JP4255200B2 - Low resistance connector - Google Patents

Low resistance connector Download PDF

Info

Publication number
JP4255200B2
JP4255200B2 JP2000148514A JP2000148514A JP4255200B2 JP 4255200 B2 JP4255200 B2 JP 4255200B2 JP 2000148514 A JP2000148514 A JP 2000148514A JP 2000148514 A JP2000148514 A JP 2000148514A JP 4255200 B2 JP4255200 B2 JP 4255200B2
Authority
JP
Japan
Prior art keywords
layer
insulating
connector
anisotropic conductive
low resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000148514A
Other languages
Japanese (ja)
Other versions
JP2001332322A (en
Inventor
和彦 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Polymer Co Ltd
Original Assignee
Shin Etsu Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Polymer Co Ltd filed Critical Shin Etsu Polymer Co Ltd
Priority to JP2000148514A priority Critical patent/JP4255200B2/en
Publication of JP2001332322A publication Critical patent/JP2001332322A/en
Application granted granted Critical
Publication of JP4255200B2 publication Critical patent/JP4255200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶ディスプレイ(例えばCOG、TABタイプ等)と電子回路基板との接続、あるいは複数の電子回路基板の接続等に用いられる低抵抗コネクタに関するものである。
【0002】
【従来の技術】
液晶ディスプレイ(以下、LCDという)と電子回路基板あるいは複数の電子回路基板は、必要に応じて接続されるが、このような接続には、一般的に低い抵抗値を示す低抵抗コネクタが使用される。
この種の低抵抗コネクタは、図示しないが、通常硬度の高いゼブラ状の異方導電コネクタ層と、この異方導電コネクタ層の両側面、換言すれば、非接触面にそれぞれ設けられる硬度の低い絶縁層とを備え、組み込まれるパーソナルコンピュータや携帯電話等の機種ごとに個別に設計されるとともに、LCDライトガイドホルダとの相性を考慮して設計され、LCDライトガイドホルダに組み込まれて上下からの応力で圧縮変形することにより、LCDと電子回路基板、又は複数の電子回路基板を接続する。
【0003】
異方導電コネクタ層は、導電性エラストマーと絶縁性エラストマーとが互いに平行になるよう交互に、かつ多重に複数積層されることにより形成される。導電性エラストマーは、絶縁性エラストマー中に導電粒子や導電繊維等の導電材料が含有されることにより形成される。絶縁層は、硬度15°H〜50°H以下で形成され、異方導電コネクタ層が薄く、低抵抗コネクタの厚さが不足している場合に低抵抗コネクタ全体の受ける荷重を低減するよう機能する。
このような構成の低抵抗コネクタは、異方導電コネクタ層が厚く、硬度が高くなるほど、圧縮時の荷重が大きくなり、接続特性が安定するという特徴がある。
【0004】
【発明が解決しようとする課題】
従来の低抵抗コネクタは、以上のように構成されているので、以下の問題がある。先ず、低抵抗コネクタの異方導電コネクタ層と絶縁層との間に20°以上の硬度差があるので、異方導電コネクタ層が全体の1/3以下と非常に薄い場合に低抵抗コネクタに座屈現象が生じ、低抵抗コネクタが途中から屈曲して接続特性が不安定化したり、最悪の場合には接続に支障を来すおそれが少なくない。このような問題は、LCDライトガイドホルダに低抵抗コネクタを組み込む場合に、低抵抗コネクタの高さ/低抵抗コネクタの厚さの値が3以上のとき等にも生じる。
【0005】
また近年、携帯電話等の小型軽量化が進められているが、このような携帯電話等に圧縮時の荷重の大きい低抵抗コネクタを単に組み込むと、様々な問題が発生する。すなわち、携帯電話等における低抵抗コネクタの圧縮時の荷重が大きいと、LCDガラス基板の破損や基板の反り等が生じ、接続不良を招くこととなる。したがって、組み込むべき対象が小型軽量の携帯電話等の場合には、圧縮時の荷重の小さい低抵抗コネクタが必要となる。
しかし、圧縮時の荷重を小さくしようとすると、異方導電コネクタ層が薄く、硬度が低くなるので、接続特性の不安定化という大きな問題が新たに生じる。このように接続特性と圧縮時の荷重低減とは、相反する関係にあるので、様々なデザインのLCDライトガイドホルダに対して低抵抗コネクタを設計する場合に大きな制約要素となる。
【0006】
また、異方導電コネクタ層に使用される導電材料は、非常に高価なので、異方導電コネクタ層を薄くすれば、大幅なコストダウンを通じて安価な低抵抗コネクタを得ることができる。例えば、異方導電コネクタ層の厚さを1/2の厚さにすれば、価格に最も影響する導電材料の使用部分が半分となるので、低抵抗コネクタの単価も半分となる(抵抗値は2倍となるが、もともとの抵抗値が低いので、実用上問題ない)。
しかしながら、低抵抗コネクタは、座屈を考慮して異方導電コネクタ層の幅を大きくする必要がある。経験則等からいえば、異方導電コネクタ層の幅は、最低でも低抵抗コネクタの厚さ/2程度は必要である。以上のことから明らかなように、従来の低抵抗コネクタは、座屈を抑制防止することができるものの、異方導電コネクタ層に使用される導電材料も多いので、きわめて高価であり、コストダウンを図ることができない。
【0007】
さらに、従来、低抵抗コネクタを製造する場合には、低抵抗コネクタの異方導電コネクタ層と絶縁層とを縦横にカットし、所定の大きさにするが、この作業の際に低抵抗コネクタが密着しやすいという問題がある。具体的に説明すると、絶縁層は、異方導電コネクタ層が薄く、低抵抗コネクタの厚さが不足している場合に低抵抗コネクタ全体の受ける荷重を低減するため、非常に硬度の低い材料で成形される。このため、絶縁層は、低分子成分を含んだり、スポンジ状に成形されるので、自己粘着力が強いという特徴がある。したがって、低抵抗コネクタを縦横にカットしても、カットした断面が自己粘着で粘着してしまい、作業効率が実に悪化することとなる。
【0008】
本発明は、上記に鑑みなされたもので、座屈の防止、接続特性の向上、及び圧縮時の荷重低減を図ることができ、しかも、切断後の粘着防止を通じて作業効率の向上を図ることのできる安価な低抵抗コネクタを提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明においては上記課題を解決するため、異方導電コネクタ層の非接触面に絶縁保護層を設け、これら異方導電コネクタ層と絶縁保護層との間に絶縁支持層を介在させたものであって、
異方導電コネクタ層を、導電性物質を含む導電性エラストマーと絶縁性エラストマーとをその接合面が互いに平行になるよう交互に、かつ多重に複数積み重ねて形成し、
絶縁保護層を、絶縁支持層に接触する硬度20°Hあるいは30°Hの絶縁内層と、厚さ0.01〜0.1mmで硬度80°Hの絶縁外層とから二層構造に形成し、絶縁支持層を、厚さ0.01〜0.5mmで硬度80°Hに形成し、
絶縁保護層から絶縁支持層までの総厚さを0.25〜1.5mmとしたことを特徴としている。
【0010】
【発明の実施の形態】
以下、図面を参照して本発明の好ましい実施形態を説明すると、本実施形態における低抵抗コネクタは、図1ないし図3に示すように、異方導電コネクタ層1の両側面、換言すれば、パーソナルコンピュータや携帯電話等の電極部分との非接触面に、荷重軽減と作業性のための絶縁保護層10を設け、これら異方導電コネクタ層1と一対の絶縁保護層10との間に板状の絶縁支持層20をそれぞれ介在させるようにしている。そして、図示しないパーソナルコンピュータや携帯電話等のLCDライトガイドホルダに組み込まれて上下からの応力で圧縮変形することにより、上下に位置するLCDと電子回路基板、又は複数の電子回路基板を接続する。
【0011】
異方導電コネクタ層1は、導電性物質を含有する板状の導電性エラストマー2と、この導電性エラストマー2と同形状の絶縁性エラストマー3とを備え、これら矩形の導電性エラストマー2と絶縁性エラストマー3とが互いに平行になるよう交互に、かつ多重に複数積層されることによりゼブラ状に形成される。導電性エラストマー2は、絶縁性エラストマー中に導電粒子(例えば、カーボンや金属等)や導電繊維等の導電材料4が含有されることにより形成される。
【0012】
導電性エラストマー2の絶縁性エラストマーは、自重で変形せず、硬化後に塑性変形することのない弾性材料、換言すれば、形状の安定性が期待できる弾性材料を用いて成形される。具体的には、天然ゴム、ブタジエン・スチレン、アクリロニトリル・ブタジエン、アクリロニトリル・ブタジエン・スチレン・エチレン・スチレン、エチレン・プロピレン、エチレン・プロピレン・ジエン等の各共重合体ゴム、クロロプレンゴム、シリコーンゴム、ブタジエンゴム、イソプレンゴム、クロロスルホン化ポリエチレンゴム、ポリサルファイドゴム、ブチルゴム、フッ素ゴム、ウレタンゴム、ポリイソブチレンゴム等の合成ゴム類のほか、ポリエステルエラストマ等の熱可塑性エラストマー、塑性化塩化ビニル系樹脂、酢酸ビニル樹脂、塩化ビニル・酢酸ビニル共重合体樹脂等があげられる。これらの中でも、耐候性、電気絶縁性、耐熱性、圧縮永久歪み、加工性等に優れる安価なシリコーンゴムの選択が最適である。
【0013】
シリコーンゴムとしては、通常ジメチル、メチルフェニル、メチルビニル等の各ポリシロキサン類、シリカのような充填剤を配合して適当なレオロジー特性が付与されたハロゲン化ポリシロキサン類、又は金属塩類でバルカナイズ、若しくは硬化されたハロゲン化ポリシロキサン類等があげられる。
【0014】
導電性を確保する導電材料4は、少なくとも表面が金属被覆されているものであれば良い。具体的には、金、銀、銅、ニッケル、コバルト、ステンレス鋼、黄銅等の金属単体からなる球状若しくはフレーク状の粒子や繊維だけではなく、フェノール樹脂、エポキシ樹脂、シリコーン樹脂、ウレタン樹脂等の熱硬化性樹脂や熱化塑性樹脂、これらの焼成品、カーボン、セラミックス、ガラス等の無機材料等の粉末ないし繊維状のものを核材とし、その表面を上記金属によりメッキ、蒸着、スパッタ、CVD等の方法で被覆したもの、あるいは上記材料を2種以上混合したもの等があげられる。また、本発明においては、少なくとも金属表面、銀表面を有する材料が導電材料4に含まれる。
【0015】
金属表面を有する導電材料4としては、金属単体からなるもの、金属被覆したものの場合には、金属含有率が20重量%以上のもので、球状、フレーク状、繊維状、又はこれらの混合品があげられる。金属含有率を20重量%以上とするのは、金属含有率が20重量%未満の場合には、核材全体を金属被覆することができず、安定した導通を得ることができないからである。この導電材料4としては、銀が最も好ましい。
【0016】
導電材料4は、絶縁性エラストマーの樹脂原料100重量部に150〜500重量部混合される。これは、150重量部未満の場合には、導電性物質の配合量が少なく、導通不能となるか、安定した抵抗値を得ることができなくなるからである。逆に500重量部を超えると、導電性エラストマー2としての物性が低下して弾性が低くなり、低抵抗コネクタの材料としては不適切となる。また、メッキされた金属粒子や金属単体からなる粒子を混合して用いる場合、平均粒径が0.1〜1.0μmの細かい粒子と、平均粒径が2〜30μmの粗い粒子とを混合したものが最も低い電気抵抗値を示すので、好ましい。導電性エラストマー2に重ねられる絶縁性エラストマー3については、導電性エラストマー2を形成する絶縁性エラストマーと略同様である。
【0017】
各絶縁保護層10は、硬度15°H〜50°H以下で板状の絶縁内層11と、厚さ0.01〜0.1mm、硬度70°H以上で同形状の絶縁外層12とから二層構造に形成され、絶縁内層11が絶縁支持層20に接触し、絶縁外層12が絶縁内層11に接触する。絶縁内層11は、異方導電コネクタ層1の絶縁性エラストマー3と略同様の材料を用いて硬度15°H〜50°H以下、好ましくは硬度の安定性や製造の加工性の観点から硬度15°H〜30°H以下に成形される。絶縁内層11の材料としては、上記同様、シリコーンゴムの選択が最適である。絶縁内層11の硬度を15°H〜50°H以下とするのは、硬度が15°H以下の場合には、柔らか過ぎて層として機能しなくなるからである。逆に、50°Hを超える場合、圧縮荷重を低減することができず、絶縁保護層10の意義が喪失する。
【0018】
絶縁外層12は、異方導電コネクタ層1の絶縁性エラストマー3と略同様の材料を用いて厚さ0.01〜0.1mm、好ましくは厚さ0.02〜0.1mmに成形されるとともに、硬度70°H以上、望ましくは硬度70°H〜85°Hに成形される。絶縁外層12の材料も、上記同様、シリコーンゴムが最適である。絶縁外層12の厚さが0.01〜0.1mmなのは、この範囲ならば、例えばモジュール組み込み時におけるLCDライトガイドホルダ等の内壁や脱落防止用リブとの摺動性を向上させ、接続特性を安定させることができるからである。また、絶縁外層12の厚さが0.01mm未満の場合には、摺動性が期待できないからである。逆に、絶縁外層12の厚さが0.1mmを超える場合、圧縮荷重を低減することができず、保護層の意義が喪失する。
【0019】
絶縁外層12の硬度が70°H以上なのは、70°H未満の場合には、作業性の低下を招くからである。また、例えばモジュールへの組み込み時にLCDライトガイドホルダの内壁や脱落防止用リブとの摺動性が悪化してひっかかりやすくなり、接続特性に悪影響を及ぼすこととなる。
【0020】
絶縁支持層20は、異方導電コネクタ層1の絶縁性エラストマー3と略同様の材料を用いて厚さ0.01〜0.5mm、好ましくは厚さ0.15〜0.3mmに成形されるとともに、硬度70°H以上、望ましくは硬度70°H〜85°Hに成形される。絶縁支持層20の材料も、上記同様、シリコーンゴムが最適である。絶縁支持層20の厚さは、低抵抗コネクタのサイズにより異なるが、通常0.01〜0.5mmである。これは、0.01mm未満の場合には、充分な硬度を得ることができないからである。逆に、絶縁支持層20の厚さが0.5mmを超える場合、圧縮荷重が上昇し、LCDガラス基板の破損や基板の反り等が生じ、接続不良を招くおそれが少なくない。
【0021】
絶縁支持層20の硬度が70°H以上なのは、70°H未満の場合には、異方導電コネクタ層1と絶縁支持層20との間に硬度差が生じ、安定性が低下して座屈発生のおそれがあるからである。また、製造の安定性や厚み精度に欠けるからである。この絶縁支持層20から絶縁保護層10からまでの総厚さは、0.25〜1.5mmが望ましい。
【0022】
次に、低抵抗コネクタの製造方法について説明する。先ず、ベースとなる合成樹脂フィルム上に絶縁性エラストマー3を成膜し、この絶縁性エラストマー3上に導電性エラストマー2を成膜し、これらを合成樹脂フィルムから剥離して積層シートを得る。合成樹脂フィルムとしては、OPP又はCPP(ポリプロピレン)、ポリエチレン、塩化ビニル樹脂、ポリエチレンテレフタレート、OPS(ポリスチレン)等があげられる。これらの中でも、ポリエチレンテレフタレートからなる合成樹脂フィルムが最適である。こうして積層シートを作製したら、この作業を繰り返して複数の積層シートを作製し、これら複数の積層シートを同じ順に積層して積層ブロック体を作製し、これを加硫処理する。
なお、この積層ブロック体の両端部はそれぞれ絶縁性エラストマー3とするのが好ましい。
【0023】
各積層シートの成膜には、印刷法、カレンダー法、コータ法、押出法等を利用すれば良い。但し、安定した生産性を考慮すると、絶縁性エラストマー3と導電性エラストマー2とをカレンダー法で積層製造するのが好ましい。
積層ブロック体を作製したら、積層ブロック体の積層面を横切る方向にスライスして絶縁性エラストマー3と導電性エラストマー2とが交互に筋状に並んだ異方導電コネクタ層1を作製する。
【0024】
異方導電コネクタ層1の作製の際、異方導電コネクタ層1の両側面に絶縁保護層10を絶縁支持層20を介しそれぞれ設ける。異方導電コネクタ層1、絶縁支持層20、絶縁保護層10を接合するには、異方導電コネクタ層1に絶縁支持層20、絶縁保護層10を順次貼り合わせ、これらを加熱して加硫させながら接着する方法、加硫した絶縁支持層20、絶縁保護層10にシリコーン系の接着剤をスクリーン印刷、塗布、コーティング等の方法で塗布して貼り合わせ、これらに熱と圧力を加えて加硫接着する方法等を用いれば良い。そしてその後、異方導電コネクタ層1を、絶縁性エラストマー3と導電性エラストマー2とを横切る所定の幅で裁断すれば、低抵抗コネクタを作製することができる。
【0025】
上記によれば、絶縁保護層10の絶縁外層12と絶縁支持層20との間に20°H以上の硬度差がないので、例えば異方導電コネクタ層1が全体の1/3以下と非常に薄い場合にも、低抵抗コネクタに座屈現象が生じたり、接続不良のおそれをきわめて有効に防止することができる。また、接続特性が安定するだけではなく、圧縮時の荷重も小さいので、LCDガラス基板の破損や基板の反り等に伴い、接続不良を招くことがない。したがって、様々なデザインのLCDライトガイドホルダに対して低抵抗コネクタを設計する場合に大きな制約要素になる問題を有効に解消することができる。
【0026】
また、異方導電コネクタ層1を薄くすることができるので、価格に最も影響する導電材料4の使用部分を減少させることができ、これを通じて低抵抗コネクタのコストダウンと量産が大いに期待できる。さらに、低抵抗コネクタを縦横にカットしても、カットした断面が自己粘着で粘着するのを有効に規制することができるので、作業効率の著しい向上を図ることが可能になる。
【0027】
なお、上記実施形態では異方導電コネクタ層1の両側面に絶縁保護層10を設け、これら異方導電コネクタ層1と一対の絶縁保護層10との間に板状の絶縁支持層20をそれぞれ介在させたが、上下左右を適宜変更しても良い。例えば、異方導電コネクタ層1の上下両面に絶縁保護層10を設け、これら異方導電コネクタ層1と一対の絶縁保護層10との間に板状の絶縁支持層20をそれぞれ介在させることもできる。
【0028】
【実施例】
以下、本発明に係る低抵抗コネクタの実施例を比較例と共に説明する。
実施例1
スライスした異方導電コネクタ層1の両側面に、絶縁支持層20として硬度80°Hの絶縁性エラストマー〔信越化学株式会社製、商品名KE‐981U〕を加硫剤〔信越化学株式会社製、商品名C‐8〕と混ぜて混練し、カレンダーで分出しして0.1mm厚にしたものを貼り合わせ、6時間冷却プレスした後、120℃、10分の条件で接着加硫した。
【0029】
次いで、絶縁保護層10の絶縁外層12として硬度80°Hの絶縁性エラストマー〔信越化学株式会社製、商品名KE‐981U〕に加硫剤〔信越化学株式会社製、商品名C‐19A/B〕を混ぜて混練し、カレンダーで分出しして120℃、10分の条件で加硫し、0.2mmの絶縁外層12を作製した。絶縁外層12を作製したら、クッション層である絶縁内層11として絶縁性エラストマー〔信越化学株式会社製、商品名KE‐951U〕に、加硫剤〔信越化学株式会社製、商品名C‐19A/B〕、発泡剤〔信越ポリマー株式会社製、商品名SOペースト〕を混ぜて混練し、カレンダーで分出しして絶縁内層11を作製し、この絶縁内層11と絶縁外層12とを接合して一体化した。
【0030】
次いで、接合した絶縁内層11と絶縁外層12をプレス成形して発泡させ、絶縁内層11を厚さ0.5mm、硬度20°Hに形成し、この絶縁内層11に接着剤〔信越化学株式会社製、商品名KE‐1800A/B〕を厚さ0.03mmとなるようスクリーン印刷した。そして、異方導電コネクタ層1の絶縁支持層20の両側面に完成した絶縁保護層10の絶縁内層11をそれぞれ積層し、その後、120℃、10分、5kg/cm2の条件で加硫し、低抵抗コネクタを作製した。
【0031】
実施例2
絶縁内層11の硬度を30°Hとし、その他の部分については実施例1と同様とした。
【0032】
比較例1
基本的には実施例1と同様だが、絶縁支持層20を省略して低抵抗コネクタを作製した。
比較例2
基本的には実施例1と同様だが、絶縁支持層20を省略するとともに、絶縁外層12の硬度を70°Hとして低抵抗コネクタを作製した。
【0033】
評価方法
以下の項目について実施例と比較例の低抵抗コネクタをそれぞれ試験し、その結果を表1にまとめて評価した。
(1)初期抵抗:製品である低抵抗コネクタを10%圧縮した場合の抵抗値が20Ω以下ならば○(合格、以下同じ)とし、抵抗値が20Ωを上回る場合には×(不合格、以下同じ)とした。
(2)座屈の発生:低抵抗コネクタを30%圧縮した場合に低抵抗コネクタが均一な形状に圧縮されている場合には○とし、く字状に屈曲した場合には×とした。
【0034】
(3)組み込み時のガラス基板割れ:携帯電話機に類似したPCB‐ITOガラス基板セットを作製し、これに低抵抗コネクタを組み込んで圧縮し、ITOガラス基板が割れなかった場合には○とし、割れた場合には×とした。低抵抗コネクタの圧縮率は、携帯電話機に低抵抗コネクタを組み込んで圧縮した場合の圧縮率(15%)と同様とした。
(4)カット断面での粘着性:カッタでL・H方向にそれぞれカットし、分割した複数の低抵抗コネクタが再粘着しなければ○とし、再粘着した場合には×とした。
【0035】
【表1】

Figure 0004255200
【0036】
【発明の効果】
以上のように本発明によれば、異方導電コネクタ層を、導電性物質を含む導電性エラストマーと絶縁性エラストマーとをその接合面が互いに平行になるよう交互に、かつ多重に複数積み重ねて形成し、絶縁保護層を、絶縁支持層に接触する硬度20°Hあるいは30°Hの絶縁内層と、厚さ0.01〜0.1mmで硬度80°Hの絶縁外層とから二層構造に形成し、絶縁支持層を、厚さ0.01〜0.5mmで硬度80°Hに形成し、絶縁保護層から絶縁支持層までの総厚さを0.25〜1.5mmとするので、低抵抗コネクタの座屈防止、接続特性の向上、及び圧縮時の荷重低減を図ることができ、安価に製造することができるという効果がある。また、切断後の粘着や密着を抑制防止し、これを通じて作業効率の向上を図ることが可能になる。
【図面の簡単な説明】
【図1】本発明に係る低抵抗コネクタの実施形態を示す分解斜視説明図である。
【図2】本発明に係る低抵抗コネクタの実施形態を示す正面図である。
【図3】本発明に係る低抵抗コネクタの実施形態を示す平面図である。
【図4】本発明に係る低抵抗コネクタの比較例1を示す平面図である。
【図5】本発明に係る低抵抗コネクタの比較例2を示す平面図である。
【符号の説明】
1 異方導電コネクタ層
2 導電性エラストマー
3 絶縁性エラストマー
4 導電材料(導電性物質)
10 絶縁保護層
11 絶縁内層
12 絶縁外層
20 絶縁支持層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low resistance connector used for connecting a liquid crystal display (for example, COG, TAB type) and an electronic circuit board, or connecting a plurality of electronic circuit boards.
[0002]
[Prior art]
A liquid crystal display (hereinafter referred to as LCD) and an electronic circuit board or a plurality of electronic circuit boards are connected as necessary. Generally, a low resistance connector having a low resistance value is used for such connection. The
This type of low-resistance connector is not shown, but usually has a high hardness zebra-like anisotropic conductive connector layer and both sides of the anisotropic conductive connector layer, in other words, low hardness provided on a non-contact surface. It is designed for each model of personal computer, mobile phone, etc. to be incorporated, and designed with consideration for compatibility with the LCD light guide holder. The LCD and the electronic circuit board or a plurality of electronic circuit boards are connected by compressive deformation under stress.
[0003]
The anisotropic conductive connector layer is formed by laminating a plurality of conductive elastomers and insulating elastomers alternately and in multiple layers so as to be parallel to each other. The conductive elastomer is formed by containing a conductive material such as conductive particles and conductive fibers in the insulating elastomer. The insulating layer is formed with a hardness of 15 ° H to 50 ° H or less, and functions to reduce the load received by the entire low resistance connector when the anisotropic conductive connector layer is thin and the thickness of the low resistance connector is insufficient. To do.
The low resistance connector having such a configuration is characterized in that the thicker the anisotropic conductive connector layer and the higher the hardness, the greater the load during compression and the more stable the connection characteristics.
[0004]
[Problems to be solved by the invention]
Since the conventional low resistance connector is configured as described above, it has the following problems. First, since there is a hardness difference of 20 ° or more between the anisotropic conductive connector layer and the insulating layer of the low resistance connector, when the anisotropic conductive connector layer is as thin as 1/3 or less of the whole, it becomes a low resistance connector. A buckling phenomenon may occur, and the low-resistance connector may be bent from the middle, resulting in unstable connection characteristics, and in the worst case, the connection may be hindered. Such a problem also occurs when the low resistance connector height / thickness value of the low resistance connector is 3 or more when a low resistance connector is incorporated in the LCD light guide holder.
[0005]
In recent years, reductions in size and weight of cellular phones and the like have been promoted. However, simply incorporating a low resistance connector having a large load during compression into such cellular phones causes various problems. That is, if the load at the time of compression of the low-resistance connector in a cellular phone or the like is large, the LCD glass substrate is damaged, the substrate is warped, and the like, resulting in poor connection. Therefore, when the object to be incorporated is a small and light mobile phone or the like, a low resistance connector having a small load during compression is required.
However, if an attempt is made to reduce the load during compression, the anisotropic conductive connector layer is thin and the hardness is lowered, so that a big problem of unstable connection characteristics newly arises. As described above, since the connection characteristics and the load reduction during compression are in a contradictory relationship, it is a great constraint factor when designing low resistance connectors for LCD light guide holders of various designs.
[0006]
Further, since the conductive material used for the anisotropic conductive connector layer is very expensive, if the anisotropic conductive connector layer is thinned, an inexpensive low-resistance connector can be obtained through a significant cost reduction. For example, if the thickness of the anisotropic conductive connector layer is halved, the portion of the conductive material that affects the price is halved, so the unit price of the low resistance connector is also halved (the resistance value is However, the original resistance value is low, so there is no practical problem).
However, the low resistance connector needs to increase the width of the anisotropic conductive connector layer in consideration of buckling. According to empirical rules and the like, the width of the anisotropic conductive connector layer should be at least about the thickness of the low resistance connector / 2. As is clear from the above, the conventional low-resistance connector can suppress and prevent buckling, but it is very expensive because there are many conductive materials used for the anisotropic conductive connector layer, thus reducing the cost. I can't plan.
[0007]
Furthermore, conventionally, when manufacturing a low-resistance connector, the anisotropic conductive connector layer and the insulating layer of the low-resistance connector are cut vertically and horizontally to a predetermined size. There is a problem that it is easy to adhere. Specifically, the insulating layer is made of a material having a very low hardness in order to reduce the load received by the entire low resistance connector when the anisotropic conductive connector layer is thin and the thickness of the low resistance connector is insufficient. Molded. For this reason, since the insulating layer contains a low molecular component or is formed in a sponge shape, the insulating layer has a feature of strong self-adhesive strength. Therefore, even if the low-resistance connector is cut vertically and horizontally, the cut cross section sticks by self-adhesion, and the working efficiency is actually deteriorated.
[0008]
The present invention has been made in view of the above, and can prevent buckling, improve connection characteristics, and reduce the load during compression, and can improve work efficiency through prevention of adhesion after cutting. An object is to provide an inexpensive low-resistance connector that can be produced.
[0009]
[Means for Solving the Problems]
In the present invention, in order to solve the above problems, an insulating protective layer is provided on the non-contact surface of the anisotropic conductive connector layer, and an insulating support layer is interposed between the anisotropic conductive connector layer and the insulating protective layer. There,
Anisotropic conductive connector layers are formed by stacking a plurality of conductive elastomers containing a conductive substance and an insulating elastomer alternately and in multiple layers so that the joint surfaces thereof are parallel to each other,
An insulating protective layer is formed in a two-layer structure from an insulating inner layer having a hardness of 20 ° H or 30 ° H contacting the insulating support layer and an insulating outer layer having a thickness of 0.01 to 0.1 mm and a hardness of 80 ° H, Forming an insulating support layer with a thickness of 0.01 to 0.5 mm and a hardness of 80 ° H;
The total thickness from the insulating protective layer to the insulating support layer is 0.25 to 1.5 mm .
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, the low resistance connector according to the present embodiment is provided on both sides of the anisotropic conductive connector layer 1, in other words, An insulating protective layer 10 for reducing load and workability is provided on a non-contact surface with an electrode portion of a personal computer or a mobile phone, and a plate is provided between the anisotropic conductive connector layer 1 and the pair of insulating protective layers 10. Insulating support layers 20 are respectively interposed. Then, it is incorporated into an LCD light guide holder such as a personal computer or a mobile phone (not shown) and is compressed and deformed by stress from above and below, thereby connecting the vertically positioned LCD and the electronic circuit board or a plurality of electronic circuit boards.
[0011]
The anisotropic conductive connector layer 1 includes a plate-like conductive elastomer 2 containing a conductive substance, and an insulating elastomer 3 having the same shape as the conductive elastomer 2. The anisotropic conductive connector layer 1 is insulated from the rectangular conductive elastomer 2. The elastomer 3 is formed in a zebra shape by being laminated in multiple layers alternately and in parallel so as to be parallel to each other. The conductive elastomer 2 is formed by containing a conductive material 4 such as conductive particles (for example, carbon or metal) or conductive fibers in the insulating elastomer.
[0012]
The insulating elastomer of the conductive elastomer 2 is molded using an elastic material that does not deform by its own weight and does not plastically deform after curing, in other words, an elastic material that can be expected to have shape stability. Specifically, natural rubber, butadiene / styrene, acrylonitrile / butadiene, acrylonitrile / butadiene / styrene / ethylene / styrene copolymer rubbers such as ethylene / propylene, ethylene / propylene / diene, chloroprene rubber, silicone rubber, butadiene Synthetic rubbers such as rubber, isoprene rubber, chlorosulfonated polyethylene rubber, polysulfide rubber, butyl rubber, fluorine rubber, urethane rubber, polyisobutylene rubber, thermoplastic elastomer such as polyester elastomer, plasticized vinyl chloride resin, vinyl acetate Resin, vinyl chloride / vinyl acetate copolymer resin and the like. Among these, the selection of an inexpensive silicone rubber that is excellent in weather resistance, electrical insulation, heat resistance, compression set, workability, etc. is optimal.
[0013]
Silicone rubbers are usually vulcanized with polysiloxanes such as dimethyl, methylphenyl, and methylvinyl, halogenated polysiloxanes that are blended with fillers such as silica, or metal salts, or metal salts. Alternatively, cured halogenated polysiloxanes and the like can be mentioned.
[0014]
The conductive material 4 that ensures conductivity may be any material that has at least a surface coated with metal. Specifically, not only spherical or flaky particles and fibers made of simple metals such as gold, silver, copper, nickel, cobalt, stainless steel, brass, but also phenol resin, epoxy resin, silicone resin, urethane resin, etc. Thermosetting resin, thermoplastic resin, these fired products, powder or fibrous materials such as carbon, ceramics, glass and other inorganic materials are used as the core material, and the surface is plated, vapor-deposited, sputtered, CVD with the above metals Or a mixture of two or more of the above materials. In the present invention, the conductive material 4 includes a material having at least a metal surface and a silver surface.
[0015]
As the conductive material 4 having a metal surface, in the case of a material composed of a single metal or a metal-coated material, the metal content is 20% by weight or more, and a spherical shape, a flake shape, a fiber shape, or a mixture thereof is used. can give. The reason why the metal content is 20% by weight or more is that when the metal content is less than 20% by weight, the entire core material cannot be metal-coated, and stable conduction cannot be obtained. The conductive material 4 is most preferably silver.
[0016]
The conductive material 4 is mixed in an amount of 150 to 500 parts by weight with 100 parts by weight of an insulating elastomer resin material. This is because if the amount is less than 150 parts by weight, the amount of the conductive material is small, and conduction becomes impossible or a stable resistance value cannot be obtained. On the other hand, if it exceeds 500 parts by weight, the physical properties of the conductive elastomer 2 are lowered and the elasticity is lowered, which makes it unsuitable as a material for a low resistance connector. In addition, when using a mixture of plated metal particles or particles made of a single metal, fine particles having an average particle diameter of 0.1 to 1.0 μm and coarse particles having an average particle diameter of 2 to 30 μm are mixed. Since the thing shows the lowest electric resistance value, it is preferable. The insulating elastomer 3 superimposed on the conductive elastomer 2 is substantially the same as the insulating elastomer forming the conductive elastomer 2.
[0017]
Each insulating protective layer 10 is composed of a plate-like insulating inner layer 11 having a hardness of 15 ° H to 50 ° H or less, and an insulating outer layer 12 having a thickness of 0.01 to 0.1 mm and a hardness of 70 ° H or more having the same shape. The insulating inner layer 11 is in contact with the insulating support layer 20, and the insulating outer layer 12 is in contact with the insulating inner layer 11. The insulating inner layer 11 is made of a material substantially the same as the insulating elastomer 3 of the anisotropic conductive connector layer 1 and has a hardness of 15 ° H to 50 ° H or less, preferably a hardness of 15 from the viewpoint of hardness stability and manufacturing processability. Molded to ° H to 30 ° H or less. As the material for the insulating inner layer 11, selection of silicone rubber is optimal as described above. The reason why the hardness of the insulating inner layer 11 is 15 ° H to 50 ° H or less is that when the hardness is 15 ° H or less, it is too soft to function as a layer. Conversely, when it exceeds 50 ° H, the compressive load cannot be reduced, and the significance of the insulating protective layer 10 is lost.
[0018]
The insulating outer layer 12 is formed to a thickness of 0.01 to 0.1 mm, preferably 0.02 to 0.1 mm, using a material substantially the same as that of the insulating elastomer 3 of the anisotropic conductive connector layer 1. , The hardness is 70 ° H or higher, preferably 70 ° H to 85 ° H. As the material for the insulating outer layer 12, silicone rubber is optimal as described above. If the thickness of the insulating outer layer 12 is in the range of 0.01 to 0.1 mm within this range, for example, the slidability with the inner wall of the LCD light guide holder or the like when the module is assembled or the rib for preventing the drop off is improved, and the connection characteristics are improved. This is because it can be stabilized. Further, when the thickness of the insulating outer layer 12 is less than 0.01 mm, slidability cannot be expected. Conversely, when the thickness of the insulating outer layer 12 exceeds 0.1 mm, the compressive load cannot be reduced, and the significance of the protective layer is lost.
[0019]
The reason why the hardness of the insulating outer layer 12 is 70 ° H or more is that when it is less than 70 ° H, workability is lowered. In addition, for example, the sliding property with the inner wall of the LCD light guide holder or the drop-off preventing rib is deteriorated when it is assembled into a module, and it is likely to be caught, which adversely affects the connection characteristics.
[0020]
The insulating support layer 20 is formed to a thickness of 0.01 to 0.5 mm, preferably 0.15 to 0.3 mm, using a material substantially similar to the insulating elastomer 3 of the anisotropic conductive connector layer 1. At the same time, it is molded to a hardness of 70 ° H or higher, preferably 70 ° H to 85 ° H. As the material of the insulating support layer 20, silicone rubber is optimal as described above. The thickness of the insulating support layer 20 varies depending on the size of the low resistance connector, but is usually 0.01 to 0.5 mm. This is because sufficient hardness cannot be obtained when the thickness is less than 0.01 mm. On the other hand, when the thickness of the insulating support layer 20 exceeds 0.5 mm, the compressive load increases, and the LCD glass substrate may be damaged, the substrate may be warped, and the like, leading to poor connection.
[0021]
The hardness of the insulating support layer 20 is 70 ° H or higher. When the hardness is less than 70 ° H, a hardness difference is generated between the anisotropic conductive connector layer 1 and the insulating support layer 20, and the stability is lowered and buckling occurs. This is because it may occur. Moreover, it is because manufacturing stability and thickness accuracy are lacking. The total thickness from the insulating support layer 20 to the insulating protective layer 10 is preferably 0.25 to 1.5 mm.
[0022]
Next, a manufacturing method of the low resistance connector will be described. First, an insulating elastomer 3 is formed on a base synthetic resin film, a conductive elastomer 2 is formed on the insulating elastomer 3, and these are peeled from the synthetic resin film to obtain a laminated sheet. Examples of the synthetic resin film include OPP or CPP (polypropylene), polyethylene, vinyl chloride resin, polyethylene terephthalate, OPS (polystyrene), and the like. Among these, a synthetic resin film made of polyethylene terephthalate is optimal. When the laminated sheet is produced in this way, a plurality of laminated sheets are produced by repeating this operation, and a laminated block body is produced by laminating the plurality of laminated sheets in the same order, and this is vulcanized.
In addition, it is preferable that the both ends of this laminated block body are the insulating elastomers 3, respectively.
[0023]
For the film formation of each laminated sheet, a printing method, a calendar method, a coater method, an extrusion method, or the like may be used. However, in consideration of stable productivity, it is preferable to laminate the insulating elastomer 3 and the conductive elastomer 2 by a calender method.
When the laminated block body is manufactured, the anisotropic conductive connector layer 1 in which the insulating elastomer 3 and the conductive elastomer 2 are alternately arranged in a streak shape is manufactured by slicing in a direction crossing the laminated surface of the laminated block body.
[0024]
When the anisotropic conductive connector layer 1 is manufactured, the insulating protective layers 10 are provided on both side surfaces of the anisotropic conductive connector layer 1 with the insulating support layers 20 interposed therebetween. In order to join the anisotropic conductive connector layer 1, the insulating support layer 20, and the insulating protective layer 10, the insulating support layer 20 and the insulating protective layer 10 are sequentially bonded to the anisotropic conductive connector layer 1, and these are heated and vulcanized. A silicone adhesive is applied to the vulcanized insulating support layer 20 and the insulating protective layer 10 by screen printing, coating, coating, or the like, and these are applied with heat and pressure. What is necessary is just to use the method of carrying out the sulfur adhesion. Then, if the anisotropic conductive connector layer 1 is cut with a predetermined width across the insulating elastomer 3 and the conductive elastomer 2, a low resistance connector can be produced.
[0025]
According to the above, since there is no hardness difference of 20 ° H or more between the insulating outer layer 12 and the insulating support layer 20 of the insulating protective layer 10, for example, the anisotropic conductive connector layer 1 is extremely less than 1/3 of the whole. Even when it is thin, it is possible to prevent the occurrence of a buckling phenomenon in the low resistance connector or the possibility of poor connection extremely effectively. Further, not only the connection characteristics are stabilized, but also the load at the time of compression is small, so that connection failure does not occur due to breakage of the LCD glass substrate or warpage of the substrate. Therefore, it is possible to effectively solve the problem that becomes a large limiting factor when designing a low resistance connector for LCD light guide holders of various designs.
[0026]
In addition, since the anisotropic conductive connector layer 1 can be made thin, the portion of the conductive material 4 that has the most influence on the price can be reduced. Through this, cost reduction and mass production of the low resistance connector can be greatly expected. Furthermore, even if the low-resistance connector is cut vertically and horizontally, it is possible to effectively restrict the cut cross-section from sticking with self-adhesion, so that the work efficiency can be significantly improved.
[0027]
In the above embodiment, the insulating protective layers 10 are provided on both side surfaces of the anisotropic conductive connector layer 1, and the plate-shaped insulating support layers 20 are respectively provided between the anisotropic conductive connector layer 1 and the pair of insulating protective layers 10. Although interposed, the top, bottom, left, and right may be appropriately changed. For example, insulating protective layers 10 may be provided on both upper and lower surfaces of the anisotropic conductive connector layer 1, and a plate-shaped insulating support layer 20 may be interposed between the anisotropic conductive connector layer 1 and the pair of insulating protective layers 10. it can.
[0028]
【Example】
Hereinafter, examples of the low resistance connector according to the present invention will be described together with comparative examples.
Example 1
An insulating elastomer (made by Shin-Etsu Chemical Co., Ltd., trade name KE-981U) having a hardness of 80 ° H is used as an insulating support layer 20 on both sides of the sliced anisotropic conductive connector layer 1 and a vulcanizing agent (made by Shin-Etsu Chemical Co., Ltd.). Product name C-8] was mixed and kneaded, and the mixture was taken out with a calender and made 0.1 mm thick, bonded and chilled for 6 hours, and then adhesive vulcanized at 120 ° C. for 10 minutes.
[0029]
Next, as an insulating outer layer 12 of the insulating protective layer 10, an insulating elastomer having a hardness of 80 ° H [made by Shin-Etsu Chemical Co., Ltd., trade name KE-981U] and a vulcanizing agent [made by Shin-Etsu Chemical Co., Ltd., trade name C-19A / B ] Were mixed and kneaded, dispensed with a calender, and vulcanized at 120 ° C. for 10 minutes to produce a 0.2 mm insulating outer layer 12. After the insulation outer layer 12 is prepared, an insulating elastomer (made by Shin-Etsu Chemical Co., Ltd., trade name KE-951U) is used as an insulating inner layer 11 as a cushion layer, and a vulcanizing agent (trade name C-19A / B, made by Shin-Etsu Chemical Co., Ltd.). ], A foaming agent (manufactured by Shin-Etsu Polymer Co., Ltd., trade name SO paste) is mixed and kneaded, and separated by a calendar to produce the insulating inner layer 11, and the insulating inner layer 11 and the insulating outer layer 12 are joined and integrated. did.
[0030]
Next, the joined insulating inner layer 11 and insulating outer layer 12 are press-molded and foamed to form the insulating inner layer 11 with a thickness of 0.5 mm and a hardness of 20 ° H. An adhesive [manufactured by Shin-Etsu Chemical Co., Ltd.] , Trade name KE-1800A / B] was screen printed to a thickness of 0.03 mm. And the insulation inner layer 11 of the insulation protection layer 10 completed on both sides of the insulation support layer 20 of the anisotropic conductive connector layer 1 is laminated respectively, and then vulcanized under the conditions of 120 ° C., 10 minutes, 5 kg / cm 2. A low resistance connector was produced.
[0031]
Example 2
The hardness of the insulating inner layer 11 was set to 30 ° H, and the other portions were the same as in Example 1.
[0032]
Comparative Example 1
Basically the same as in Example 1, but the insulating support layer 20 was omitted to produce a low resistance connector.
Comparative Example 2
Although basically the same as Example 1, the insulating support layer 20 was omitted, and the hardness of the insulating outer layer 12 was set to 70 ° H to produce a low resistance connector.
[0033]
Evaluation Method The low resistance connectors of Examples and Comparative Examples were tested for the following items, and the results were summarized and evaluated in Table 1.
(1) Initial resistance: If the resistance value when compressing 10% of the low-resistance connector is 20Ω or less, ○ (passed, the same applies below), and if the resistance value exceeds 20Ω, × (failed, below) The same).
(2) Occurrence of buckling: When the low-resistance connector was compressed by 30%, the low-resistance connector was marked as ◯ when it was compressed into a uniform shape, and when it was bent into a square shape, it was marked as x.
[0034]
(3) Glass substrate cracking at the time of incorporation: A PCB-ITO glass substrate set similar to a mobile phone is manufactured, and a low resistance connector is incorporated into this to compress it. When it was, it was set as x. The compression rate of the low-resistance connector was the same as the compression rate (15%) when the low-resistance connector was incorporated into a mobile phone and compressed.
(4) Adhesiveness at the cut cross-section: cut in the L and H directions with a cutter. If the plurality of divided low-resistance connectors do not re-adhere, it is marked as ◯.
[0035]
[Table 1]
Figure 0004255200
[0036]
【The invention's effect】
As described above, according to the present invention, the anisotropic conductive connector layer is formed by stacking a plurality of conductive elastomers containing a conductive material and insulating elastomers alternately and in multiple layers so that their joint surfaces are parallel to each other. The insulating protective layer is formed in a two-layer structure from an insulating inner layer having a hardness of 20 ° H or 30 ° H contacting the insulating support layer and an insulating outer layer having a thickness of 0.01 to 0.1 mm and a hardness of 80 ° H. The insulating support layer is formed with a thickness of 0.01 to 0.5 mm and a hardness of 80 ° H. The total thickness from the insulating protective layer to the insulating support layer is 0.25 to 1.5 mm. The resistance connector can be prevented from buckling, the connection characteristics can be improved, and the load during compression can be reduced. In addition, it is possible to suppress and prevent adhesion and adhesion after cutting, thereby improving work efficiency.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of a low resistance connector according to the present invention.
FIG. 2 is a front view showing an embodiment of a low resistance connector according to the present invention.
FIG. 3 is a plan view showing an embodiment of a low resistance connector according to the present invention.
FIG. 4 is a plan view showing a comparative example 1 of the low resistance connector according to the present invention.
FIG. 5 is a plan view showing a comparative example 2 of the low resistance connector according to the present invention.
[Explanation of symbols]
1 Anisotropic Conductive Connector Layer 2 Conductive Elastomer 3 Insulating Elastomer 4 Conductive Material (Conductive Substance)
10 Insulating protective layer 11 Insulating inner layer 12 Insulating outer layer 20 Insulating support layer

Claims (1)

異方導電コネクタ層の非接触面に絶縁保護層を設け、これら異方導電コネクタ層と絶縁保護層との間に絶縁支持層を介在させた低抵抗コネクタであって、
異方導電コネクタ層を、導電性物質を含む導電性エラストマーと絶縁性エラストマーとをその接合面が互いに平行になるよう交互に、かつ多重に複数積み重ねて形成し、
絶縁保護層を、絶縁支持層に接触する硬度20°Hあるいは30°Hの絶縁内層と、厚さ0.01〜0.1mmで硬度80°Hの絶縁外層とから二層構造に形成し、絶縁支持層を、厚さ0.01〜0.5mmで硬度80°Hに形成し、
絶縁保護層から絶縁支持層までの総厚さを0.25〜1.5mmとしたことを特徴とする低抵抗コネクタ。
A low resistance connector in which an insulating protective layer is provided on the non-contact surface of the anisotropic conductive connector layer, and an insulating support layer is interposed between the anisotropic conductive connector layer and the insulating protective layer,
Anisotropic conductive connector layers are formed by stacking a plurality of conductive elastomers containing a conductive substance and an insulating elastomer alternately and in multiple layers so that the joint surfaces thereof are parallel to each other,
An insulating protective layer is formed in a two-layer structure from an insulating inner layer having a hardness of 20 ° H or 30 ° H contacting the insulating support layer and an insulating outer layer having a thickness of 0.01 to 0.1 mm and a hardness of 80 ° H, Forming an insulating support layer with a thickness of 0.01 to 0.5 mm and a hardness of 80 ° H;
A low resistance connector, wherein the total thickness from the insulating protective layer to the insulating support layer is 0.25 to 1.5 mm .
JP2000148514A 2000-05-19 2000-05-19 Low resistance connector Expired - Lifetime JP4255200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148514A JP4255200B2 (en) 2000-05-19 2000-05-19 Low resistance connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148514A JP4255200B2 (en) 2000-05-19 2000-05-19 Low resistance connector

Publications (2)

Publication Number Publication Date
JP2001332322A JP2001332322A (en) 2001-11-30
JP4255200B2 true JP4255200B2 (en) 2009-04-15

Family

ID=18654526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148514A Expired - Lifetime JP4255200B2 (en) 2000-05-19 2000-05-19 Low resistance connector

Country Status (1)

Country Link
JP (1) JP4255200B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7244127B2 (en) 2002-03-20 2007-07-17 J.S.T. Mfg. Co., Ltd. Anisotropic conductive sheet and its manufacturing method
EP1487057A4 (en) 2002-03-20 2006-08-16 J S T Mfg Co Ltd Anisotropic conductive sheet and its manufacturing method
TW201405590A (en) * 2012-07-25 2014-02-01 Benq Materials Corp Anisotropic conductive film
KR101788738B1 (en) 2012-08-30 2017-10-20 삼성전기주식회사 Insulating film and manufacturing method for insulating film
JP6560156B2 (en) * 2015-05-07 2019-08-14 信越ポリマー株式会社 Anisotropic conductive sheet and manufacturing method thereof
CN113555166B (en) * 2021-08-09 2022-10-04 东莞市松乔电子有限公司 Method for manufacturing silver powder conductive adhesive tape capable of preventing oil absorption deformation and silver powder conductive adhesive tape

Also Published As

Publication number Publication date
JP2001332322A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US3982320A (en) Method of making electrically conductive connector
JPS6337463B2 (en)
KR102093270B1 (en) Conductive particle, resin particle, conductive material, and connection structure
KR101054251B1 (en) Conductive Contact Terminals for Board Surface Mount
CN101171654A (en) Electrically conducting contact and method for production thereof
CN1668163A (en) Anisotropic conductive sheet
JP4255200B2 (en) Low resistance connector
US6241533B1 (en) Press-Contact electrical interconnectors and method for producing the same
CN100550519C (en) The good conductive layer of flexibility, anisotropic conductive sheet and manufacture method thereof
US9053838B2 (en) Conductive rubber component and method for mounting same
WO2003079497A1 (en) Anisotropic conductive sheet and its manufacturing method
JP6639079B2 (en) Anisotropic conductive material
JP6654954B2 (en) Anisotropic conductive connection structure
JPH0615429Y2 (en) Adhesive heat fusion type connector
JPWO2003079494A1 (en) Anisotropic conductive sheet and manufacturing method thereof
CN100477387C (en) Anisotropic conductive sheet and manufacturing method thereof
CN112226173B (en) Conductive foam double-sided adhesive tape
CN112194993B (en) Conductive foam adhesive tape with good thermal conductivity
JPH11135172A (en) Elastomer connector for connecting ic card
JP2849609B2 (en) Manufacturing method of elastic connector
CN212084676U (en) Data connector of multilayer PCB board
JP2593494Y2 (en) Elastic connector
CN215882894U (en) Anti-static sheet
JP2000251980A (en) Low-resistance connector
JPH0711772U (en) Elastic connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term