JP4257440B2 - Prism-type modified illumination device - Google Patents

Prism-type modified illumination device Download PDF

Info

Publication number
JP4257440B2
JP4257440B2 JP2000185553A JP2000185553A JP4257440B2 JP 4257440 B2 JP4257440 B2 JP 4257440B2 JP 2000185553 A JP2000185553 A JP 2000185553A JP 2000185553 A JP2000185553 A JP 2000185553A JP 4257440 B2 JP4257440 B2 JP 4257440B2
Authority
JP
Japan
Prior art keywords
prism
modified illumination
light
type modified
hemispherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185553A
Other languages
Japanese (ja)
Other versions
JP2002008964A (en
Inventor
一生 釜付
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Oki Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Semiconductor Co Ltd filed Critical Oki Semiconductor Co Ltd
Priority to JP2000185553A priority Critical patent/JP4257440B2/en
Publication of JP2002008964A publication Critical patent/JP2002008964A/en
Application granted granted Critical
Publication of JP4257440B2 publication Critical patent/JP4257440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路の製造におけるホトリソ工程で用いるプリズム型変形照明装置に関するものである。
【0002】
【従来の技術】
従来、この種の光ステッパの構成としては、以下に示すようなものがあった。
【0003】
図9はかかる従来の光ステッパの構成図である。
【0004】
この図において、1はHgランプ、2は楕円ミラー、3はインテグレータ(フライアイレンズ)、4はアパーチャー、5はコンデンサレンズ、6はレチクル、7は縮小レンズ、8はウエハである。
【0005】
従来の露光技術では、限界解像力の向上やDOF(焦点深度)の拡大等の効果を得るための手法として、変形照明などの超解像技術を用いて露光を行っていた。変形照明とするために、従来技術ではアパーチャーと呼ばれる遮光板を用いる。
【0006】
【発明が解決しようとする課題】
しかしながら、この遮光板を用いる方法では、光を遮るのみであるために照明系の条件を最適に設定するに至っていないのが現状である。また、プリズムを変形照明の前に配置する手法もあるが、これは、本発明と全く異なる構造であるために、遮光板を要するか、あるいは方眼状の遮光を目的としたものである。
【0007】
本発明は、上記問題点を除去し、変形照明の条件設定を最適化することができるプリズム型変形照明装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕プリズム型変形照明装置において、底面と平行な断面形状が、円形部分が8つのサイクロイド曲線によって分割されており、かつ、半球状の曲面が、2つの曲率を有する曲面で形成されているサイクロイド形状の断面を持つ半球型プリズムと円錐型プリズムをそれぞれ光軸上に平行に配置し、この組み合わせを用いて、フライアイレンズと露光レンズの中間に配置し、前記半球型プリズムに入射した光は4方向に分散、透過し、さらに前記円錐形プリズムを透過した後放射状に分散し全ての露光光をマスク上に斜入射させ、マスクパターンをウエハ上に露光することを特徴とする。
【0009】
〕上記〔1〕記載のプリズム型変形照明装置において、上面がサイクロイド形状の断面を持つ前記半球型プリズムと下面が下に凸となり、底面が上になる前記円錐プリズムとからなり、前記半球型プリズムの底面と前記円錐プリズムの上面とを張り合わせて一体成形することを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
【0011】
図1は本発明の第1実施例を示すプリズム型変形照明装置の模式図であり、図1(a)はサイクロイドプリズムの透視斜視図、図1(b)はそのサイクロイドプリズムの平面図、図1(c)は円錐プリズムの斜視図である。図2はそのプリズム型変形照明の光路を示す図である。ここでは、プリズム型変形照明の中の1つである、図1に示す2種類のプリズムを使った変形照明について説明する。なお、図1(b)において、曲面A(11A)と曲面B(11B)間では曲率が異なる。
【0012】
このプリズム型変形照明は、図1に示すように、サイクロイド形状の断面を持つ半球型プリズム(以下サイクロイドプリズム)11と、円錐型プリズム(以下、円錐プリズム)12を、図2に示すようにそれぞれの裾が狭まる方向を外側又は内側に向けて平行に配置し、この組み合わせを用いて、フライアイレンズ(図示なし)と露光レンズ(図示なし)の中間に配置し、マスクパターンをウエハ(図示なし)上に露光する方法を基本構成とする。
【0013】
露光を行うとき、図2に示すように、光源からの露光光がフライアイレンズを通った後、光源10の露光光が図1に示すプリズム型変形照明のサイクロイドプリズム11を通過することでプリズムの4つの断面方向に光が分散して透過し、円錐型プリズム12を透過することで放射状に光が分散して透過する。これによって、露光光は任意の方向に分散した複数の光束となり、マスク上に斜入射することで、マスクから出た光は2光束干渉されて、露光レンズ(図示なし)を通過してウエハ(図示なし)上では良好な解像パターンが得られることになる。
【0014】
このように、第1実施例によれば、図1及び図2に示すプリズム型変形照明を用いることで任意の方向に光を分散させ、従来技術と違って全ての露光光をマスク上に斜入射させることができるため、非常に良好な解像パターンを得ることができる。このとき、サイクロイドプリズムの半円形の断面部分の面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。
【0015】
また、断面部分の角度を大きくすることでも斜め方向に角度を付けることができるが、この角度は4つの半円同士が交差しない角度までという制限がある。
【0016】
次に、本発明の第1参考例について説明する。
【0017】
図3は本発明の第1参考例を示すプリズム型変形照明装置の模式図であり、図3(a)は第1のドームプリズムの透視斜視図、図3(b)は第2のドームプリズムの透視斜視図、図3(c)は円錐プリズムの斜視図である。図4はそのプリズム型変形照明の光路を示す図である。
【0018】
この実施例では、図3に示す3個のプリズム21,22,23を用いるもので、半円型の断面を対象形に配置した第1のドーム型プリズム21を横方向に向けて光源20からの光に対して裾が狭まる方向に配置し、同じく第2のドーム型プリズム22を縦方向に断面を向け、光に対しては裾が狭まる方向を外側又は内側に向けて平行に配置する。さらに、円錐型プリズム23を裾が狭まる方向に配置し、計3個のプリズムを光軸に対して平行に配置することができる。
【0019】
この第2実施例では、3個のプリズム21,22,23を順に光が透過して露光を行う。光源からの露光光がフライアイレンズ(図示なし)を通った後、図3に示すプリズム型変形照明のドーム型プリズム21を通過することでプリズムの2つの断面方向である横方向に光が分散して透過し、ドーム型プリズム22を通過することで、プリズムの2つの断面方向である縦方向に光が分散して透過し、更に、円錐型プリズム23を透過することで放射状に光が分散して透過する。これによって、露光光は任意の方向に分散した複数の光束となり、マスク上に斜入射することで、マスクから出た光は2光束干渉されて、露光レンズ(図示なし)を通過してウエハ上では良好な解像パターンが得られることになる。
【0020】
このように、第1参考例によれば、図3及び図4に示すプリズム型変形照明を用いることで任意の方向に光を分散させ、従来技術と違って全ての露光光をマスク上に斜入射させることができるため、非常に良好な解像パターンを得ることができる。このとき、半円形の断面部分の面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。また、断面部分の角度を大きくすることでも斜め方向に角度を付けることができるが、この角度は4つの半円同士が交差しない角度までという制限がある。プリズムを3個使うが、第1実施例と違って、この制限角度範囲が広いことが第2実施例の特徴である。
【0021】
次に、本発明の第2参考例について説明する。
【0022】
図5は本発明の第2参考例を示すプリズム型変形照明装置の模式図であり、図5(a)はピラミッド形状のプリズム(以下、ピラミッド型プリズムという)の透視斜視図、図5(b)はそのピラミッド型プリズムの平面図、図5(c)は円錐プリズムの透視斜視図である。図6はそのプリズム型変形照明装置の光路を示す図である。
【0023】
ここでは、1個のプリズムのみを用いるもので、可変アパーチャーの構成例を示す。この実施例ではプリズム型変形照明を使った変形照明について説明する。
【0024】
このプリズム型変形照明は、光源30からの光に対して図5に示すピラミッド型プリズム31と、円錐型プリズム32のそれぞれの裾が狭まる方向を外側又は内側に向けて平行に配置し、この組み合わせを用いて、フライアイレンズ(図示なし)と露光レンズ(図示なし)の中間に配置し、マスクパターンをウエハ上に露光する方法を基本構成とする。
【0025】
2参考例は、2個のプリズム31,32を順に光が透過して露光を行う。光源30からの露光光がフライアイレンズ(図示なし)を通った後、図5に示すプリズム型変形照明のピラミッド型プリズム31を通過することでプリズムの4つの断面方向である斜め方向に光が分散して透過し、円錐型プリズム32を透過することで放射状に光が分散して透過する。これによって、露光光は任意の方向に分散した複数の光束となり、マスク上に斜入射することで、マスクから出た光は2光束干渉されて、露光レンズ(図示なし)を通過してウエハ上では良好な解像パターンが得られる。
【0026】
このように、第2参考例によれば、図5及び図6に示すプリズム型変形照明を用いることで任意の方向に光を分散させ、従来技術と違って全ての露光光をマスク上に斜入射させる事ができるため、非常に良好な解像パターンを得ることができる。このとき、ピラミッド型プリズム31の三角形の断面部分の頂点を接したまま面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。また、断面部分の角度を大きくすることでも斜め方向に角度を付けることができるが、この角度は4つの三角形同士が交差しない角度までという制限がある。
【0027】
次に、本発明の第実施例について説明する。
【0028】
図7は本発明の第実施例を示すサイクロイド円錐プリズム型変形照明装置の構成図、図8はそのプリズム型変形照明装置の光路を示す図である。
【0029】
この実施例では、プリズム型変形照明の中の1つである図7に示す1種類のプリズムを使った変形照明について説明する。
【0030】
このプリズム型変形照明は、図7のサイクロイドプリズム41と、円錐型プリズム42の最も底面を張り合わせたような形状を特徴としている。
【0031】
これは、フライアイレンズ(図示なし)と露光レンズ(図示なし)の中間に配置し、マスクパターンをウエハ(図示なし)上に露光する方法である。
【0032】
露光を行うとき、光源からの露光光がフライアイレンズ(図示なし)を通った後、光源40の露光光がプリズム型変形照明のサイクロイドプリズム41を通過することでプリズムの4つの断面方向に光が分散して透過し、円錐型プリズム42を透過することで放射状に光が分散して透過する。これによって、露光光は任意の方向に分散した複数の光束となり、マスク上に斜入射することで、マスクから出た光は2光束干渉されて、露光レンズ(図示なし)を通過してウエハ(図示なし)上では良好な解像パターンが得られることになる。
【0033】
このように、第実施例によれば、図7および図8に示すプリズム型変形照明装置を用いることで任意の方向に光を分散させ、従来技術と違って全ての露光光をマスク上に斜入射させることができるため、非常に良好な解像パターンを得ることができる。このとき、サイクロイドプリズム41の半円形の断面部分の面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。また、断面部分の角度を大きくすることでも斜め方向に角度を付けることができるが、この角度は4つの半円同士が交差しない角度までという制限がある。さらに、第1実施例と異なり、プリズムを2つ用意する必要性をなくし、さらにプリズム間に光路を必要としないため、光学設計を容易に精密とすることができる。
【0034】
なお、図1、図2、図3に示すような、各種の変形照明についてプリズム型変形照明が適用可能である上、プリズムの形を他の形にしてもよい。
【0035】
本発明で、ある形状を特徴とするプリズム型変形照明装置を用いることにより、変形照明の条件設定を最適化できるため、従来技術よりも良好な露光結果を得るような照明系とすることができる。また、従来のプリズムと異なって3光束を2光束に成形でき、これも精密な制御ができるため、良好な解像特性を得ることができる。
【0036】
また、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0037】
【発明の効果】
以上、詳細に説明したように、本発明によれば、次のような効果を奏することができる。
【0038】
(1)任意の方向に光を分散させ、従来技術と違って全ての露光光をマスク上に斜入射させることができるため、非常に良好な解像パターンを得ることができる。このとき、サイクロイドプリズムの半円形の断面部分の面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。
【0039】
)非常に良好な解像パターンを得ることができる。このとき、サイクロイドプリズムの半円形の断面部分の面積を小さくすることで、さらに斜め方向に角度を付けて光を分散することができる。さらに、上記(1)と異なり、プリズムを2つ用意する必要性を無くし、さらにプリズム間に光路を必要としないため、光学設計を容易に精密とすることができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例を示すプリズム型変形照明の模式図である。
【図2】 本発明の第1実施例を示すプリズム型変形照明の光路を示す図である。
【図3】 本発明の第1参考例を示すプリズム型変形照明の模式図である。
【図4】 本発明の第1参考例を示すプリズム型変形照明の光路を示す図である。
【図5】 本発明の第2参考例を示すプリズム型変形照明の模式図である。
【図6】 本発明の第2参考例を示すプリズム型変形照明の光路を示す図である。
【図7】 本発明の第実施例を示すサイクロイド円錐プリズム型変形照明の構成図である。
【図8】 本発明の第実施例を示すプリズム型変形照明の光路を示す図である。
【図9】 従来の光ステッパの構成図である。
【符号の説明】
10,20,30,40 光源
11,41 サイクロイド形状の断面を持つ半球型プリズム(サイクロイドプリズム)
12,23,32,42 円錐型プリズム(円錐プリズム)
21 第1のドーム型プリズム
22 第2のドーム型プリズム
31 ピラミッド型プリズム(ピラミッドプリズム)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a prism type modified illumination device used in a photolithography process in the manufacture of a semiconductor integrated circuit.
[0002]
[Prior art]
Conventionally, this type of optical stepper has the following configuration.
[0003]
FIG. 9 is a block diagram of such a conventional optical stepper.
[0004]
In this figure, 1 is an Hg lamp, 2 is an elliptical mirror, 3 is an integrator (fly eye lens), 4 is an aperture, 5 is a condenser lens, 6 is a reticle, 7 is a reduction lens, and 8 is a wafer.
[0005]
In a conventional exposure technique, exposure is performed using a super-resolution technique such as modified illumination as a technique for obtaining an effect such as an improvement in limit resolution or an increase in DOF (depth of focus). In order to obtain modified illumination, a light shielding plate called an aperture is used in the prior art.
[0006]
[Problems to be solved by the invention]
However, in this method using a light shielding plate, since only the light is blocked, the conditions of the illumination system have not been optimally set. There is also a method of arranging a prism in front of the modified illumination, but this is a completely different structure from the present invention, and therefore a light shielding plate is required or intended for light shielding in a square shape.
[0007]
An object of the present invention is to provide a prism type modified illumination device that can eliminate the above-mentioned problems and optimize the condition setting of the modified illumination.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In the prism-type modified illumination device, the cross-sectional shape parallel to the bottom surface is such that the circular portion is divided by eight cycloid curves, and the hemispherical curved surface is formed by a curved surface having two curvatures. the hemispherical prism and circular cone shaped prism having a cross-section of the cycloid shape are arranged in parallel on the optical axis, respectively, by using this combination was placed in the middle of the fly-eye lens and the exposure lens, and incident on the hemispherical prism The light is dispersed and transmitted in four directions, and after passing through the conical prism, is dispersed radially, and all exposure light is obliquely incident on the mask to expose the mask pattern on the wafer.
[0009]
[2] The prismatic modified illumination device above SL [1], wherein the upper surface Ri is Do and the hemispherical prism and the lower surface is convex downward with the cross-sectional surface of the cycloid shape, from said conical prism bottom surface faces upward Thus, the bottom surface of the hemispherical prism and the top surface of the conical prism are bonded together and formed integrally.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0011]
FIG. 1 is a schematic diagram of a prism type modified illumination device showing a first embodiment of the present invention, FIG. 1 (a) is a perspective view of a cycloid prism, FIG. 1 (b) is a plan view of the cycloid prism, FIG. 1 (c) is a perspective view of a conical prism. FIG. 2 is a diagram showing an optical path of the prism type modified illumination. Here, a modified illumination using two types of prisms shown in FIG. 1, which is one of the prism-type modified illuminations, will be described. In FIG. 1B, the curvature differs between the curved surface A (11A) and the curved surface B (11B).
[0012]
As shown in FIG. 1, the prism type modified illumination includes a hemispherical prism (hereinafter referred to as a cycloid prism) 11 and a conical prism (hereinafter referred to as a conical prism) 12 each having a cycloidal cross section, as shown in FIG. The direction in which the hem narrows is arranged parallel to the outside or inside, and using this combination, the mask pattern is placed on the wafer (not shown) between the fly-eye lens (not shown) and the exposure lens (not shown). ) The top exposure method is the basic configuration.
[0013]
When exposure is performed, as shown in FIG. 2, after the exposure light from the light source passes through the fly-eye lens, the exposure light from the light source 10 passes through the cycloid prism 11 of the prism type modified illumination shown in FIG. The light is dispersed and transmitted in the four cross-sectional directions, and the light is dispersed and transmitted radially by passing through the conical prism 12. As a result, the exposure light becomes a plurality of light beams dispersed in an arbitrary direction. By obliquely incident on the mask, the light emitted from the mask is interfered with the two light beams and passes through the exposure lens (not shown) and passes through the wafer ( In this case, a good resolution pattern can be obtained.
[0014]
As described above, according to the first embodiment, the prism-shaped modified illumination shown in FIGS. 1 and 2 is used to disperse light in an arbitrary direction, and unlike the conventional technique, all exposure light is obliquely applied on the mask. Since it can enter, a very favorable resolution pattern can be obtained. At this time, by reducing the area of the semicircular cross-sectional portion of the cycloid prism, it is possible to further disperse the light with an angle in an oblique direction.
[0015]
In addition, an angle can be given in an oblique direction by increasing the angle of the cross section, but this angle is limited to an angle at which the four semicircles do not intersect each other.
[0016]
Next, a first reference example of the present invention will be described.
[0017]
FIG. 3 is a schematic diagram of a prism-type modified illumination device showing a first reference example of the present invention. FIG. 3 (a) is a perspective view of the first dome prism, and FIG. 3 (b) is a second dome prism. FIG. 3C is a perspective view of a conical prism. FIG. 4 is a diagram showing an optical path of the prism type modified illumination.
[0018]
In this embodiment, the three prisms 21, 22, and 23 shown in FIG. 3 are used, and the first dome-shaped prism 21 having a semicircular cross section arranged in a target shape is directed laterally from the light source 20. Similarly, the second dome-shaped prism 22 is arranged in the longitudinal direction with the cross section thereof being narrowed, and the light is arranged in parallel with the direction in which the skirt is narrowed outward or inward. Furthermore, the conical prism 23 can be arranged in the direction in which the skirt narrows, and a total of three prisms can be arranged in parallel to the optical axis.
[0019]
In the second embodiment, the light is transmitted through the three prisms 21, 22, and 23 in order to perform exposure. After the exposure light from the light source passes through the fly-eye lens (not shown), it passes through the dome-shaped prism 21 of the prism-type modified illumination shown in FIG. By passing through the dome-shaped prism 22, the light is dispersed and transmitted in the longitudinal direction, which is the two cross-sectional directions of the prism, and further, by passing through the conical prism 23, the light is dispersed radially. Then penetrate. As a result, the exposure light becomes a plurality of light fluxes dispersed in an arbitrary direction. By obliquely incident on the mask, the light emitted from the mask is interfered by two light fluxes and passes through an exposure lens (not shown) to be on the wafer. Then, a good resolution pattern can be obtained.
[0020]
As described above, according to the first reference example, the prism-shaped modified illumination shown in FIGS. 3 and 4 is used to disperse light in an arbitrary direction, and unlike the conventional technique, all exposure light is obliquely applied on the mask. Since it can enter, a very favorable resolution pattern can be obtained. At this time, by reducing the area of the semicircular cross section, it is possible to disperse the light with an angle in an oblique direction. In addition, an angle can be given in an oblique direction by increasing the angle of the cross section, but this angle is limited to an angle at which the four semicircles do not intersect each other. Although three prisms are used, unlike the first embodiment, this wide range of limiting angles is a feature of the second embodiment.
[0021]
Next, a second reference example of the present invention will be described.
[0022]
FIG. 5 is a schematic diagram of a prism type modified illumination device showing a second reference example of the present invention, and FIG. 5A is a perspective view of a pyramid-shaped prism (hereinafter referred to as a pyramid prism), FIG. ) Is a plan view of the pyramid prism, and FIG. 5C is a perspective view of the conical prism. FIG. 6 is a diagram showing an optical path of the prism type modified illumination device.
[0023]
Here, only one prism is used, and a configuration example of a variable aperture is shown. In this embodiment, a modified illumination using prism type modified illumination will be described.
[0024]
In this prism type modified illumination, the pyramid prism 31 shown in FIG. 5 and the cone prism 32 shown in FIG. The basic configuration is a method in which a mask pattern is exposed on a wafer by placing the mask pattern between a fly-eye lens (not shown) and an exposure lens (not shown).
[0025]
In the second reference example, light is transmitted through the two prisms 31 and 32 in order to perform exposure. After the exposure light from the light source 30 passes through the fly-eye lens (not shown), the light passes through the pyramid prism 31 of the prism-type modified illumination shown in FIG. The light is dispersed and transmitted, and is transmitted through the conical prism 32 so that the light is radially dispersed and transmitted. As a result, the exposure light becomes a plurality of light fluxes dispersed in an arbitrary direction. By obliquely incident on the mask, the light emitted from the mask is interfered by two light fluxes and passes through an exposure lens (not shown) to be on the wafer. Then, a good resolution pattern can be obtained.
[0026]
As described above, according to the second reference example, the prism-shaped modified illumination shown in FIGS. 5 and 6 is used to disperse light in an arbitrary direction, and unlike the conventional technique, all exposure light is obliquely applied on the mask. Since it can be made incident, a very good resolution pattern can be obtained. At this time, by reducing the area while keeping the apex of the triangular cross section of the pyramid prism 31, the light can be further dispersed at an angle in an oblique direction. In addition, an angle can be given in an oblique direction by increasing the angle of the cross section, but this angle is limited to an angle at which the four triangles do not intersect each other.
[0027]
Next, a second embodiment of the present invention will be described.
[0028]
FIG. 7 is a configuration diagram of a cycloid conical prism type modified illumination device showing a second embodiment of the present invention, and FIG. 8 is a diagram showing an optical path of the prism type modified illumination device.
[0029]
In this embodiment, a modified illumination using one type of prism shown in FIG. 7, which is one of the prism-type modified illuminations, will be described.
[0030]
This prism type modified illumination is characterized by a shape in which the bottom surfaces of the cycloid prism 41 of FIG. 7 and the conical prism 42 are bonded together.
[0031]
This is a method in which a mask pattern is exposed on a wafer (not shown) by being arranged between a fly-eye lens (not shown) and an exposure lens (not shown).
[0032]
When performing exposure, after the exposure light from the light source passes through the fly-eye lens (not shown), the exposure light from the light source 40 passes through the cycloid prism 41 of the prism-type deformed illumination, and is thus light in the four cross-sectional directions of the prism. Are dispersed and transmitted, and the light is dispersed and transmitted radially by passing through the conical prism 42. As a result, the exposure light becomes a plurality of light beams dispersed in an arbitrary direction. By obliquely incident on the mask, the light emitted from the mask is interfered with the two light beams and passes through the exposure lens (not shown) and passes through the wafer ( In this case, a good resolution pattern can be obtained.
[0033]
In this way, according to the second embodiment, the prism-type modified illumination device shown in FIGS. 7 and 8 is used to disperse light in an arbitrary direction, and unlike the prior art, all exposure light is placed on the mask. Since oblique incidence can be performed, a very good resolution pattern can be obtained. At this time, by reducing the area of the semicircular cross-sectional portion of the cycloid prism 41, it is possible to disperse the light with an angle in an oblique direction. In addition, an angle can be given in an oblique direction by increasing the angle of the cross section, but this angle is limited to an angle at which the four semicircles do not intersect each other. Further, unlike the first embodiment, it is not necessary to prepare two prisms, and further, no optical path is required between the prisms, so that the optical design can be easily made precise.
[0034]
In addition, prism-type modified illumination is applicable to various types of modified illumination as shown in FIGS. 1, 2, and 3, and the shape of the prism may be other shapes.
[0035]
In the present invention, by using a prism type modified illumination device characterized by a certain shape, the condition setting of the modified illumination can be optimized, so that an illumination system that can obtain a better exposure result than the conventional technique can be obtained. . Further, unlike conventional prisms, three light beams can be formed into two light beams, which can also be precisely controlled, so that good resolution characteristics can be obtained.
[0036]
The present invention is not limited to the above-described embodiments, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0038]
(1) Since light can be dispersed in an arbitrary direction and all exposure light can be obliquely incident on the mask, unlike the prior art, a very good resolution pattern can be obtained. At this time, by reducing the area of the semicircular cross-sectional portion of the cycloid prism, it is possible to further disperse the light with an angle in an oblique direction.
[0039]
( 2 ) A very good resolution pattern can be obtained. At this time, by reducing the area of the semicircular cross-sectional portion of the cycloid prism, it is possible to further disperse the light with an angle in an oblique direction. Further, unlike the above (1), it is not necessary to prepare two prisms, and further, since no optical path is required between the prisms, the optical design can be easily made precise.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of prism-type modified illumination showing a first embodiment of the present invention.
FIG. 2 is a diagram showing an optical path of prism type modified illumination according to the first embodiment of the present invention.
FIG. 3 is a schematic diagram of prism-type modified illumination showing a first reference example of the present invention.
FIG. 4 is a diagram showing an optical path of prism-type modified illumination showing a first reference example of the present invention.
FIG. 5 is a schematic diagram of prism-type modified illumination showing a second reference example of the present invention.
FIG. 6 is a diagram showing an optical path of prism type modified illumination showing a second reference example of the present invention.
FIG. 7 is a configuration diagram of a cycloidal conical prism type modified illumination showing a second embodiment of the present invention.
FIG. 8 is a diagram showing an optical path of prism type modified illumination showing a second embodiment of the present invention.
FIG. 9 is a configuration diagram of a conventional optical stepper.
[Explanation of symbols]
10, 20, 30, 40 Light source 11, 41 A hemispherical prism having a cycloidal cross section (cycloidal prism)
12, 23, 32, 42 Conical prism (conical prism)
21 First dome-shaped prism 22 Second dome-shaped prism 31 Pyramid prism (pyramid prism)

Claims (2)

底面と平行な断面形状が、円形部分が8つのサイクロイド曲線によって分割されており、かつ、半球状の曲面が、2つの曲率を有する曲面で形成されているサイクロイド形状の断面を持つ半球型プリズムと円錐型プリズムをそれぞれ光軸上に平行に配置し、この組み合わせを用いて、フライアイレンズと露光レンズの中間に配置し、前記半球型プリズムに入射した光は4方向に分散、透過し、さらに前記円錐形プリズムを透過した後放射状に分散し全ての露光光をマスク上に斜入射させ、マスクパターンをウエハ上に露光することを特徴とするプリズム型変形照明装置。 Bottom surface parallel to the cross-sectional shape, is divided by eight cycloid circular portion, and a hemispherical curved surface, and a hemispherical prism having a cross section of a cycloid shape, which is formed by a curved surface with two curvatures circular cone prism and arranged in parallel on the optical axis, respectively, by using this combination was placed in the middle of the fly-eye lens and the exposure lens, the hemispherical light incident on the prism dispersed in four directions, transmitted, Further , the prism-type modified illumination device, wherein the prism-shaped modified illumination device is configured such that after passing through the conical prism, it is radially dispersed and all exposure light is obliquely incident on the mask to expose the mask pattern on the wafer. 請求項1記載のプリズム型変形照明装置において、上面がサイクロイド形状の断面を持つ前記半球型プリズムと下面が下に凸となり、底面が上になる前記円錐プリズムとからなり、前記半球型プリズムの底面と前記円錐プリズムの上面とを張り合わせて一体成形することを特徴とするプリズム型変形照明装置。 In prismatic modified illumination apparatus according to claim 1, the upper surface Ri is Do and the hemispherical prism and the lower surface is convex downward with the cross-sectional surface of the cycloid shape, it consists of a said conical prism bottom surface facing up, the hemispherical A prism type modified illumination device , wherein a bottom surface of a prism and an upper surface of the conical prism are bonded together and formed integrally.
JP2000185553A 2000-06-21 2000-06-21 Prism-type modified illumination device Expired - Fee Related JP4257440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185553A JP4257440B2 (en) 2000-06-21 2000-06-21 Prism-type modified illumination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185553A JP4257440B2 (en) 2000-06-21 2000-06-21 Prism-type modified illumination device

Publications (2)

Publication Number Publication Date
JP2002008964A JP2002008964A (en) 2002-01-11
JP4257440B2 true JP4257440B2 (en) 2009-04-22

Family

ID=18685862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185553A Expired - Fee Related JP4257440B2 (en) 2000-06-21 2000-06-21 Prism-type modified illumination device

Country Status (1)

Country Link
JP (1) JP4257440B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487921B1 (en) * 2002-10-08 2005-05-06 주식회사 하이닉스반도체 Apparatus for exposing of semiconductor device
CN203464053U (en) * 2013-01-21 2014-03-05 深圳市光峰光电技术有限公司 Illumination system and light emitting device
WO2019130368A1 (en) * 2017-12-27 2019-07-04 Tenet S.R.L. Optical device designed to divert and confine electromagnetic radiations

Also Published As

Publication number Publication date
JP2002008964A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
US5673102A (en) Image farming and microdevice manufacturing method and exposure apparatus in which a light source includes four quadrants of predetermined intensity
JPS60232552A (en) Lighting optical system
JPS597359A (en) Lighting equipment
WO1996021169A1 (en) Flat microlens array and production method thereof
JPH086175A (en) Illumination system
JPH0536586A (en) Image projection method and manufacture of semiconductor device using same method
KR20000048227A (en) Method and apparatus for illuminating a surface using a projection imaging apparatus
US7336420B2 (en) Diffractive optical element, illumination system comprising the same, and method of manufacturing semiconductor device using illumination system
JPS622540A (en) Light integrator and koehler illumination system including integrator thereof
JP2005156592A5 (en)
KR101720798B1 (en) Optical raster element, optical integrator and illumination system of a microlithographic projection exposure apparatus
US6285440B1 (en) Illumination system and projection exposure apparatus using the same
JP4257440B2 (en) Prism-type modified illumination device
JPS5964830A (en) Illuminating device
JP4051473B2 (en) Illumination optical apparatus and exposure apparatus provided with the illumination optical apparatus
CN100507717C (en) Object-exposing equipment and method
US6703625B1 (en) Methods and apparatus for off-axis lithographic illumination
KR0165701B1 (en) Illumination system and exposure apparatus using the same
JP3367569B2 (en) Illumination optical device, exposure device, and transfer method using the exposure device
JP2003015314A (en) Illumination optical device and exposure device provided with the same
JP2002025896A (en) Illuminating optical device and aligner provided with the illuminating optical device
CN208432849U (en) A kind of photo-etching illuminating apparatus and exposure system
JP2002025898A (en) Illuminating optical device, and aligner provided with the illuminating optical device
JP2003178951A5 (en)
JP2998691B2 (en) Illumination optical system of semiconductor exposure equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080527

TRDD Decision of grant or rejection written
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees