JP4256055B2 - Frequency measurement method - Google Patents

Frequency measurement method Download PDF

Info

Publication number
JP4256055B2
JP4256055B2 JP2000219318A JP2000219318A JP4256055B2 JP 4256055 B2 JP4256055 B2 JP 4256055B2 JP 2000219318 A JP2000219318 A JP 2000219318A JP 2000219318 A JP2000219318 A JP 2000219318A JP 4256055 B2 JP4256055 B2 JP 4256055B2
Authority
JP
Japan
Prior art keywords
frequency
light
measured
resonance
optical resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219318A
Other languages
Japanese (ja)
Other versions
JP2002039866A (en
Inventor
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2000219318A priority Critical patent/JP4256055B2/en
Publication of JP2002039866A publication Critical patent/JP2002039866A/en
Application granted granted Critical
Publication of JP4256055B2 publication Critical patent/JP4256055B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光通信、光計測の分野で利用される周波数測定方法に係り、特に多波長のレーザー光の発振周波数を高確度に測定する周波数測定方法に関する。
【0002】
【従来の技術】
光通信において、周波数の異なる複数の信号光を重畳させ、1本の光ファイバーに伝送させる波長多重通信(WDM:Wavelength Division Multiplexing)が開発されている。それぞれのチャネルのキャリア周波数は(ITU:International Telecommunication Unit)から勧告されており、それらは193.1THzを基準周波数として、そこから100GHzの整数倍離れた位置に配置されている。また、キャリア周波数の周波数確度は1GHz以下が要求されている。それぞれのキャリア周波数は、上記の条件を満たすように設定されているが、光源の劣化、周囲条件の変化等により、設定値からずれる恐れがあり、従って、全てのキャリア周波数を常に監視する必要がある。
【0003】
高速に全てのキャリア周波数を測定する方法として、共振周波数を掃引した光共振器を用いる方法が提案された。図7にこの方法の構成を示した。この方法は、数THz程度の非常に広いフリースペクトルレンジを持った光共振器の共振周波数を掃引し、そこに周波数を測定したい多重化されたレーザー光を入射して、光共振器の透過光量を観測することにより、レーザー光の周波数を測定するものである。図8に示した様に、多重化されたレーザー光の内、最も低周波数なレーザー光周波数をν1 、最も高周波数なレーザー光周波数をνM とすれば、フリースペクトルレンジと掃引範囲はそれぞれνM −ν1 以上が必要であった。これにより唯一つの共振モードを透過したレーザー光のみを観測することができた。従って、横軸を掃引中の特定の共振モードの周波数、縦軸を光共振器の透過光量とすれば、それぞれのレーザー光の周波数と光量を測定することができた。
【0004】
【発明が解決しようとする課題】
しかしながら、前記の共振周波数を掃引した光共振器を用いる方法は、光共振器のフリースペクトルレンジが非常に広い(数THz)ために、共振モードの透過幅が広く(数十GHz)、分解能が低いという問題があった。
本発明の目的は、上述の如き従来の問題点に鑑み、高分解能で高確度な波長測定方法を提供することにある。
【0005】
【課題を解決するための手段】
上述の課題を解決するために、本発明の周波数測定方法は、フリースペクトルレンジの狭い光共振器を用いることによって、共振モードの幅を狭め、周波数測定の分解能と確度を向上させることを特徴としている。フリースペクトルレンジを被測定レーザー光の設定周波数確度と比較して同等か或いは若干広く設定することにより、設定周波数とフリースペクトルレンジから、レーザー光を透過させている共振モードのモードが計算できることを特徴としている。
【0006】
すなわち、本発明の周波数測定方法は、フリースペクトルレンジが既知であり、かつ、共振モードが掃引可能な光共振器に、周波数がその周波数確度の範囲で既知である第1の周波数を有する被測定光と第2の周波数を有する被測定光とを合波した合波光を入射して前記第1の周波数を有する被測定光と前記第2の周波数を有する被測定光の差周波数を測定する周波数測定方法であって、前記第1の周波数、前記第2の周波数および前記フリースペクトルレンジに基づいて前記第1の周波数と前記第2の周波数の間に有る前記共振モードの数nを求める段階と、前記共振モードを掃引したときの前記第1の周波数を有する被測定光が共振する掃引位置(VA1,VA2)と前記第2の周波数を有する被測定光が共振する掃引位置(VB1,VB2)とを求める段階と、前記第1の周波数を有する被測定光の共振位置、前記第2の周波数を有する被測定光の共振位置、前記数nおよび前記フリースペクトルレンジに基づいて前記差周波数を求める段階とからなっている。
本発明の周波数測定方法は、高分解能、高確度にレーザー光の周波数を測定することができる。
【0007】
【発明の実施の形態】
以下に、本発明に係る周波数測定方法の実施の形態について、図面を参照しながら詳細に説明する。
本発明に係わる周波数測定の原理を以下に示す。光共振器の透過スペクトルは、鋭いLorentzianの透過域が等間隔に並んだ形状をしており、透過のピーク周波数(共振周波数)と間隔(FSR :フリースペクトルレンジ)は共振器長と共振器内部の屈折率で決定される。共振周波数を掃引させた光共振器にレーザー光を入射すれば、共振周波数とレーザー光周波数が一致したときに出射光が観測される。複数の光源からのレーザー光を多重化して入射した場合は、それぞれのレーザー光周波数に依存したときに出射光が観測される。従って、それぞれの出射光とそのときの共振周波数とからそれぞれの光源間の差周波数を精度良く見積もることができる。
【0008】
以下に光源が2つの場合について具体的に説明する。
2つのレーザー光源A,Bからのレーザー光を合波後に、共振周波数を鋸歯状に掃引させた光共振器に入射したとする。掃引範囲は光共振器のフリースペクトルレンジよりも十分広いとする。この状態で光共振器の透過光量を受光器で観測する。光共振器の共振モードの共振周波数(Ri )と光源A、Bの発振周波数(νA 、νB )の関係が、図1に示した状態にあり共振周波数が低周波側に掃引されているとする。この場合、掃引により、R0 、R1 がνA と一致するときに光共振器からパルス光が出射される。同様に、Rn 、Rn+1 がνB と一致するときにもパルス光が出射される。Rn は、R0 に対して、高周波数側にn番目の共振モードの共振周波数を示している。光共振器の共振周波数が信号発生器の電圧に比例して制御できるとすれば、信号発生器の出力電圧を横軸に、光共振器の透過光量を縦軸にとると、図2に示したように、周期的なパルスを観測することができる。PAiは、光源Aからのレーザー光によるパルス光である。共振周波数の掃引幅がフリースペクトルレンジ(FSR)よりも十分に広いため、1掃引内において複数のパルスが出射される。同様に、PBiは、光源Bからのレーザー光によるパルス光である。PA1、PA2、PB1、PB2のパルスが出射されたときの信号発生器の出力電圧をVA1、VA2、VB1、VB2とすれば、νA 、νB は、
νB −νA =〔n+(VB1−VA1)/(VA2−VA1)〕・FSR (1)
と表わすことができる。従って、νA とνB の間にある共振モードの数nが既知であれば、VA1、VA2、VB1を測定することにより、簡単に光源A,B間の差周波数を測定することが可能である。また、νA が既知であれば、式(1)より、光源Bの絶対周波数を測定することが可能である。
【0009】
図3は本発明に係る周波数測定方法を適用した測定系を示したものである。ここでは光源は、周波数が安定化された周波数基準光源と、周波数を測定したい被周波数測定光源の2台とした。周波数基準光源1は、1545.1754nm にあるアセチレンガスの吸収線を周波数基準として発振周波数の安定化が施されている。被周波数測定光源2は、半導体レーザ(LD)、グレーティング、ミラーをリットマン型に配置した外部共振器構造LD光源である。ミラーの角度をモーターで粗調、PZT で微調することにより発振周波数を可変している。±0.6GHzの確度で周波数を制御可能である。光共振器3は、フリースペクトルレンジ1.49928GHz、フィネス150 のコンフォーカルエタロンを用いた。共振周波数における透過率は20%であった。内蔵のPZT に電圧を印加することにより、共振周波数をフリースペクトルレンジの3倍程度まで掃引可能である。
【0010】
光共振器のフリースペクトルレンジが約1.5GHzであるのに対して被周波数測定光源の周波数確度が0.6GHzであることから、式(1)のnを、ミスカウント無しに計算することができる。
周波数基準光源1と被周波数測定光源2からのレーザー光を合波器4で合波して光共振器3に入射した。光共振器3は、光共振器内蔵PZTに電圧を印加して共振周波数を掃引した。光共振器3から出射されたレーザー光は受光器5で受光され受光信号に変換された。受光信号の電圧を縦軸に、掃引信号電圧を横軸にした図を図4に示した。図中のT1,T2,T3が被周波数測定光源2からの、R1,R2,R3が周波数基準光源1からの信号である。周波数基準光源1と被周波数測定光源2の信号を明確に区別するために、周波数基準光源1の出力を被周波数測定光源2と比較して5dB低下させて光共振器3に入力した。図4を見ると、掃引電圧が高くなるほど、つまりPZTが伸びるほど、ピーク間隔が詰まってきていることが分かる。これはPZTの伸縮距離が、印加電圧に対して非線型であるためである。そこで、図4からPZTの非線型性を計算し、補正したものを図5に示した。また、ピーク間隔がフリースペクトルレンジに対応することから、横軸を周波数に換算した。
【0011】
ピーク位置検出はコンピューターによって自動的に行われ信号位置、周波数基準光源1の発振周波数、被周波数測定光源2の設定周波数と周波数基準光源1の発振周波数から計算されたnを式(1)に代入して被周波数測定光源2の発振周波数を見積もった。
【0012】
高精度波長計(分解能10MHz )の測定値を基準として、本発明の方法により測定された被周波数測定光源2の発振周波数の測定精度の波長依存性を測定した。結果を図6に示した。今回使用した被周波数測定光源の発振可能な波長範囲が1480-1555nm であったため、この波長域内でのみの測定となった。図から、周波数基準光源から65nm離れた波長域においても±0.1GHzの精度で周波数が測定できていることが分かる。0.2GHz以上に測定精度が劣化しているものが観測されているが、これは被周波数測定光源が多モード発振してしまったためである。
この実施の形態では、光源は2つであったが、光源を3つ以上に増やしても、同様にそれぞれのレーザー光周波数を測定することできる。
【0013】
【発明の効果】
本発明に係わる周波数測定方法は、掃引信号によって共振周波数を掃引させた光共振器に、複数の被周波数測定光源からのレーザー光を入射し、光共振器を透過したレーザー光を受光器で受光し、受光器から出力された受光信号と、掃引信号との関係から被周波数測定光源の発振周波数を検出する系において、レーザー光の周波数が予めある確度で既知であることを利用して、光共振器のフリースペクトルレンジが狭くても、被周波数測定光源の周波数を高確度に測定できる。フリースペクトルレンジが狭いために共振モードの幅も狭くでき、結果として高分解能で高確度に測定できた。
従って、本発明に係わる周波数測定方法をWDM系に用いることにより、WDM系の光源の発振周波数を、高確度、高分解能に測定することができる。
【図面の簡単な説明】
【図1】本発明の周波数測定方法を説明するための図であって、被測定光の周波数と光共振器の共振周波数の関係を示す図である。
【図2】本発明の周波数測定方法を説明するための図であって、光共振器の透過光量と掃引信号の関係を示す図である。
【図3】本発明の周波数測定方法を適用した測定系を示す図である。
【図4】掃引信号と受光信号の関係を示す図である。
【図5】PZTの非線形性を補正した後の周波数と受光信号の関係を示す図である。
【図6】本発明の周波数測定方法による測定結果を示す図である。
【図7】光共振器を用いた周波数測定を説明するための図である。
【図8】従来の周波数測定方法における被測定光の周波数と、掃引中の共振モードの関係を示す図である。
【符号の説明】
1 周波数基準光源
2 被周波数測定光源
3 光共振器
4 合波器
5 受光器
6 解析器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frequency measurement method used in the fields of optical communication and optical measurement, and more particularly to a frequency measurement method for measuring an oscillation frequency of multi-wavelength laser light with high accuracy.
[0002]
[Prior art]
In optical communication, wavelength division multiplexing (WDM) in which a plurality of signal lights having different frequencies are superimposed and transmitted to a single optical fiber has been developed. The carrier frequency of each channel is recommended by (ITU: International Telecommunication Unit), which is arranged at a position separated by an integral multiple of 100 GHz from 193.1 THz as a reference frequency. Further, the frequency accuracy of the carrier frequency is required to be 1 GHz or less. Each carrier frequency is set to satisfy the above conditions, but there is a risk of deviation from the set value due to deterioration of the light source, changes in ambient conditions, etc. Therefore, it is necessary to constantly monitor all carrier frequencies. is there.
[0003]
As a method for measuring all carrier frequencies at high speed, a method using an optical resonator having a swept resonant frequency has been proposed. FIG. 7 shows the configuration of this method. This method sweeps the resonance frequency of an optical resonator having a very wide free spectral range of several THz, and enters a multiplexed laser beam whose frequency is to be measured, and transmits the amount of light transmitted through the optical resonator. Is used to measure the frequency of the laser beam. As shown in FIG. 8, if the lowest laser light frequency of the multiplexed laser light is ν1, and the highest laser light frequency is νM, the free spectrum range and the sweep range are νM − More than ν1 was required. As a result, only the laser beam that passed through one resonance mode could be observed. Therefore, if the horizontal axis is the frequency of a specific resonance mode during sweeping and the vertical axis is the amount of light transmitted through the optical resonator, the frequency and the amount of light of each laser beam can be measured.
[0004]
[Problems to be solved by the invention]
However, the method using an optical resonator that sweeps the resonance frequency described above has a very wide free spectral range of the optical resonator (several THz), so that the transmission width of the resonance mode is wide (several tens of GHz) and the resolution is high. There was a problem of being low.
An object of the present invention is to provide a wavelength measurement method with high resolution and high accuracy in view of the conventional problems as described above.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, the frequency measurement method of the present invention is characterized in that by using an optical resonator with a narrow free spectrum range, the width of the resonance mode is narrowed and the resolution and accuracy of frequency measurement are improved. Yes. By setting the free spectrum range to be equal to or slightly wider than the set frequency accuracy of the laser beam to be measured, the mode of the resonance mode that transmits the laser beam can be calculated from the set frequency and the free spectrum range. It is said.
[0006]
In other words, the frequency measurement method of the present invention has an optical resonator whose free spectral range is known and whose resonance mode can be swept, and has a first frequency whose frequency is known within the range of the frequency accuracy. A frequency for measuring a difference frequency between the light to be measured having the first frequency and the light to be measured having the second frequency by combining the light and the light to be measured having the second frequency. A measurement method, the step of obtaining the number n of the resonance modes between the first frequency and the second frequency based on the first frequency, the second frequency, and the free spectrum range; The sweep position (VA1, VA2) where the measured light having the first frequency resonates when the resonance mode is swept, and the sweep position (VB1, VB2) where the measured light having the second frequency resonates. And And calculating the difference frequency based on the resonance position of the light to be measured having the first frequency, the resonance position of the light to be measured having the second frequency, the number n, and the free spectrum range. It is made up of.
The frequency measurement method of the present invention can measure the frequency of laser light with high resolution and high accuracy.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a frequency measurement method according to the present invention will be described below in detail with reference to the drawings.
The principle of frequency measurement according to the present invention is shown below. The transmission spectrum of an optical resonator has a shape in which sharp Lorentzian transmission regions are arranged at equal intervals, and the transmission peak frequency (resonance frequency) and interval (FSR: free spectral range) are the resonator length and the resonator interior Determined by the refractive index. If laser light is incident on an optical resonator that has swept the resonance frequency, the emitted light is observed when the resonance frequency matches the laser light frequency. When laser beams from a plurality of light sources are multiplexed and incident, outgoing light is observed depending on the frequency of each laser beam. Therefore, the difference frequency between the respective light sources can be accurately estimated from the respective emitted light and the resonance frequency at that time.
[0008]
The case where there are two light sources will be specifically described below.
It is assumed that the laser beams from the two laser light sources A and B are combined and then incident on an optical resonator whose resonance frequency is swept in a sawtooth shape. The sweep range is assumed to be sufficiently wider than the free spectrum range of the optical resonator. In this state, the amount of light transmitted through the optical resonator is observed with a light receiver. The relationship between the resonance frequency (R i ) of the resonance mode of the optical resonator and the oscillation frequencies (νA, νB) of the light sources A and B is in the state shown in FIG. 1, and the resonance frequency is swept to the low frequency side. To do. In this case, pulse light is emitted from the optical resonator when R 0 and R 1 coincide with ν A by sweeping. Similarly, pulse light is emitted when R n and R n + 1 coincide with νB. R n indicates the resonance frequency of the nth resonance mode on the high frequency side with respect to R 0 . If the resonance frequency of the optical resonator can be controlled in proportion to the voltage of the signal generator, the output voltage of the signal generator is plotted on the horizontal axis and the amount of light transmitted through the optical resonator is plotted on the vertical axis. As can be seen, periodic pulses can be observed. P Ai is pulsed light from the laser light from the light source A. Since the sweep width of the resonance frequency is sufficiently wider than the free spectrum range (FSR), a plurality of pulses are emitted within one sweep. Similarly, P Bi is pulsed light by laser light from the light source B. If the output voltage of the signal generator when the pulses of P A1 , P A2 , P B1 and P B2 are emitted is V A1 , V A2 , V B1 and V B2 , νA and νB are
ν B −ν A = [n + (V B1 −V A1 ) / (V A2 −V A1 )] · FSR (1)
Can be expressed as Therefore, if the number of resonance modes n between νA and νB is known, the difference frequency between the light sources A and B can be easily measured by measuring V A1 , V A2 , and V B1. It is. If νA is known, the absolute frequency of the light source B can be measured from the equation (1).
[0009]
FIG. 3 shows a measurement system to which the frequency measurement method according to the present invention is applied. Here, two light sources are used: a frequency reference light source whose frequency is stabilized and a frequency measurement light source whose frequency is to be measured. The frequency reference light source 1 has an oscillation frequency stabilized with an absorption line of acetylene gas at 1545.1754 nm as a frequency reference. The frequency measurement light source 2 is an LD light source having an external resonator structure in which a semiconductor laser (LD), a grating, and a mirror are arranged in a Littman type. The oscillation frequency is varied by coarsely adjusting the mirror angle with a motor and finely adjusting with PZT. The frequency can be controlled with an accuracy of ± 0.6 GHz. The optical resonator 3 is a confocal etalon having a free spectral range of 1.49928 GHz and a finesse of 150. The transmittance at the resonance frequency was 20%. By applying a voltage to the built-in PZT, the resonance frequency can be swept up to about 3 times the free spectrum range.
[0010]
Since the frequency accuracy of the frequency measurement light source is 0.6 GHz while the free spectral range of the optical resonator is about 1.5 GHz, n in Equation (1) can be calculated without miscounting.
Laser beams from the frequency reference light source 1 and the frequency measurement light source 2 were combined by a multiplexer 4 and incident on an optical resonator 3. The optical resonator 3 sweeps the resonance frequency by applying a voltage to the PZT with a built-in optical resonator. The laser beam emitted from the optical resonator 3 was received by the light receiver 5 and converted into a light reception signal. FIG. 4 shows a graph in which the light reception signal voltage is plotted on the vertical axis and the sweep signal voltage is plotted on the horizontal axis. In the figure, T1, T2, and T3 are signals from the frequency-measurement light source 2, and R1, R2, and R3 are signals from the frequency reference light source 1. In order to clearly distinguish the signals of the frequency reference light source 1 and the frequency measured light source 2, the output of the frequency reference light source 1 was reduced by 5 dB compared with the frequency measured light source 2 and input to the optical resonator 3. As can be seen from FIG. 4, as the sweep voltage increases, that is, as the PZT increases, the peak interval becomes narrower. This is because the expansion / contraction distance of PZT is non-linear with respect to the applied voltage. Therefore, FIG. 5 shows the result of calculating and correcting the nonlinearity of PZT from FIG. Moreover, since the peak interval corresponds to the free spectrum range, the horizontal axis was converted to frequency.
[0011]
Peak position detection is automatically performed by a computer, and n calculated from the signal position, the oscillation frequency of the frequency reference light source 1, the set frequency of the frequency measurement light source 2 and the oscillation frequency of the frequency reference light source 1 is substituted into equation (1). Thus, the oscillation frequency of the frequency measurement light source 2 was estimated.
[0012]
The wavelength dependence of the measurement accuracy of the oscillation frequency of the frequency measurement light source 2 measured by the method of the present invention was measured with reference to the measurement value of a high-accuracy wavelength meter (resolution: 10 MHz). The results are shown in FIG. The frequency range that can be oscillated by the frequency measurement light source used this time was 1480-1555 nm, so measurements were only made within this wavelength range. It can be seen from the figure that the frequency can be measured with an accuracy of ± 0.1 GHz even in a wavelength region 65 nm away from the frequency reference light source. Some observations have shown that the measurement accuracy has deteriorated to 0.2 GHz or more, but this is because the frequency measurement light source has oscillated in multiple modes.
In this embodiment, there are two light sources. However, even if the number of light sources is increased to three or more, the respective laser light frequencies can be measured in the same manner.
[0013]
【The invention's effect】
In the frequency measurement method according to the present invention, laser light from a plurality of frequency-measurement light sources is incident on an optical resonator whose resonance frequency is swept by a sweep signal, and the laser light transmitted through the optical resonator is received by a light receiver. In the system that detects the oscillation frequency of the frequency measurement light source from the relationship between the light reception signal output from the light receiver and the sweep signal, the fact that the frequency of the laser light is known with certain accuracy in advance is used. Even if the free spectrum range of the resonator is narrow, the frequency of the frequency measurement light source can be measured with high accuracy. Since the free spectrum range is narrow, the resonance mode width can also be narrowed, resulting in high resolution and high accuracy.
Therefore, by using the frequency measurement method according to the present invention for the WDM system, the oscillation frequency of the WDM light source can be measured with high accuracy and high resolution.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a frequency measurement method of the present invention, and is a diagram showing a relationship between a frequency of light to be measured and a resonance frequency of an optical resonator.
FIG. 2 is a diagram for explaining a frequency measurement method according to the present invention, and is a diagram showing a relationship between a transmitted light amount of an optical resonator and a sweep signal.
FIG. 3 is a diagram showing a measurement system to which the frequency measurement method of the present invention is applied.
FIG. 4 is a diagram illustrating a relationship between a sweep signal and a light reception signal.
FIG. 5 is a diagram illustrating a relationship between a frequency and a light reception signal after correcting the nonlinearity of PZT.
FIG. 6 is a diagram showing measurement results obtained by the frequency measurement method of the present invention.
FIG. 7 is a diagram for explaining frequency measurement using an optical resonator.
FIG. 8 is a diagram showing the relationship between the frequency of light to be measured and the resonance mode during sweep in the conventional frequency measurement method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Frequency reference light source 2 Frequency measured light source 3 Optical resonator 4 Combiner 5 Light receiver 6 Analyzer

Claims (1)

フリースペクトルレンジが既知であり、かつ、共振モードが掃引可能な光共振器に、周波数がその周波数確度の範囲で既知である第1の周波数を有する被測定光と第2の周波数を有する被測定光とを合波した合波光を入射して前記第1の周波数を有する被測定光と前記第2の周波数を有する被測定光の差周波数を測定する周波数測定方法であって、
前記第1の周波数、前記第2の周波数および前記フリースペクトルレンジに基づいて前記第1の周波数と前記第2の周波数の間に有る前記共振モードの数nを求める段階と、
前記共振モードを掃引したときの前記第1の周波数を有する被測定光が共振する掃引位置(VA1,VA2)と前記第2の周波数を有する被測定光が共振する掃引位置(VB1,VB2)とを求める段階と、
前記第1の周波数を有する被測定光の共振位置、前記第2の周波数を有する被測定光の共振位置、前記数nおよび前記フリースペクトルレンジに基づいて前記差周波数を求める段階とからなる周波数測定方法。
An optical resonator whose free spectral range is known and whose resonance mode can be swept is measured light having a first frequency and a second frequency whose frequency is known within the range of the frequency accuracy. A frequency measurement method for measuring a difference frequency between a light to be measured having the first frequency and a light to be measured having the second frequency by entering a combined light that is combined with light,
Determining the number n of the resonance modes between the first frequency and the second frequency based on the first frequency, the second frequency, and the free spectral range;
Sweep positions (VA1, VA2) where the measured light having the first frequency resonates when the resonance mode is swept, and sweep positions (VB1, VB2) where the measured light having the second frequency resonates. The stage of seeking
Measuring the difference frequency based on the resonance position of the light to be measured having the first frequency, the resonance position of the light to be measured having the second frequency, the number n, and the free spectrum range. Method.
JP2000219318A 2000-07-19 2000-07-19 Frequency measurement method Expired - Fee Related JP4256055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219318A JP4256055B2 (en) 2000-07-19 2000-07-19 Frequency measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219318A JP4256055B2 (en) 2000-07-19 2000-07-19 Frequency measurement method

Publications (2)

Publication Number Publication Date
JP2002039866A JP2002039866A (en) 2002-02-06
JP4256055B2 true JP4256055B2 (en) 2009-04-22

Family

ID=18714122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219318A Expired - Fee Related JP4256055B2 (en) 2000-07-19 2000-07-19 Frequency measurement method

Country Status (1)

Country Link
JP (1) JP4256055B2 (en)

Also Published As

Publication number Publication date
JP2002039866A (en) 2002-02-06

Similar Documents

Publication Publication Date Title
US8699013B2 (en) Chromatic dispersion measurement device and chromatic dispersion measurement method for measuring the dispersion of light pulses
US5956355A (en) Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US7499182B2 (en) Optical signal measurement system
US6937346B2 (en) Wavemeter having two interference elements
US6078394A (en) Wavelength manager
JP5663499B2 (en) Optical scanning and imaging system with dual pulse laser system
JP2001511895A (en) Optical wavelength measurement device
JP4256055B2 (en) Frequency measurement method
US6587190B2 (en) System and method for measuring chromatic dispersion in optical fiber
JP2564622B2 (en) Method and apparatus for stabilizing oscillation frequency of semiconductor laser
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JP4612938B2 (en) Frequency variable light source
US20200081319A1 (en) Optical system
JP2005249775A (en) Light wavelength meter
CN112082584A (en) Optical fiber distributed physical quantity measuring method, device and system based on laser tuning control
CN112082586A (en) Fiber bragg grating array sensing method, device and system based on distributed feedback laser array
US20200096417A1 (en) Method and apparatus for chromatic dispersion measurement based on optoelectronic oscillations
EP3413480A1 (en) System for measuring a spectrum
Voumard et al. Dual-Comb Spectroscopy for Astronomical Spectrograph Calibration
JPS6351554B2 (en)
US6671434B2 (en) Optical performance monitor
JP4331387B2 (en) Signal discrimination method
JPH11274643A (en) Variable wavelength semiconductor laser light source
JP3252880B2 (en) Dynamic characteristic measuring device for wavelength tunable element
Wang et al. $1.5\\mu\mathrm {m} $ Wavelength Standard based on Acetylene Saturated Absorption at NIM

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees