momotamana. After culturing each of the bacteria of Lactobacillus plantarim, Streptococcus thermophilus, and Bacillus subtilis in a container containing the pulverized peach tamamana, the bacteria were mixed at a ratio of 1: 1: 1. Weight% was added, the container was sealed, and fermentation was performed by static culture. The fermentation temperature was 40 ° C. and the fermentation time was 72 hours. Then, after drying at 60 degreeC until the moisture value became 10 weight% or less with a dryer, the sterilization process (130 degreeC vapor | steam, 5 to 15 second) was performed, and 30 g of fermented peach tamana was obtained.

[発酵処理物の成分含有量の測定]
各種ミネラルについて発酵前と発酵後の含有量を測定した。測定は原子吸光法により行った。
[Measurement of component content of fermented product]
About various minerals, content before fermentation and after fermentation was measured. The measurement was performed by atomic absorption method.

試料0.5gをユニシールに入れ、硝酸10mLを加え、150℃で90分間反応させた。放冷後、100mLトールビーカーに移し、塩酸:過酸化水素(1:1)溶液を10mL加えサンドバス上にて蒸発乾固した後、希塩酸10mLを加え加熱した。放冷後50mLに定容し測定用サンプルとした。調製したサンプルは適宜希釈し、原子吸光度計(SHIMADZU社製:AA−660)を用い各種ミネラルの含有量を測定した。結果を表1に示す。   0.5 g of the sample was put in a uni-seal, 10 mL of nitric acid was added, and the mixture was reacted at 150 ° C. for 90 minutes. After cooling, the mixture was transferred to a 100 mL tall beaker, 10 mL of hydrochloric acid: hydrogen peroxide (1: 1) solution was added and evaporated to dryness on a sand bath, and then 10 mL of diluted hydrochloric acid was added and heated. After standing to cool, the volume was adjusted to 50 mL to obtain a measurement sample. The prepared sample was appropriately diluted, and the contents of various minerals were measured using an atomic absorption meter (manufactured by SHIMADZU: AA-660). The results are shown in Table 1.

Figure 0004260597
Figure 0004260597

[βカロテン法による抗酸化活性の測定]
(1)サンプルの調製
実施例1で得られた発酵モモタマナについて、発酵モモタマナ1mgに対して80%エタノール1mLで抽出したサンプルと、発酵モモタマナの50重量部の80℃熱水で抽出した各サンプルを調製した。
(2)試薬の調製
リノール酸(東京化成(株)社製)1gをクロロホルムに溶解して10mLとしたリノール酸溶液0.2mLと、β−カロテン(WAKO(株)社製)10mgをクロロホルムに溶解して10mLとしたβカロテン溶液0.25mLと、ツイーン40(WAKO(株)社製)2gをクロロホルムに溶解して10mLとしたツイーン40溶液0.5mLとを混合し、窒素ガスを噴きつけクロロホルムを完全に除去した後、蒸留水45mLと0.2Mリン酸緩衝液5mLを加え攪拌し、試薬を調製した。
(3)測定
各サンプル0.1mLと上記試薬4.9mLとを混合し、50℃で4時間インキュベートした。インキュベート前後において、サンプルの吸光度(470nm)を分光光度計(島津(株)社製、UV−1200V)を用いて測定した。コントロールとして水を用い、コントロールのインキュベート前後の吸光度の差を100としたときの、サンプルのインキュベート前後の吸光度の差の値を、酸化率として求めた。結果を表2に示す。
[Measurement of antioxidant activity by β-carotene method]
(1) Preparation of sample About the fermented peach tamana obtained in Example 1, the sample extracted with 1 mL of 80% ethanol with respect to 1 mg of the fermented peach tamamana, and each sample extracted with 50 parts by weight of the fermented peach tamamana at 80 ° C hot water. Prepared.
(2) Preparation of Reagents 0.2 g of linoleic acid solution (manufactured by Tokyo Chemical Industry Co., Ltd.) 1 g dissolved in chloroform to 10 mL and 10 mg of β-carotene (manufactured by WAKO Co., Ltd.) in chloroform 0.25 mL of β-carotene solution dissolved to 10 mL and 2 mL of Tween 40 (manufactured by WAKO Co., Ltd.) 2 mL in chloroform were mixed with 0.5 mL of Tween 40 solution, and nitrogen gas was sprayed. After completely removing chloroform, 45 mL of distilled water and 5 mL of 0.2 M phosphate buffer were added and stirred to prepare a reagent.
(3) Measurement 0.1 mL of each sample and 4.9 mL of the above reagent were mixed and incubated at 50 ° C. for 4 hours. Before and after incubation, the absorbance (470 nm) of the sample was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-1200 V). Using water as a control, the difference in absorbance between before and after incubation of the sample when the difference in absorbance between before and after incubation of the control was taken as 100 was determined as the oxidation rate. The results are shown in Table 2.

比較例として、発酵前のモモタマナ、BHA、α−Tocについて同様に行なった。結果を表2に示す。   As a comparative example, the same procedure was performed for Momotamana, BHA, and α-Toc before fermentation. The results are shown in Table 2.

Figure 0004260597
Figure 0004260597

[DPPH法による抗酸化活性の測定]
実施例3と同様にして調製したサンプル0.05mLに、0.05Mトリス−塩酸緩衝液(pH7.4)(WAKO(株)社製)0.95mLと、0.1mMDPPH−エタノール溶液(WAKO(株)社製)1.0mLと、100%エタノール1.0mLとを混合して得た試薬を添加した。試薬添加前と、添加30秒後の吸光度(517nm)を測定した。コントロールとして水を用い、コントロールの試薬添加前後の吸光度の差を100としたときの、サンプルの試薬添加前後の吸光度の差の値を、ラジカル消費率として求めた。結果を表3にしめす。
[Measurement of antioxidant activity by DPPH method]
To 0.05 mL of the sample prepared in the same manner as in Example 3, 0.95 mL of 0.05 M Tris-HCl buffer (pH 7.4) (manufactured by WAKO) and 0.1 mM DPPH-ethanol solution (WAKO ( A reagent obtained by mixing 1.0 mL of 100% ethanol and 1.0 mL of 100% ethanol was added. Absorbance (517 nm) was measured before the addition of the reagent and 30 seconds after the addition. Water was used as a control, and the difference in absorbance between before and after the addition of the reagent to the sample, when the difference in absorbance between before and after the addition of the control reagent as 100, was determined as the radical consumption rate. The results are shown in Table 3.

比較例として、発酵前のモモタマナ、AsA、α−Tocについて同様に行なった。結果を表3に示す。   As a comparative example, the same procedure was performed for Momotamana, AsA, and α-Toc before fermentation. The results are shown in Table 3.

Figure 0004260597
Figure 0004260597

[ケルセチンの含有量の測定]
実施例1で得られた発酵モモタマナのケルセチンの含有量について、サンプルを100%メタノールで抽出し、高速液体クロマトグラフィー(HPLC)(SHIMADZU(株)社製)で測定したところ5.78mg%であった。これに対し、発酵前のモモタマナではケルセチンの含有量は認められなかった。結果からも、発酵によりケルセチンが生成されることが明らかである。
[Measurement of Quercetin Content]
About content of the quercetin of fermented peach tamana obtained in Example 1, when a sample was extracted with 100% methanol and measured by high performance liquid chromatography (HPLC) (made by SHIMADZU Co., Ltd.), it was 5.78 mg%. It was. On the other hand, the content of quercetin was not recognized in Momotamana before fermentation. From the results, it is clear that quercetin is produced by fermentation.

[α−アミラーゼ阻害活性の測定]
デンプン(SIGMA(株)社製)1重量%のクエン酸緩衝液と、寒天(WAKO(株)社製)3.2重量%のクエン酸緩衝液とを1:1の割合で混合して調製した試薬を測定用マイクロプレートに200μLずつ分注し、37℃で10分間インキュベートした。インキュベートしたマイクロプレートに、実施例1で得られた発酵モモタマナ1gに対して50%エタノール溶液20mLで抽出した抽出物を、水で2倍希釈した液0.1mLと、10.8unit濃度のα−アミラーゼ溶液(SIGMA(株)社製)0.9mLとを混合して得られたサンプル25μLずつをマイクロプレート上に分注し、37℃で5分間インキュベートし、吸光度(655nm)をマイクロプレートリーダー(日本バイオ・ラッド ラボラトリー(株)社製:Model550)で測定した。更に37℃で1時間インキュベートを行ない、同様にして吸光度を測定した。コントロールとして上記試薬に0.108、1.08、10.8unit濃度のα−アミラーゼ溶液を添加して同様にインキュベートした後の吸光度から作成した検量線からサンプルを添加した場合の見かけ上のα−アミラーゼ濃度を求め、見かけ上のα−アミラーゼ濃度の実際のα−アミラーゼ濃度10.8unitに対する割合として、α−アミラーゼ活性を求めた。結果を表4に示す。
[Measurement of α-amylase inhibitory activity]
Prepared by mixing 1% by weight citrate buffer of starch (manufactured by SIGMA) and 3.2% by weight of citrate buffer of agar (manufactured by WAKO) at a ratio of 1: 1. The reagent was dispensed at 200 μL each on a measurement microplate and incubated at 37 ° C. for 10 minutes. On the incubated microplate, an extract extracted with 20 mL of a 50% ethanol solution with respect to 1 g of fermented Momota mana obtained in Example 1, 0.1 mL of a solution diluted twice with water and α-α having a concentration of 10.8 units. 25 μL of a sample obtained by mixing 0.9 mL of an amylase solution (manufactured by SIGMA) was dispensed onto a microplate, incubated at 37 ° C. for 5 minutes, and the absorbance (655 nm) was measured with a microplate reader ( Japan Bio-Rad Laboratory Co., Ltd. Model 550). Furthermore, incubation was performed at 37 ° C. for 1 hour, and the absorbance was measured in the same manner. As a control, an apparent α-in the case where a sample is added from a calibration curve prepared from the absorbance after addition of an α-amylase solution having a concentration of 0.108, 1.08, and 10.8 units to the above-mentioned reagent and incubation. The amylase concentration was determined, and the α-amylase activity was determined as the ratio of the apparent α-amylase concentration to the actual α-amylase concentration of 10.8 units. The results are shown in Table 4.

結果から、発酵モモタマナについて顕著なα−アミラーゼ阻害活性が認められた。   From the results, remarkable α-amylase inhibitory activity was observed for fermented Momotamana.

Figure 0004260597
Figure 0004260597

[NO産生抑制活性の評価]
(1)サンプルの調製
実施例1で得られた発酵モモタマナについて、発酵モモタマナ1gに対して80%エタノール水溶液10mLを加え12時間静置抽出した後、濾液と濾過残渣に分離した。濾過残渣に80%エタノール水溶液10mLを加え、再度同様に抽出後、濾過して濾液を得た。得られた濾液を合わせ、1mL中に発酵モモタマナ10mg由来の抽出物が溶解するように、濃度調整してサンプルを調製した。
(2)NO産生
24穴マイクロプレートに2×105 cell/ウェルになるようにマウスマクロファージ由来RAW264.7細胞(ATCCから購入)を加え、37℃で12時間前培養した。その後、PBS1mLで2回洗浄し、DMEM培地を0.5mL加え、サンプルを5μL加え、サンプル最終濃度を4μg/mLとした。コントロールにはDMSO5μLを用いた。これに、L−アルギニン10μL(最終濃度を2mMとした。)、LPS(SIGMA社製)を10μL(最終濃度を100ng/mLとした。)、IFN−γ(Genzyme社製)10μL(最終濃度を100U/mLとした。)と、DMEM培地0.5mLとを加え、プレートをよく振り混ぜ、37℃で24時間培養した。
(3)NO2 -測定
培養上清500μLに以下の組成のGriess試薬を500μL加え、攪拌後、543nmにおける吸光度を分光光度計(UV−1200V:島津社製)で測定した。コントロールの場合の吸光度を100としてサンプルの吸光度を測定した。測定値を表5に示す。測定した吸光度からNO2 -生成量の減少割合をNO産生抑制率として、下記の式により算出し、細胞内におけるNO産生抑制活性の評価の指標とした。尚、測定は5回行ない、その平均値をNO産生抑制活性の値とした。結果を表5及び図5に示す。尚、図5中のp値はStudent's t−testを用いて算出した(*:p<0.05)。
[Evaluation of NO production inhibitory activity]
(1) Preparation of sample About 10% of fermented peach tamana obtained in Example 1, 10 mL of 80% ethanol aqueous solution was added to 1 gram of fermented peach tamamana, followed by standing extraction for 12 hours, and then separated into a filtrate and a filtration residue. 10 mL of 80% ethanol aqueous solution was added to the filtration residue, extracted again in the same manner, and filtered to obtain a filtrate. The obtained filtrates were combined, and a sample was prepared by adjusting the concentration so that an extract derived from 10 mg of fermented Momota mana dissolved in 1 mL.
(2) NO production Mouse macrophage-derived RAW264.7 cells (purchased from ATCC) were added to a 24-well microplate at 2 × 10 5 cells / well and pre-cultured at 37 ° C. for 12 hours. Thereafter, the plate was washed twice with 1 mL of PBS, 0.5 mL of DMEM medium was added, 5 μL of sample was added, and the final concentration of the sample was 4 μg / mL. For control, 5 μL of DMSO was used. To this, 10 μL of L-arginine (final concentration was 2 mM), 10 μL of LPS (manufactured by SIGMA) (final concentration was 100 ng / mL), and 10 μL of IFN-γ (manufactured by Genzyme) 100 U / mL) and 0.5 mL of DMEM medium were added, the plate was shaken well, and cultured at 37 ° C. for 24 hours.
(3) NO 2 - was added 500 [mu] L of Griess reagent of the following composition in measuring the culture supernatant 500 [mu] L, after stirring, the spectrophotometer absorbance at 543 nm: was measured by (UV-1200 V manufactured by Shimadzu Corporation). The absorbance of the sample was measured with the absorbance in the case of the control as 100. The measured values are shown in Table 5. From the measured absorbance, the reduction rate of NO 2 production amount was calculated as the NO production inhibition rate by the following formula and used as an index for evaluating the NO production inhibition activity in the cells. The measurement was performed 5 times, and the average value was used as the NO production inhibitory activity value. The results are shown in Table 5 and FIG. The p value in FIG. 5 was calculated using Student's t-test (*: p <0.05).

NO産生抑制率=100×(A−B)/A
式中、Aはコントロールの吸光度、Bはサンプルの吸光度を示す。
NO production inhibition rate = 100 × (A−B) / A
In the formula, A represents the absorbance of the control, and B represents the absorbance of the sample.

Griess試薬
1重量%サルファニルアミドを5重量%リン酸水溶液に溶解した溶液と、0.1重量%N−(1−ナフチル)−エチレンジアミドジヒドロクロリド溶液とを、同容量の割合で混合し用いた。
Griess reagent 1% by weight sulfanilamide dissolved in 5% by weight phosphoric acid aqueous solution and 0.1% by weight N- (1-naphthyl) -ethylenediamide dihydrochloride solution are mixed at the same volume ratio. It was.

結果から、発酵モモタマナは発酵処理しないモモタマナと比較して、細胞内におけるNO産生抑制活性を有意に上昇させることが明かである。   From the results, it is clear that fermented peach tamanana significantly increases the NO production inhibitory activity in the cells as compared to motamo mana that is not subjected to fermentation treatment.

Figure 0004260597
Figure 0004260597

[細胞生存率に及ぼす影響の評価]
MTT法
上清を取り除いた上記プレートの各ウェルにDMEM培地500μLと、MTT試薬50μLを加え、37℃で1.5時間培養した。その後、各ウェルにDMSO1mLを加え、超音波(超音波洗浄装置:東京理科器械(株)社製)にて細胞を壊した後、各ウェルに塩酸・2−プロパノール500μLを加えよく攪拌し、630nmを参照波長として570nmの波長における吸光度を分光光度計(UV−1200V:島津社製)で測定した。測定値を表6に示す。測定した吸光度から以下の計算式により、細胞生存率を求めた。結果を表6に示す。
[Evaluation of effects on cell viability]
MTT method To each well of the above plate from which the supernatant was removed, 500 μL of DMEM medium and 50 μL of MTT reagent were added, and cultured at 37 ° C. for 1.5 hours. Thereafter, 1 mL of DMSO was added to each well, and the cells were broken with ultrasonic waves (ultrasonic cleaning device: manufactured by Tokyo Science Instrument Co., Ltd.), and then 500 μL of hydrochloric acid / 2-propanol was added to each well and stirred well, at 630 nm. As a reference wavelength, the absorbance at a wavelength of 570 nm was measured with a spectrophotometer (UV-1200 V: manufactured by Shimadzu Corporation). The measured values are shown in Table 6. The cell viability was determined from the measured absorbance by the following formula. The results are shown in Table 6.

細胞生存率=100×B/A
式中、Aはコントロールの吸光度、Bはサンプルの吸光度を示す。尚、吸光度は570nmの波長における吸光度から630nmの波長における吸光度を除した値とした。
Cell viability = 100 × B / A
In the formula, A represents the absorbance of the control, and B represents the absorbance of the sample. The absorbance was a value obtained by dividing the absorbance at a wavelength of 630 nm from the absorbance at a wavelength of 570 nm.

結果から、発酵モモタマナは発酵処理しないモモタマナと比較して、細胞生存率を上昇させることが明かである。   From the results, it is clear that fermented peach tamanana increases cell viability compared to motamo mana not fermented.

Figure 0004260597
Figure 0004260597

[食味の検査]
発酵モモタマナについて、嗜好性の試験を行った。
[Inspection of taste]
About fermented peach tamana, the palatability test was done.

実施例1で得られた発酵モモタマナ2gを、500mLの沸騰水で5分間煮出し、10人のパネラーが試飲した。乾燥葉モモタマナについても同様に行なった。9人のパネラーが発酵モモタマナをおいしく感じ、1人が乾燥葉モモタマナをおいしく感じた。   2 g of fermented Momota mana obtained in Example 1 was boiled in 500 mL of boiling water for 5 minutes, and 10 panelists sampled it. The same was done for dry leaf momotamana. Nine panelists felt fermented Momotamana deliciously, and one felt the dry leaf Momotamana delicious.

結果から、発酵モモタマナの食味が向上され、嗜好性の改善が図れたことが明らかである。   From the results, it is clear that the taste of fermented peach tamana was improved and the palatability was improved.

本発明の発酵処理物のケルセチンの含量を示す図である。It is a figure which shows the content of the quercetin of the fermentation processed material of this invention. 本発明の発酵処理物のβカロテン法により検出された抗酸化活性を示す図である。It is a figure which shows the antioxidant activity detected by (beta) carotene method of the fermented material of this invention. 本発明の発酵処理物のDPPH法により検出された抗酸化活性を示す図である。It is a figure which shows the antioxidant activity detected by DPPH method of the fermentation processed material of this invention. 本発明の発酵処理物のα−アミラーゼ活性を示す図である。It is a figure which shows the alpha-amylase activity of the fermented material of this invention. 本発明の発酵処理物のマウスマクロファージにおけるNO産生抑制活性を示す図である。It is a figure which shows NO production suppression activity in the mouse | mouth macrophage of the fermented material of this invention.

Claims (6)

モモタマナ(Terminalia catappa)の葉を乾燥して粉砕し、該粉砕物に水と、炭水化物及び蛋白質とを添加し、ラクトバシルス・プランタリム(L. plantarum)、ストレプトコッカス・サーモフィルス(S. thermophilus)及びバシルス・ズブチルス(B. subtilis)の混合菌により発酵させて得られる、アミラーゼ阻害活性が保持され、ケルセチンが含有されていることを特徴とする発酵処理物。 The leaves of peach tamana (Terminalia catappa) are dried and pulverized, and water, carbohydrates and proteins are added to the pulverized product, and then L. plantarum, Streptococcus thermophilus (S. thermophilus) and Bacillus are added. A fermented product obtained by fermenting with a mixed bacterium of B. subtilis and having amylase inhibitory activity and containing quercetin. 生体内NO産生抑制活性が、未発酵処理モモタマナの葉に比して上昇していることを特徴とする請求項1記載の発酵処理物。 2. The fermented processed product according to claim 1, wherein the in vivo NO production inhibitory activity is higher than that of an unfermented treated Momotamana leaf. 請求項1又は2記載の発酵処理物を含有することを特徴とする食品素材又は食品。 A food material or food comprising the fermented product according to claim 1 or 2 . モモタマナ(Terminalia catappa)の葉を乾燥して粉砕し、該粉砕物に水と、炭水化物及び蛋白質とを添加し、ラクトバシルス・プランタリム(L. plantarum)、ストレプトコッカス・サーモフィルス(S. thermophilus)及びバシルス・ズブチルス(B. subtilis)の混合菌を使用して発酵させ、アミラーゼ阻害活性を保持し、ケルセチンを生じさせる発酵工程と、発酵後の処理物を乾燥させる乾燥工程を含むことを特徴とする発酵処理物の製造方法。 The leaves of peach tamana (Terminalia catappa) are dried and pulverized, and water, carbohydrates and proteins are added to the pulverized product, and then L. plantarum, Streptococcus thermophilus (S. thermophilus) and Bacillus are added. Fermentation using a mixed bacterium of B. subtilis, including a fermentation step that retains amylase inhibitory activity and generates quercetin, and a drying step that dries the processed product after fermentation. Processed product manufacturing method. 生体内NO産生抑制活性を、未発酵処理モモタマナの葉に比して上昇させたことを特徴とする請求項記載の発酵処理物の製造方法。 The method for producing a fermented processed product according to claim 4, wherein the in vivo NO production inhibitory activity is increased as compared to the leaves of unfermented treated peach tamanana. 蛋白質が、米ぬか及び/又はふすまであることを特徴とする請求項4又は5記載の発酵処理物の製造方法。 The method according to claim 4 or 5, wherein the fermentation process thereof wherein the protein is a rice bran and / or wheat bran.
JP2003346282A 2002-10-04 2003-10-03 Fermentation processed product and production method thereof Expired - Fee Related JP4260597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003346282A JP4260597B2 (en) 2002-10-04 2003-10-03 Fermentation processed product and production method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002292805 2002-10-04
JP2003346282A JP4260597B2 (en) 2002-10-04 2003-10-03 Fermentation processed product and production method thereof

Publications (2)

Publication Number Publication Date
JP2004141163A JP2004141163A (en) 2004-05-20
JP4260597B2 true JP4260597B2 (en) 2009-04-30

Family

ID=32473455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003346282A Expired - Fee Related JP4260597B2 (en) 2002-10-04 2003-10-03 Fermentation processed product and production method thereof

Country Status (1)

Country Link
JP (1) JP4260597B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005053864A (en) * 2003-08-06 2005-03-03 Ryukyu Bio Resource Kaihatsu:Kk Prophylactic and therapeutic agent for diabetes mellitus disease
WO2005042508A1 (en) * 2003-11-04 2005-05-12 Meiji Dairies Corporation PLANT-ORIGIN β3-ADRENOCEPTOR AGONIST AND USE OF THE SAME
JP2006094800A (en) * 2004-09-30 2006-04-13 Ryukyu Bio Resource Kaihatsu:Kk Waste molasses with enhanced antioxidant action
JP2006117562A (en) * 2004-10-20 2006-05-11 Asahi Breweries Ltd Antiallergic agent containing plant-derived ingredient
JP2006219460A (en) * 2005-02-14 2006-08-24 Ryukyu Bio Resource Kaihatsu:Kk Anti-herpesvirus composition and method for producing fermented terminalia catappa extract having anti-herpesvirus action
JP2006290794A (en) * 2005-04-11 2006-10-26 Asahi Breweries Ltd Plant fermentation product having anti-helicobacter pylori activity
JP5199884B2 (en) * 2006-12-06 2013-05-15 カルピス株式会社 Inflammatory bowel disease preventive and therapeutic agent
KR101383590B1 (en) * 2012-10-18 2014-04-09 김형섭 Method for manufacturing can rice wine
CN114177121B (en) * 2021-11-01 2023-07-18 齐鲁工业大学 Preparation method and application of pine pollen probiotic fermented cosmetic raw material
CN115181769B (en) * 2022-08-24 2023-08-08 四川大学 Method for improving yield of extracellular polysaccharide of tetracoccus halophilus

Also Published As

Publication number Publication date
JP2004141163A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
JP4903751B2 (en) Antioxidant
JP2004359732A (en) Antioxidant
JP2004345986A (en) Fermented material and method for producing the same
Ramos et al. Technological and nutritional aspects of indigenous Latin America fermented foods
KR20120099054A (en) Powdery malted rice extract composition
KR20140107114A (en) Composition comprising Amaranth improved storage period and manufacturing method thereof
JP4874532B2 (en) Sleep improver
JP4260597B2 (en) Fermentation processed product and production method thereof
JP4010907B2 (en) Method for producing fermented plant and lactic acid fermented product
KR102263698B1 (en) A mixture of Lactobacillus plantarum LRCC5195 and isomaltooligosaccharide having ameliorating or improving atopic dermatitis
KR101720051B1 (en) Pharmaceutical composition comprising fermented Aralia cordata Thunb for preventing or treating arthritis
JPWO2007052806A1 (en) Method for producing fermented material containing GABA
KR101458556B1 (en) Fermentation products of probiotic mixed cultures and functional health foods, medicinal composition including the same
JP5568276B2 (en) Method for producing catechin metabolites
KR20170120264A (en) Fermented chestnut puree of probiotic lactic acid bacteria and foods composition, medicinal composition including the same
KR101091833B1 (en) Methods for preparing high quantity of S-allyl-L-cysteine to fermented products of garlic using lactic acid bacteria
KR102456356B1 (en) Composition for relieving premenstrual syndrome comprising mixture of lactobacillus strains as an active ingredient
KR101429828B1 (en) Functional health drink using fermented vinegar comprising dropwort
JP4537024B2 (en) Inflammatory disease preventive / therapeutic agent
JP2004201598A (en) Fermented product and method for producing the same
JP2005073508A (en) Beverage comprising edible or medicinal plant
JP5781199B2 (en) Catechin metabolite-containing composition
KR20130087238A (en) Fermentation products of probiotic mixed cultures and functional health foods, medicinal composition including the same
JP2004267100A (en) Fermented product and method for producing the same
JP2005089385A (en) Lipoxygenase inhibitor

Legal Events

Date Code Title Description
RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040524

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees