JP4331387B2 - Signal discrimination method - Google Patents

Signal discrimination method Download PDF

Info

Publication number
JP4331387B2
JP4331387B2 JP2000219317A JP2000219317A JP4331387B2 JP 4331387 B2 JP4331387 B2 JP 4331387B2 JP 2000219317 A JP2000219317 A JP 2000219317A JP 2000219317 A JP2000219317 A JP 2000219317A JP 4331387 B2 JP4331387 B2 JP 4331387B2
Authority
JP
Japan
Prior art keywords
light
frequency
signal
measured
optical resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000219317A
Other languages
Japanese (ja)
Other versions
JP2002044022A (en
Inventor
崇記 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2000219317A priority Critical patent/JP4331387B2/en
Publication of JP2002044022A publication Critical patent/JP2002044022A/en
Application granted granted Critical
Publication of JP4331387B2 publication Critical patent/JP4331387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光通信、光計測の分野で利用される周波数測定方法に係り、特に多波長のレーザー光の発振周波数を高確度に測定する周波数測定方法に関する。
【0002】
【従来の技術】
光通信において、周波数の異なる複数の信号光を重畳させ、1本の光ファイバーに伝送させる波長多重通信(WDM:Wavelength Division Multiplexing)が開発されている。それぞれのチャネルのキャリア周波数は(ITU:International Telecommunication Unit)から勧告されており、それらは193.1THzを基準周波数として、そこから100GHzの整数倍離れた位置に配置されている。また、キャリア周波数の周波数確度は1GHz以下が要求されている。それぞれのキャリア周波数は、上記の条件を満たすように設定されているが、光源の劣化、周囲条件の変化等により、設定値からずれる恐れがあり、従って、全てのキャリア周波数を常に監視する必要がある。
【0003】
高速に全てのキャリア周波数を測定する方法として、共振周波数を掃引した光共振器を用いる方法が提案された。図5にこの方法の構成を示した。光共振器の透過スペクトルは、鋭いLorentzianの透過域が等間隔に並んだ形状をしており、透過のピーク周波数(共振周波数)と間隔(FSR :フリースペクトルレンジ)は共振器長と共振器内部の屈折率で決定される。レーザー光を光共振器に入射し、その透過光量を観測する場合、共振周波数をフリースペクトルレンジ以上の範囲で掃引すれば、共振周波数とレーザー光周波数が一致したときに出射光が観測される。複数の光源からのレーザー光を多重化して入射した場合は、それぞれのレーザー光周波数に依存したときに出射光が観測される。従って、それぞれの出射光とそのときの共振周波数とからそれぞれの光源間の差周波数を精度良く見積もることができる。
【0004】
以下に光源が2つの場合について説明する。
2つのレーザー光源A,Bからのレーザー光を合波後に、共振周波数を鋸歯状に掃引させた光共振器に入射したとする。掃引範囲は光共振器のフリースペクトルレンジよりも十分広いとする。この状態で光共振器の透過光量を受光器で観測する。光共振器の共振モードの共振周波数(Ri )と光源A、Bの発振周波数(νA 、νB )の関係が、図6に示した状態にあり共振周波数が低周波側に掃引されているとする。この場合、掃引により、R0 、R1 がνA と一致するときに光共振器からパルス光が出射される。同様に、Rn 、Rn+1 がνB と一致するときにもパルス光が出射される。Rn は、R0 に対して、高周波数側にn番目の共振モードの共振周波数を示している。光共振器の共振周波数が掃引信号発生器の出力電圧に比例して制御できるとすれば、掃引信号発生器の出力電圧を横軸に、受光器から出力された受光信号を縦軸にとると、図7に示したように、周期的なパルスを観測することができる。A1、A2、A3は、光源Aからのレーザー光のよる信号である。共振周波数の掃引幅がフリースペクトルレンジ(FSR)よりも十分に広いため、1掃引内において複数の信号が観測される。同様に、B1、B2、B3は、光源Bからのレーザー光による信号である。A1、A2、B1、B2のパルスが出射された時刻での信号発生器の出力電圧をVA1、VA2、VB1、VB2とすれば、νA 、νB は、
νB −νA =〔n+(VB1−VA1)/(VA2−VA1)〕・FSR (1)
と表わすことができる。従って、νA とνB の間にある共振モードの数nが既知であれば、VA1、VA2、VB1を測定することにより、簡単に光源A,B間の差周波数を測定することが可能である。また、 nAが既知であれば、式(1)より、光源Bの絶対周波数を測定することが可能である。
上記では、光源が2つの場合について説明したが、光源が3つ以上の場合についても、同様の方法でそれぞれの周波数を求めることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、前記の方法では、光源Bのレーザー光量の方が、光源Aよりも強いということが予め分かっていたために、A1,A2,A3が光源Aの、B1,B2,B3が光源Bからの信号と分かるが、強度が分かっていない場合は、どちらが光源Aによる信号かを判別することは困難であった。また、それぞれの光源からの信号が重なった場合には、それぞれの信号を分離することは非常に困難である。
本発明の目的は、上述の如き従来の問題点に鑑み、受光信号の内のどの成分がどの被周波数測定光源のレーザー光によるものかを判別する方法を提供することにある。
【0006】
【課題を解決するための手段】
上述の課題を解決するために、本発明の信号判別方法は、被周波数測定レーザー光の周波数、位相あるいは強度を変調させることによって、個々の被周波数測定レーザー光による受光信号に特徴を持たせ、個々の受光信号を判別できることを特徴としている。この特徴により、受光信号が重なった場合でも、それぞれの信号を分離することができる。
【0007】
すなわち、本発明の信号判別方法は、共振モードが掃引可能な光共振器に第1の周波数を有する被測定光と第2の周波数を有する被測定光とを合波した合波光を入射し、前記光共振器からの透過光を受光器で検出して前記共振モードを掃引したときの前記第1の周波数を有する被測定光が共振する掃引位置(A1,A2,A3)と前記第2の周波数を有する被測定光が共振する掃引位置(B1,B2,B3)とを求めるときに、前記透過光が前記第1の周波数を有する被測定光の透過光か前記第2の周波数を有する被測定光の透過光かを判別する信号判別方法であって、前記第1の周波数を有する被測定光と前記第2の周波数を有する被測定光の内少なくとも一方の被測定光の周波数、位相および強度の内少なくとも一つを変調することとしている。
本発明の信号判別方法では、どの受光信号がどの被周波数測定光源のレーザー光によるものかを判別でき、さらに重なった受光信号や、接近した受光信号を分離して、それぞれの被周波数測定レーザー光の周波数を高精度に測定することができる。
【0008】
【発明の実施の形態】
以下に、本発明に係わる信号判別方法の実施の形態について、図面を参照しながら詳細に説明する。
図1は本発明に係る信号判別方法を行うための構成を示したものである。光源A1と光源B2からのレーザー光を合波器4で合波して光共振器3に入射した。光共振器3は、光共振器内蔵PZTに電圧を印加して共振周波数を掃引した。光共振器3から出射されたレーザー光は受光器5で受光され受光信号に変換された。受光信号は解析器6に入力され、そこで両光源間の差周波数が見積もられた。この実施の形態では、解析器6から出力された掃引信号を光共振器内蔵PZTに入力することによって、光共振器3の共振周波数が掃引された。
【0009】
光源A1の周波数を変調振幅400MHz、変調周波数100kHzで変調させた。変調時の受光信号の様子を図2に示した。従来の方法では一つのピークを持つ信号に過ぎなかったA1,A2,A3の受光信号が、王冠状に広がって観測された。変調を加えたのは光源A1であるので、王冠状に広がったA1,A2,A3の信号が光源A1による信号であると明確に判別することができた。また、王冠状信号の中心が光源A1の信号位置、つまり、VA1、VA2、VA3となる。
【0010】
次に、得られた受光信号から両光源間の差周波数を求める方法を示す。図2を見ると、掃引信号電圧が高くなるほど、つまりPZTが伸びるほど、ピーク間隔が詰まってきていることが分かる。これはPZTの伸縮距離が、印加電圧に対して非線型であるためである。そこで、図2からPZTの非線型性を計算し、補正したものを図3に示した。また、ピーク間隔がフリースペクトルレンジに対応することから、横軸を周波数に換算した。
【0011】
変調により王冠状に広がった信号の中心検出はコンピューターによって自動的に行われた。その手順を図4に示した。まず、図3の信号をピークサーチし、光源B2の信号位置を検出する。ピーク位置での信号値を0として光源B2の信号を除去する。変調振幅400MHzとして計算された王冠状信号との相関を計算する。相関信号のピーク位置を検出し、その位置を光源A1の信号位置とする。
この作業により、光源A1と光源B2の受光信号を判別し、それぞれの信号位置を精度良く検出することができた。得られた信号位置を式(1)に代入して光源A1、光源B2の周波数差を見積もることができた。
【0012】
【発明の効果】
本発明に係わる信号判別方法は、掃引信号によって共振周波数を掃引させた光共振器に、複数の被周波数測定光源からのレーザー光を入射し、光共振器を透過したレーザー光を受光器で受光し、受光器から出力された受光信号と、掃引信号との関係から被周波数測定光源の発振周波数を検出する系において、レーザー光の周波数、位相あるいは強度を変調させることによって、どの受光信号がどの被周波数測定レーザー光によるものかが明確に判別できた。
従って、本発明に係わる信号判別方法をWDM系に用いることにより、WDM系の光源の発振周波数を、高確度、高分解能に測定することができる。
【図面の簡単な説明】
【図1】本発明の信号判別方法を行うための測定系の一例を示す図である。
【図2】受光信号と掃引信号の関係を示す図である。
【図3】PZTの非線形性を補正した後の周波数と受光信号の関係を示す図である。
【図4】王冠状信号の中心を求める手順を示した図である。
【図5】光共振器を用いた周波数測定を説明するための図である。
【図6】光共振器を用いた周波数測定方法における被周波数測定レーザーの周波数と掃引中の共振モードの関係を示す図である。
【図7】従来の受光信号と掃引信号の関係を示す図である。
【符号の説明】
1 周波数基準光源
2 被周波数測定光源
3 光共振器
4 合波器
5 受光器
6 解析器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a frequency measurement method used in the fields of optical communication and optical measurement, and more particularly to a frequency measurement method for measuring an oscillation frequency of multi-wavelength laser light with high accuracy.
[0002]
[Prior art]
In optical communication, wavelength division multiplexing (WDM) in which a plurality of signal lights having different frequencies are superimposed and transmitted to a single optical fiber has been developed. The carrier frequency of each channel is recommended by (ITU: International Telecommunication Unit), which is arranged at a position separated by an integral multiple of 100 GHz from 193.1 THz as a reference frequency. Further, the frequency accuracy of the carrier frequency is required to be 1 GHz or less. Each carrier frequency is set to satisfy the above conditions, but there is a risk of deviation from the set value due to deterioration of the light source, changes in ambient conditions, etc. Therefore, it is necessary to constantly monitor all carrier frequencies. is there.
[0003]
As a method for measuring all carrier frequencies at high speed, a method using an optical resonator having a swept resonant frequency has been proposed. FIG. 5 shows the configuration of this method. The transmission spectrum of an optical resonator has a shape in which sharp Lorentzian transmission regions are arranged at equal intervals, and the transmission peak frequency (resonance frequency) and interval (FSR: free spectrum range) are the length of the resonator and the inside of the resonator. Determined by the refractive index. When laser light is incident on an optical resonator and the amount of transmitted light is observed, if the resonance frequency is swept within the free spectral range, the emitted light is observed when the resonance frequency and the laser light frequency coincide. When laser beams from a plurality of light sources are multiplexed and incident, outgoing light is observed depending on the frequency of each laser beam. Therefore, the difference frequency between the respective light sources can be accurately estimated from the respective emitted light and the resonance frequency at that time.
[0004]
The case where there are two light sources will be described below.
It is assumed that the laser beams from the two laser light sources A and B are combined and then incident on an optical resonator whose resonance frequency is swept in a sawtooth shape. The sweep range is assumed to be sufficiently wider than the free spectrum range of the optical resonator. In this state, the amount of light transmitted through the optical resonator is observed with a light receiver. The relationship between the resonance frequency (R i ) of the resonance mode of the optical resonator and the oscillation frequencies (νA, νB) of the light sources A and B is in the state shown in FIG. 6 and the resonance frequency is swept to the low frequency side. To do. In this case, pulse light is emitted from the optical resonator when R 0 and R 1 coincide with ν A by sweeping. Similarly, pulse light is emitted when R n and R n + 1 coincide with νB. R n indicates the resonance frequency of the nth resonance mode on the high frequency side with respect to R 0 . If the resonance frequency of the optical resonator can be controlled in proportion to the output voltage of the sweep signal generator, the horizontal axis represents the output voltage of the sweep signal generator, and the vertical axis represents the light reception signal output from the light receiver. As shown in FIG. 7, periodic pulses can be observed. A1, A2, and A3 are signals from the laser light from the light source A. Since the sweep width of the resonance frequency is sufficiently wider than the free spectrum range (FSR), a plurality of signals are observed within one sweep. Similarly, B1, B2, and B3 are signals by the laser light from the light source B. If the output voltage of the signal generator at the time when the pulses A1, A2, B1, and B2 are emitted is V A1 , V A2 , V B1 , and V B2 , νA and νB are
ν B −ν A = [n + (V B1 −V A1 ) / (V A2 −V A1 )] · FSR (1)
Can be expressed as Therefore, if the number of resonance modes n between νA and νB is known, the difference frequency between the light sources A and B can be easily measured by measuring V A1 , V A2 , and V B1. It is. If n A is known, the absolute frequency of the light source B can be measured from the equation (1).
Although the case where there are two light sources has been described above, each frequency can be obtained by the same method even when there are three or more light sources.
[0005]
[Problems to be solved by the invention]
However, in the above method, since it was previously known that the laser light amount of the light source B is stronger than the light source A, A1, A2, and A3 are from the light source A, and B1, B2, and B3 are from the light source B. If it is known as a signal but the intensity is not known, it is difficult to determine which is the signal from the light source A. In addition, when signals from the respective light sources overlap, it is very difficult to separate the respective signals.
An object of the present invention is to provide a method for discriminating which component of a received light signal is caused by the laser light of which frequency measurement light source in view of the conventional problems as described above.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the signal discrimination method of the present invention is characterized by modulating the frequency, phase, or intensity of the frequency-measured laser beam, thereby characterizing the received signal by each frequency-measured laser beam, It is characterized in that each received light signal can be discriminated. Due to this feature, even when the received light signals overlap, the respective signals can be separated.
[0007]
That is, in the signal discrimination method of the present invention, the combined light obtained by combining the measured light having the first frequency and the measured light having the second frequency is incident on the optical resonator capable of sweeping the resonance mode, Sweep positions (A1, A2, A3) at which the measured light having the first frequency resonates when the transmitted light from the optical resonator is detected by a light receiver and the resonance mode is swept, and the second When obtaining the sweep position (B1, B2, B3) at which the measured light having a frequency resonates, the transmitted light is either the transmitted light of the measured light having the first frequency or the measured frequency having the second frequency. A signal discrimination method for discriminating whether the measurement light is transmitted light, wherein the frequency, phase, and phase of at least one of the measurement light having the first frequency and the measurement light having the second frequency To modulate at least one of the intensities There.
In the signal discrimination method of the present invention, it is possible to determine which received light signal is due to the laser light of which frequency measurement light source, and further separate the received light signals that have overlapped and the received light signals that are close to each other, so that each frequency measured laser light is separated. Can be measured with high accuracy.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a signal discrimination method according to the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration for performing a signal discrimination method according to the present invention. The laser beams from the light source A1 and the light source B2 were combined by the combiner 4 and entered into the optical resonator 3. The optical resonator 3 swept the resonance frequency by applying a voltage to the PZT with a built-in optical resonator. The laser beam emitted from the optical resonator 3 was received by the light receiver 5 and converted into a light reception signal. The received light signal was input to the analyzer 6 where the difference frequency between the two light sources was estimated. In this embodiment, the resonance frequency of the optical resonator 3 is swept by inputting the sweep signal output from the analyzer 6 to the PZT with a built-in optical resonator.
[0009]
The frequency of the light source A1 was modulated with a modulation amplitude of 400 MHz and a modulation frequency of 100 kHz. The state of the received light signal during modulation is shown in FIG. The received light signals A1, A2 and A3, which were only signals having one peak in the conventional method, were observed spreading in a crown shape. Since it was the light source A1 that added the modulation, it was possible to clearly discriminate that the signals A1, A2 and A3 spreading in a crown shape were signals from the light source A1. The center of the crown signal is the signal position of the light source A1, that is, V A1 , V A2 , V A3 .
[0010]
Next, a method for obtaining the difference frequency between the two light sources from the obtained light reception signal will be described. As can be seen from FIG. 2, the peak interval becomes narrower as the sweep signal voltage becomes higher, that is, as PZT increases. This is because the expansion / contraction distance of PZT is non-linear with respect to the applied voltage. Therefore, FIG. 3 shows the result of calculating and correcting the non-linearity of PZT from FIG. Moreover, since the peak interval corresponds to the free spectrum range, the horizontal axis was converted to frequency.
[0011]
The detection of the center of the signal spread in a crown shape by modulation was performed automatically by the computer. The procedure is shown in FIG. First, the signal of FIG. 3 is peak searched to detect the signal position of the light source B2. The signal value at the peak position is set to 0, and the signal from the light source B2 is removed. The correlation with the crown signal calculated with a modulation amplitude of 400 MHz is calculated. The peak position of the correlation signal is detected, and that position is set as the signal position of the light source A1.
Through this work, the light reception signals of the light source A1 and the light source B2 were discriminated, and the respective signal positions could be accurately detected. It was possible to estimate the frequency difference between the light source A1 and the light source B2 by substituting the obtained signal position into the equation (1).
[0012]
【The invention's effect】
In the signal discrimination method according to the present invention, laser light from a plurality of frequency measurement light sources is incident on an optical resonator whose resonance frequency is swept by a sweep signal, and the laser light transmitted through the optical resonator is received by a light receiver. In the system that detects the oscillation frequency of the frequency measurement light source from the relationship between the received light signal output from the light receiver and the sweep signal, which light received signal is detected by modulating the frequency, phase, or intensity of the laser light. It was possible to clearly discern whether it was due to the frequency measurement laser beam.
Therefore, by using the signal discrimination method according to the present invention for the WDM system, the oscillation frequency of the WDM light source can be measured with high accuracy and high resolution.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a measurement system for performing a signal discrimination method of the present invention.
FIG. 2 is a diagram illustrating a relationship between a light reception signal and a sweep signal.
FIG. 3 is a diagram illustrating a relationship between a frequency and a received light signal after correcting non-linearity of PZT.
FIG. 4 is a diagram showing a procedure for obtaining the center of a crown signal.
FIG. 5 is a diagram for explaining frequency measurement using an optical resonator.
FIG. 6 is a diagram showing a relationship between a frequency of a frequency measurement laser and a resonance mode during sweeping in a frequency measurement method using an optical resonator.
FIG. 7 is a diagram illustrating a relationship between a conventional light reception signal and a sweep signal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Frequency reference light source 2 Frequency measured light source 3 Optical resonator 4 Combiner 5 Light receiver 6 Analyzer

Claims (1)

共振モードが掃引可能な光共振器に第1の周波数を有する被測定光と第2の周波数を有する被測定光とを合波した合波光を入射し、前記光共振器からの透過光を受光器で検出して前記共振モードを掃引したときの前記第1の周波数を有する被測定光が共振する掃引位置(A1,A2,A3)と前記第2の周波数を有する被測定光が共振する掃引位置(B1,B2,B3)とを求めるときに、前記透過光が前記第1の周波数を有する被測定光の透過光か前記第2の周波数を有する被測定光の透過光かを判別する信号判別方法であって、
前記第1の周波数を有する被測定光と前記第2の周波数を有する被測定光の内少なくとも一方の被測定光の周波数、位相および強度の内少なくとも一つを変調することによって前記透過光が前記第1の周波数を有する被測定光の透過光か前記第2の周波数を有する被測定光の透過光かを判別する信号判別方法。
A combined light obtained by combining the light to be measured having the first frequency and the light to be measured having the second frequency is incident on the optical resonator capable of sweeping the resonance mode, and the transmitted light from the optical resonator is received. Sweep positions (A1, A2, A3) at which the measured light having the first frequency resonates and the measured light having the second frequency resonate when the resonance mode is swept by the detector A signal for determining whether the transmitted light is transmitted light of the measured light having the first frequency or transmitted light of the measured light having the second frequency when determining the position (B1, B2, B3). A discrimination method,
By modulating at least one of the frequency, phase and intensity of at least one of the measured light having the first frequency and the measured light having the second frequency, the transmitted light is A signal discrimination method for discriminating between transmitted light of measured light having a first frequency and transmitted light of measured light having the second frequency.
JP2000219317A 2000-07-19 2000-07-19 Signal discrimination method Expired - Fee Related JP4331387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000219317A JP4331387B2 (en) 2000-07-19 2000-07-19 Signal discrimination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000219317A JP4331387B2 (en) 2000-07-19 2000-07-19 Signal discrimination method

Publications (2)

Publication Number Publication Date
JP2002044022A JP2002044022A (en) 2002-02-08
JP4331387B2 true JP4331387B2 (en) 2009-09-16

Family

ID=18714121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000219317A Expired - Fee Related JP4331387B2 (en) 2000-07-19 2000-07-19 Signal discrimination method

Country Status (1)

Country Link
JP (1) JP4331387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634057B2 (en) * 2004-03-17 2011-02-16 アンリツ株式会社 Optical cavity

Also Published As

Publication number Publication date
JP2002044022A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
US7027743B1 (en) System and method for optical heterodyne detection of an optical signal including optical pre-selection that is adjusted to accurately track a local oscillator signal
JP6698164B2 (en) Optical frequency domain reflection method and system based on frequency synthesis
CN113405577B (en) Measuring method and measuring device
US4984884A (en) Method for measuring dispersion characteristics of an optical fiber
CA2665522C (en) Measuring brillouin backscatter from an optical fibre using a tracking signal
CA1195138A (en) Measuring chromatic dispersion of fibers
EP0754939B1 (en) Optical fibre detecting device
CN101517375A (en) Measuring brillouin backscatter from an optical fibre using channelisation
JP2000180265A (en) Brillouin gain spectrum measuring method and device
KR102163517B1 (en) distributed optical fiber sensor apparatus and control method thereof
CA2632153A1 (en) Optical signal measurement system
US6614512B1 (en) System for measuring wavelength dispersion of optical fiber
CN111397851A (en) OFDR multi-path optical fiber sensing system and method based on optical frequency comb technology
CA2306019A1 (en) Measuring system of transmission characteristics
JP5487068B2 (en) Chromatic dispersion measuring apparatus and chromatic dispersion measuring method using the same
JP4331387B2 (en) Signal discrimination method
JP2002350236A (en) Light spectrum analysis system and light spectrum analysis method
JP3306815B2 (en) Optical frequency domain reflectometer
KR102059502B1 (en) distributed optical fiber sensor apparatus
JP3989470B2 (en) Optical frequency measurement system
JP4612938B2 (en) Frequency variable light source
JP2004125520A (en) Apparatus and method for measuring characteristics of optical fiber
JP3223439B2 (en) Fiber inspection equipment
US5644389A (en) Method for measuring distance between reflection points along light transmission line and reflectance thereof
JPH09133585A (en) Optical pulse train measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees