JP4255462B2 - Condensate well structure - Google Patents

Condensate well structure Download PDF

Info

Publication number
JP4255462B2
JP4255462B2 JP2005192704A JP2005192704A JP4255462B2 JP 4255462 B2 JP4255462 B2 JP 4255462B2 JP 2005192704 A JP2005192704 A JP 2005192704A JP 2005192704 A JP2005192704 A JP 2005192704A JP 4255462 B2 JP4255462 B2 JP 4255462B2
Authority
JP
Japan
Prior art keywords
water injection
material layer
groundwater
pipe
filter material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005192704A
Other languages
Japanese (ja)
Other versions
JP2007009564A (en
Inventor
忠良 石橋
清 桑原
雅春 齋藤
茂 松岡
博文 柳
三夫 千々岩
達児 長尾
弘行 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East Japan Railway Co
Original Assignee
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East Japan Railway Co filed Critical East Japan Railway Co
Priority to JP2005192704A priority Critical patent/JP4255462B2/en
Publication of JP2007009564A publication Critical patent/JP2007009564A/en
Application granted granted Critical
Publication of JP4255462B2 publication Critical patent/JP4255462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Description

この発明は、復水井構造に関し、さらに詳細には、例えば、地下水位の高い地盤での掘削に際し、地下水位を低下させるために汲み上げた地下水を地盤中に返送するリチャージ工法に用いる復水井構造に関する。   The present invention relates to a condensate well structure, and more particularly, for example, to a condensate well structure used in a recharge method for returning groundwater pumped up to lower the groundwater level when excavating in the ground having a high groundwater level. .

地下構造物を構築するために地盤を掘削するに際し、地下水位が高い場合には、その対策工法例えば地下水位低下工法や薬液注入工法などが実施される。地下水位低下工法は、地下から揚水して、必要な施工部位の地下水位を低下させることにより、地盤の安定を図る工法である。この地下水位低下工法は、薬液注入工法などの止水工法に対し、確実な地下水対策工法であることから、特に線路下施工では安全性に優れている。   When excavating the ground to construct an underground structure, if the groundwater level is high, countermeasures such as a groundwater level lowering method or a chemical injection method are implemented. The groundwater level lowering method is a method for stabilizing the ground by pumping water from the ground and lowering the groundwater level at the necessary construction site. This groundwater level lowering construction method is a reliable groundwater countermeasure construction method against the waterstop construction method such as the chemical solution injection construction method, and is therefore excellent in safety especially in the construction under the railway.

ところで、地下水位低下工法により汲み上げた地下水を、そのまま下水道や河川に放流すると、周辺地盤の沈下や井戸の水位低下などの被害を招く。このため、揚水された地下水を地中に返送する工法、すなわちリチャージ工法も広く実施されている。   By the way, if the groundwater pumped up by the groundwater level lowering method is discharged into the sewers and rivers as it is, it will cause damage such as subsidence of the surrounding ground and lowering of the water level of the wells. For this reason, a method of returning the pumped groundwater to the ground, that is, a recharge method is widely implemented.

しかしながら、このリチャージ工法では、地下水中に含まれる浮遊懸濁物質、バクテリア、地下水中に含まれる溶解鉄分の酸化物などにより、復水井の孔壁やフィルターに目詰まりが発生する。このため、返送効率が悪くなり、場合によっては下水道や河川に排水せざるを得ないこともある。   However, in this recharge method, clogging occurs in the pore wall and filter of the condensate well due to suspended suspended solids, bacteria, and dissolved iron oxides contained in the groundwater. For this reason, the return efficiency is deteriorated, and in some cases, it may be forced to drain into a sewer or a river.

すなわち、従来のリチャージ工法における復水井は、例えば図4に示すように、孔径φ550mm程度あるいはそれ以上の大きさとした掘削孔50の内部に、巻線からなるスクリーン51を装備したケーシングパイプ52を設置し、このケーシングパイプ52の内部に注水管53を設置し、さらに、スクリーン51周囲の掘削孔50に砕石からなるフィルター(フィルターグラベル)54を充填した構造である。   That is, in the condensate well in the conventional recharge method, for example, as shown in FIG. 4, a casing pipe 52 equipped with a screen 51 made of a winding is installed inside a drilling hole 50 having a hole diameter of about 550 mm or larger. The water injection pipe 53 is installed inside the casing pipe 52, and the excavation hole 50 around the screen 51 is filled with a filter (filter gravel) 54 made of crushed stone.

汲み上げた地下水は注水管53を通してケーシングパイプ52に供給され、ケーシングパイプ52下端のスクリーン51及びフィルター54を通して地盤中に返送される。ここに、ケーシングパイプ52に供給される地下水の圧力は自然水頭圧程度であり、時間経過に伴ってスクリーン51やフィルター54に目詰まりが発生する。このようなことから、従来の復水井では下端に洗浄用ポンプ56を取り付けた洗浄用排水管57を挿入し、加圧、バキューム等によるスクリーン51やフィルター54の逆洗浄操作が必要となる。   The groundwater pumped up is supplied to the casing pipe 52 through the water injection pipe 53 and returned to the ground through the screen 51 and the filter 54 at the lower end of the casing pipe 52. Here, the pressure of the groundwater supplied to the casing pipe 52 is about the natural head pressure, and the screen 51 and the filter 54 are clogged with the passage of time. For this reason, in the conventional condensate well, a cleaning drain pipe 57 having a cleaning pump 56 attached to the lower end is inserted, and the screen 51 and the filter 54 are reversely cleaned by pressurization, vacuum, or the like.

特許文献1には、揚水した地下水を加圧して地盤中に戻す技術が開示されている。しかしながら、同文献に開示の技術において、加圧の目的は地下水を大気から遮断することによる地下水中に溶解している鉄分の酸化防止であり、復水井の構造は図4に示した従来のものと何ら異なるところがない。このため、開口面積が大きなスクリーン(同文献ではストレーナー筒管と称している)通過時に返送地下水の流速が大きく減速し、加圧による目詰まり防止効果を期待することはできない。
特開2002−256538号公報
Patent Document 1 discloses a technique of pressurizing pumped ground water and returning it to the ground. However, in the technique disclosed in this document, the purpose of pressurization is to prevent oxidation of iron dissolved in the groundwater by blocking the groundwater from the atmosphere, and the structure of the condensate well is the conventional one shown in FIG. There is no difference. For this reason, when passing through a screen having a large opening area (referred to as a strainer tube in the same document), the flow velocity of the returned groundwater is greatly reduced, and the effect of preventing clogging due to pressurization cannot be expected.
JP 2002-256538 A

この発明は上記のような技術的背景に基づいてなされたものであって、次の目的を達成するものである。
この発明の目的は、復水井において浮遊懸濁物質、バクテリア、溶解鉄分の酸化物などによる目詰まりが発生するのを防止し、逆洗浄操作を不要とすることができる復水井構造を提供することにある。
The present invention has been made based on the technical background as described above, and achieves the following object.
An object of the present invention is to provide a condensate well structure that prevents clogging due to suspended suspended solids, bacteria, oxides of dissolved iron, etc. in the condensate well, and can eliminate the need for backwashing operation. It is in.

この発明は上記課題を達成するために、次のような手段を採用している。
すなわち、この発明は、汲み上げた地下水を、加圧して地盤中に返送するための復水井構造であって、
掘削孔に設置され、上端部が加圧ポンプを有する地上の返送管に接続されるとともに、下端部にストレーナー部を備え、管径がφ30〜50mmである注水管と、
前記ストレーナー部周囲の掘削孔に形成されたフィルター材層と、
このフィルター材層上の掘削孔に形成された遮水材層と、
この遮水材層上の掘削孔に形成されたシール材層とを備え、
前記ストレーナー部は、注水管自体の管壁に500〜2000mmの長さ範囲に亘り、周方向かつ長さ方向に間隔を置いて形成された多数の注水孔を有し
前記加圧ポンプで200〜1000kPaに加圧された返送地下水を前記注水孔から前記フィルター材層に向けて注水することにより、該フィルター材層を洗浄しながら返送地下水を地盤中に返送するように構成されていることを特徴とする復水井構造にある。
The present invention employs the following means in order to achieve the above object.
That is, this invention is a condensate well structure for returning the groundwater pumped up to the ground under pressure,
A water injection pipe installed in the excavation hole, having an upper end connected to a return pipe on the ground having a pressure pump, a strainer part at the lower end , and a pipe diameter of φ30 to 50 mm ;
A filter material layer formed in an excavation hole around the strainer portion;
A water shielding layer formed in the excavation hole on the filter material layer, and
A sealing material layer formed in the excavation hole on the water shielding material layer,
The strainer part has a large number of water injection holes formed at intervals in the circumferential direction and the length direction over a length range of 500 to 2000 mm on the pipe wall of the water injection pipe itself ,
Returning groundwater returned to the ground while washing the filter material layer by pouring return groundwater pressurized to 200 to 1000 kPa by the pressure pump toward the filter material layer from the water injection hole. It is in the condensate well structure characterized by being composed .

上記復水井構造において、前記ストレーナー部の外周に、前記フィルター材が前記注水孔に侵入するのを阻止するためのネットが配置されている態様を採ることもできる。   The said condensate well structure can also take the aspect by which the net | network for preventing that the said filter material penetrate | invades into the said water injection hole is arrange | positioned on the outer periphery of the said strainer part.

この発明によれば、ストレーナー部は注水管自体の管壁に多数の注水孔を設けた構造である。このため、加圧された地下水は流速を増して、注水孔からフィルター材層に向けて注水されることとなるので、ストレーナー部には目詰まりが発生しない。またフィルター材層も、高流速注水により常時洗浄していると同じ状態となり、その目詰まりの発生を防止することができる。したがって、逆洗浄操作も不要となる。   According to this invention, the strainer part has a structure in which a large number of water injection holes are provided in the pipe wall of the water injection pipe itself. For this reason, since the pressurized groundwater increases the flow velocity and is injected toward the filter material layer from the water injection hole, the strainer portion is not clogged. Further, the filter material layer is also in the same state as being constantly washed with high flow rate water injection, and the occurrence of clogging can be prevented. Therefore, the back washing operation is not necessary.

この発明の実施形態を図面を参照しながら以下に説明する。図1は、この発明の実施形態を示す断面図である。地下水位低下工法は、図示しない揚水井から地下水を汲み上げることにより、掘削施工をする施工部位の地下水位を低下させる工法である。リチャージ工法は、このような地下水位低下工法において、汲み上げた地下水を河川等に放流することなく、復水井を通じて地盤中に返送する工法として位置づけられる。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the present invention. The groundwater level lowering method is a method of lowering the groundwater level of a construction site to be excavated by pumping up groundwater from a pumping well (not shown). In such a groundwater level lowering method, the recharge method is positioned as a method of returning the groundwater pumped up to the ground through a condensate well without discharging it into a river or the like.

この発明による復水井1では、地盤をボーリングすることによって形成された掘削孔2に、注水管3が従来のようにケーシングを介することなく、そのまま設置される。注水管3は地上の返送管4に接続され、揚水井で汲み上げられた地下水は返送管4に設けられた加圧ポンプ5により加圧され、注水管3に供給される。   In the condensate well 1 according to the present invention, the water injection pipe 3 is directly installed in the excavation hole 2 formed by boring the ground without using a casing as in the conventional case. The water injection pipe 3 is connected to the return pipe 4 on the ground, and the groundwater pumped up in the pumping well is pressurized by the pressurizing pump 5 provided in the return pipe 4 and supplied to the water injection pipe 3.

注水管3は加圧された地下水を高流速で地中に返送するために、管径(外径)がφ30〜50mm程度の小径のものが用いられる。この注水管としては、一般の配管用炭素鋼鋼管や配管用鋼管(ガス管)、例えば、SGP32A(外径42.7mm,内径35.7mm)を用いることができる。このように、小径の注水管3を用いるため、掘削孔2も削孔径φ116mm程度と小さなものである。   In order to return pressurized groundwater to the ground at a high flow rate, the water injection pipe 3 has a pipe diameter (outer diameter) of a small diameter of about φ30 to 50 mm. As this water injection pipe, a general carbon steel pipe for piping or a steel pipe for piping (gas pipe), for example, SGP32A (outer diameter 42.7 mm, inner diameter 35.7 mm) can be used. Thus, since the small diameter water injection pipe 3 is used, the excavation hole 2 is also as small as a drilling diameter of about φ116 mm.

注水管3は、下端部にストレーナー部6を有している。このストレーナー部6の詳細については後述する。掘削孔2には、ストレーナー部6の周囲にフィルター材層7が形成され、このフィルター材層7の上に遮水材層8が形成され、さらにこの遮水材層8の上にシール材層9が形成されている。   The water injection pipe 3 has a strainer section 6 at the lower end. Details of the strainer section 6 will be described later. In the excavation hole 2, a filter material layer 7 is formed around the strainer portion 6, a water shielding material layer 8 is formed on the filter material layer 7, and a sealing material layer is further formed on the water shielding material layer 8. 9 is formed.

フィルター材層7は、注水される返送水の透水性能を良くするためのもので、例えば珪砂などの粒径が均一で透水性に優れた粒状材料を用い、掘削孔2に充填して形成される。フィルター材は、地層によっては粒径の異なる材料を混合して用いることもある。遮水材層8は、シール材層9の施工時にそのシール材がフィルター材層7に混入するのを遮断するとともに、注水された返送水がシール材層9側に逸水するのを遮断するためのものである。この遮水材層8の材料としては、粘土鉱物系遮水材料であるベントナイト(例えばペレット状のもの)が用いられる。シール材層9は、返送地下水がストレーナー部6から高圧で注水されることから、水圧により地下水が逆流するのを防止するためのものである。このシール材層9は、セメント系固化材料、例えばセメントミルクを用い、遮水材層8の上方の掘削孔2に注入して形成される。   The filter material layer 7 is used to improve the water permeability of the return water to be injected. For example, the filter material layer 7 is formed by filling the excavation hole 2 with a granular material having a uniform particle size such as silica sand and having excellent water permeability. The The filter material may be used by mixing materials having different particle sizes depending on the formation. The water shielding material layer 8 blocks the sealing material from being mixed into the filter material layer 7 during the construction of the sealing material layer 9, and blocks the return water that has been injected from leaking to the sealing material layer 9 side. Is for. As the material of the water shielding material layer 8, bentonite (for example, pellets) which is a clay mineral-based water shielding material is used. The sealing material layer 9 is for preventing the groundwater from flowing backward due to the water pressure because the returned groundwater is poured from the strainer section 6 at a high pressure. The sealing material layer 9 is formed by injecting a cement-based solidifying material, for example, cement milk, into the excavation hole 2 above the water shielding material layer 8.

図2はストレーナー部6を拡大して示し、(a)は軸方向断面図、(b)は(a)のA−A線矢視断面図である。ストレーナー部6は、この実施形態では、孔あけ加工等の便宜のために注水管本体3aと別途形成され、注水管本体3aにねじ接続する(ねじは図示省略)構造となっているが、注水管3の構成部分である。したがって、ストレーナ部6は注水管本体3aと分離可能とすることなく、一体であってもよい。ストレーナー部6には、その管壁に所定長さ範囲に亘り、多数の注水孔10が設けられている。   FIG. 2 is an enlarged view of the strainer portion 6, (a) is an axial sectional view, and (b) is a sectional view taken along line AA in (a). In this embodiment, the strainer portion 6 is formed separately from the water injection pipe body 3a for the convenience of drilling and the like, and has a structure that is screw-connected to the water injection pipe body 3a (screws are not shown). It is a component of the water pipe 3. Therefore, the strainer part 6 may be integrated without being separable from the water injection pipe body 3a. The strainer section 6 is provided with a large number of water injection holes 10 in the tube wall over a predetermined length range.

これらの注水孔10は周方向に間隔を置いて(この実施形態では180度の角度間隔)、また長さ方向に間隔を置いて設けられている。上下に隣接する注水孔10は、90度の位相差をもつように配置されている。注水孔10の大きさはφ10mm程度の小孔であり、また同一母線上にある注水孔10の間隔(ピッチ)は100mm程度である。したがって、図2から理解されるように、注水孔10が設けられる長さ範囲は、地層の厚さによっても異なるが、ピンポイント注入となるような500〜2000mmの短い範囲(この実施形態では600mm程度)である。このような注水孔10の個数、配置等は、注水される地質の性状や注水量によって決定される。なお、注水孔10の形状は、図示の実施形態では円形であるが、多角形、スリット等種々の形状とすることができる。   These water injection holes 10 are provided at intervals in the circumferential direction (an angular interval of 180 degrees in this embodiment) and at intervals in the length direction. The water injection holes 10 adjacent in the vertical direction are arranged so as to have a phase difference of 90 degrees. The size of the water injection holes 10 is a small hole of about φ10 mm, and the interval (pitch) of the water injection holes 10 on the same bus is about 100 mm. Therefore, as can be understood from FIG. 2, the length range in which the water injection hole 10 is provided varies depending on the thickness of the formation, but is a short range of 500 to 2000 mm that is pinpoint injection (in this embodiment, 600 mm). Degree). The number, arrangement, and the like of the water injection holes 10 are determined according to the properties of the geological water to be injected and the amount of water injection. The shape of the water injection hole 10 is circular in the illustrated embodiment, but may be various shapes such as a polygon and a slit.

ストレーナー部6の外周には、注水孔10を取り囲むようにネット11が取り付けられている。このネット11はフィルター材層7の珪砂などの材料が注水孔10に侵入するのを防止するためのもので、簡易なものである。フィルター材として、その粒径が注水孔10よりも大きなものを選択すれば、ネット11は不要とすることができる。   A net 11 is attached to the outer periphery of the strainer portion 6 so as to surround the water injection hole 10. This net 11 is for preventing the material such as silica sand of the filter material layer 7 from entering the water injection hole 10 and is simple. If a filter material having a particle size larger than that of the water injection hole 10 is selected, the net 11 can be made unnecessary.

上記のような復水井構造によれば、図3に示すように、加圧ポンプ5で200〜1000kPaに加圧された返送地下水は、注水管3を通って、ストレーナー部6の注水孔10からフィルター材層7に向けて注水される。その際、注水孔10での流速は管内流速よりも大きくなり、高流速で注水される。このため、ストレーナー部6には目詰まりが発生することがない。また、フィルター材層7も、高流速注水により常時洗浄していると同じ状態となり、その目詰まりの発生を防止することができる。さらに、注水孔10が形成されている長さ範囲は短く、地層に合わせたピンポイント注入を行うことができる。   According to the condensate well structure as described above, as shown in FIG. 3, the return groundwater pressurized to 200 to 1000 kPa by the pressurizing pump 5 passes through the water injection pipe 3 and from the water injection hole 10 of the strainer section 6. Water is poured toward the filter material layer 7. At that time, the flow rate in the water injection hole 10 is larger than the flow rate in the pipe, and water is injected at a high flow rate. For this reason, the strainer portion 6 is not clogged. Moreover, the filter material layer 7 is also in the same state as being constantly washed with high flow rate water injection, and can prevent clogging. Furthermore, the length range in which the water injection hole 10 is formed is short, and pinpoint injection according to the formation can be performed.

この発明による注水管構造及び復水井構造は、リチャージ工法に限らず他の用途、例えば地下水熱利用システムにも適用できる。   The water injection pipe structure and the condensate well structure according to the present invention can be applied not only to the recharge method but also to other uses such as a groundwater heat utilization system.

すなわち、地下水のもつ地下水熱エネルギーは身近にどこにもでもある安定した熱源であり、環境負荷を低減させる観点からも、この熱源の利用は有効な方法である。現に、寒冷地や積雪地域においては、立体交差などのアプローチ部分などの斜路の融雪、雪が積み上げられた歩道や駐車場などの融雪に利用され、さらに、都市部においてもヒートアイランドを抑制するロードクーリングにも適用されつつある。   That is, the groundwater thermal energy possessed by the groundwater is a stable heat source that can be found everywhere, and the use of this heat source is an effective method from the viewpoint of reducing the environmental burden. In fact, in cold and snowy areas, it is used for melting snow on ramps such as approach sections such as three-dimensional intersections, melting snow on sidewalks and parking lots where snow is piled up, and for road cooling that also suppresses heat islands in urban areas. Is also being applied.

このような地下水熱利用システムの1つとして、揚水井から汲み上げた地下水を熱交換パイプに循環させ、熱エネルギーのみを取り出した地下水を復水井を介して再び地中に戻すという地下還元方式がある。この地下還元方式の地下水熱利用システムにおいても、この発明による注水管構造及び復水井構造を適用できる。これによって、地盤沈下などの問題も最小限に抑制できる。   As one such groundwater heat utilization system, there is an underground reduction system in which groundwater pumped from a pumping well is circulated through a heat exchange pipe, and groundwater from which only thermal energy is extracted is returned to the ground through a condensate well. . The water injection pipe structure and the condensate well structure according to the present invention can also be applied to the groundwater heat utilization system of the underground reduction method. As a result, problems such as land subsidence can be minimized.

この発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. ストレーナー部を拡大して示し、(a)は軸方向断面図、(b)は(a)のA−A線矢視断面図である。The strainer part is shown enlarged, (a) is an axial sectional view, and (b) is a sectional view taken along line AA in (a). 注水状態を示す断面図である。It is sectional drawing which shows a water injection state. 従来の復水井構造を示す断面図である。It is sectional drawing which shows the conventional condensate well structure.

符号の説明Explanation of symbols

1 復水井
2 掘削孔
3 注水管
4 返送管
5 加圧ポンプ
6 ストレーナー部
7 フィルター材層
8 遮水材層
9 シール材層
10 注水孔
11 ネット
DESCRIPTION OF SYMBOLS 1 Condensate well 2 Drilling hole 3 Water injection pipe 4 Return pipe 5 Pressure pump 6 Strainer part 7 Filter material layer 8 Water shielding material layer 9 Sealing material layer 10 Water injection hole 11 Net

Claims (2)

汲み上げた地下水を、加圧して地盤中に返送するための復水井構造であって、
掘削孔に設置され、上端部が加圧ポンプを有する地上の返送管に接続されるとともに、下端部にストレーナー部を備え、管径がφ30〜50mmである注水管と、
前記ストレーナー部周囲の掘削孔に形成されたフィルター材層と、
このフィルター材層上の掘削孔に形成された遮水材層と、
この遮水材層上の掘削孔に形成されたシール材層とを備え、
前記ストレーナー部は、注水管自体の管壁に500〜2000mmの長さ範囲に亘り、周方向かつ長さ方向に間隔を置いて形成された多数の注水孔を有し
前記加圧ポンプで200〜1000kPaに加圧された返送地下水を前記注水孔から前記フィルター材層に向けて注水することにより、該フィルター材層を洗浄しながら返送地下水を地盤中に返送するように構成されていることを特徴とする復水井構造。
A condensate well structure for pumping up groundwater and returning it to the ground.
A water injection pipe installed in the excavation hole, having an upper end connected to a return pipe on the ground having a pressure pump, a strainer part at the lower end , and a pipe diameter of φ30 to 50 mm ;
A filter material layer formed in an excavation hole around the strainer portion;
A water shielding layer formed in the excavation hole on the filter material layer, and
A sealing material layer formed in the excavation hole on the water shielding material layer,
The strainer part has a large number of water injection holes formed at intervals in the circumferential direction and the length direction over a length range of 500 to 2000 mm on the pipe wall of the water injection pipe itself ,
Returning groundwater returned to the ground while washing the filter material layer by pouring return groundwater pressurized to 200 to 1000 kPa by the pressure pump toward the filter material layer from the water injection hole. Condensate well structure characterized by being constructed.
前記ストレーナー部の外周に、前記フィルター材が前記注水孔に侵入するのを阻止するためのネットが配置されていることを特徴とする請求項1記載の復水井構造。   The condensate well structure according to claim 1, wherein a net for preventing the filter material from entering the water injection hole is disposed on an outer periphery of the strainer portion.
JP2005192704A 2005-06-30 2005-06-30 Condensate well structure Active JP4255462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192704A JP4255462B2 (en) 2005-06-30 2005-06-30 Condensate well structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192704A JP4255462B2 (en) 2005-06-30 2005-06-30 Condensate well structure

Publications (2)

Publication Number Publication Date
JP2007009564A JP2007009564A (en) 2007-01-18
JP4255462B2 true JP4255462B2 (en) 2009-04-15

Family

ID=37748419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192704A Active JP4255462B2 (en) 2005-06-30 2005-06-30 Condensate well structure

Country Status (1)

Country Link
JP (1) JP4255462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105937243A (en) * 2016-06-07 2016-09-14 中国十七冶集团有限公司 Novel concrete pipe precipitation well device for basement

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4903650B2 (en) * 2007-08-10 2012-03-28 オリエンタル白石株式会社 Liquefaction prevention method for sandy ground and air injection structure to sandy ground
JP5989966B2 (en) * 2011-03-16 2016-09-07 大成建設株式会社 Perforated tubing
KR101262315B1 (en) 2012-10-08 2013-05-08 삼양이엔피주식회사 Construction method of underground heat exchanger using alluvial auifer apllying the same
CN104060636B (en) * 2014-05-22 2016-06-22 中国建筑第四工程局有限公司 Pressure release anti-float method during high water level regional architecture foundation construction and device
JP6104961B2 (en) * 2015-02-19 2017-03-29 大成建設株式会社 Mobile driving machine
KR101752813B1 (en) * 2015-06-26 2017-07-11 신은철 The Water Level Maintenance Apparatus Of Underground Water
CN107304567A (en) * 2016-04-19 2017-10-31 郑州大学 A kind of safety detachably sluices pore structure
CN109537611A (en) * 2018-12-06 2019-03-29 安徽省人防建筑设计研究院 A kind of civil air defense constructions and installations pipe well plugging structure
CN112411588A (en) * 2020-11-10 2021-02-26 上海建工七建集团有限公司 Water seepage prevention device for dewatering well and construction method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105937243A (en) * 2016-06-07 2016-09-14 中国十七冶集团有限公司 Novel concrete pipe precipitation well device for basement

Also Published As

Publication number Publication date
JP2007009564A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4255462B2 (en) Condensate well structure
JP5982027B1 (en) Water leakage countermeasures for tunnels constructed by the Natom method
CN110374068B (en) Construction method of drain hole of bottom plate of sluice stilling pool capable of preventing blockage
JP2009179945A (en) Well conduit for road and its construction method
KR100868099B1 (en) Ground heat returning device for improving underground heat exchange efficiency by connecting with empty pipes installed to the bottom of groundwater core
JP5180152B2 (en) tunnel
JP2007100416A (en) Structure and construction method for steel sheet pile and water passing soil retaining wall
JP2014114600A (en) Foundation pile construction method
JP6870969B2 (en) How to extubate an existing well
JP2008169546A (en) Injection pipe and grouting method
KR100907434B1 (en) How to close old water pipes
CN215486037U (en) Water-rich sand layer sand flow-proof water burst working well
CN104060636B (en) Pressure release anti-float method during high water level regional architecture foundation construction and device
JP3886127B2 (en) How to install rainwater penetration pot
CN205077490U (en) Prevent suck -back and prevent slip casting device that deposits in deep full water sand bed
JP2011111874A (en) Water conducting structure and method for preventing flow inhibition of groundwater
JP6480745B2 (en) How to install water injection wells
JP4274898B2 (en) Groundwater flow conservation method
JP3966184B2 (en) Construction method of water well installed well and water well installed well
JP4589084B2 (en) A retaining wall with a built-in water pipe composed of a plurality of water passages, and a method for ensuring the flow of groundwater using the retaining wall
JP2000087385A (en) Cut-off wall partition device with valve and its installation method
JP3828123B2 (en) Wells used for condensate construction
JP2007162265A (en) Tunnel construction method
JP2005330769A (en) Structure and construction method of water passing earth retaining wall
JP4933982B2 (en) Condensate structure and construction method.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250