JP4255043B2 - Hand furnace for pressure casting machine - Google Patents
Hand furnace for pressure casting machine Download PDFInfo
- Publication number
- JP4255043B2 JP4255043B2 JP37219699A JP37219699A JP4255043B2 JP 4255043 B2 JP4255043 B2 JP 4255043B2 JP 37219699 A JP37219699 A JP 37219699A JP 37219699 A JP37219699 A JP 37219699A JP 4255043 B2 JP4255043 B2 JP 4255043B2
- Authority
- JP
- Japan
- Prior art keywords
- furnace
- heating
- casting machine
- pressure casting
- molten metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Control Of Resistance Heating (AREA)
- General Induction Heating (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Tunnel Furnaces (AREA)
- Furnace Details (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、非鉄金属もしくは非鉄金属合金を溶解して保持し、そこから溶湯を汲み出して鋳造機に供給して加圧鋳造する加圧鋳造機の手元炉に関する。
【0002】
【従来の技術】
加圧鋳造に供される溶湯は、鋳造欠陥を無くするために、溶湯中にガス吸収が少ない、酸化物などの懸濁スラグ、もしくは介在物を含まない、スラグが無いなどの清浄溶湯であることが望まれる。この清浄溶湯を得るためには下記事項が不可欠である。
【0003】
▲1▼黒鉛るつぼを抵抗加熱する抵抗炉、もしくはガスや重油で加熱するガス炉、重油炉を用いて黒鉛るつぼを加熱し黒鉛るつぼからの輻射熱、および伝達熱により金属を溶解して、溶解および出湯などのための保温中は誘導溶解時に生じるような攪拌力を溶湯に与えない静かな状態にしてガス吸収を少なくする。
▲2▼溶解完了後に若干の鎮静時間を与える。
【0004】
▲3▼溶解材料は主として予め成分調整されたインゴットおよびリターン材を使用する。
▲4▼他の材料を溶解する際は溶解後塩素処理、フッ素処理などを行い介在物を除去するとともに、必要であればガスバブリングにより不純物を除去する。
▲5▼加圧鋳造機への給湯はラドルなどにより炉内部の溶湯を汲み出し、表面のスラグ皮膜を巻き込まないようにする。必要に応じて注湯時にフィルターを通して介在物を除去する。
【0005】
アルミニウム、マグネシウムおよびそれらの合金などの溶湯は溶解温度が低いこともあり、従来より上記の項目を考慮したガス炉、もしくは抵抗炉が一般的に加圧鋳造機の手元炉として使用されていた。
【0006】
【発明が解決しようとする課題】
ところで、従来から使用されているすガス炉、重油炉、抵抗炉などは間接加熱であり、また溶湯を攪拌しない静かな加熱であることから長い溶解時間を要し、エネルギー効率の悪いエネルギー多使用型設備となっている。
例えば200kgのアルミニウムの溶湯を得るのに抵抗炉では800KWH/Tのエネルギーと3.5〜4時間の溶解時間を要する。
【0007】
また、ガス炉、重油炉、抵抗炉など間接加熱炉は以下の問題がある。
▲1▼溶解開始から完了までの時間(立ち上がり時間)が長いために休日などは溶湯を保温して休日明けの操業に間に合わせるために保温のためのエネルギーが余分に必用になる。
▲2▼溶湯を攪拌しないので炉内での溶湯の成分調整や脱ガス作業が困難であり、予め別の溶解炉で成分調整されたインゴットを使用する必要があり、材料コストが高くなるとともに、二重に溶解するためにトータルエネルギーの消費量が増大する。
【0008】
▲3▼小ロットで金種の異なる各種合金に対応するためには1台の炉では炉を空にしてから新しい合金の溶解を行うと3.5〜4時間のブランクが生じるので複数炉を使用して各種合金に対応することになり、それぞれの炉での保温エネルギーが必要となり、炉の数が多くなるほどトータルエネルギー消費が多くなる。
しかしながら現状では黒鉛るつぼを用いた抵抗炉、もしくはガス炉で溶解した後、ラドルで溶湯を汲み出して加圧鋳造機に給湯するやり方が加圧鋳造機の手元炉の主流になっている。
【0009】
上記の問題を解決するために誘導炉を手元炉とする試みが為された。それは誘導炉の特長である高速溶解と、攪拌力による溶湯の均質化を活かして短時間で溶解して手元炉を少なくしても小ロットに対応できるようにするとともに、種々の材料を溶解してから成分調整することによりインゴット溶解と同じ成分の溶湯を安価な材料の組み合わせ溶解により得ることを目的としたが結果は失敗であった。
【0010】
それは誘導炉の特長である攪拌力がある故に溶湯中にガスを吸収し、かつ酸素と結びついた金属などの酸化物を介在物として溶湯中に巻き込んでしまう不具合であった。
この不具合を解消するためにはガスバブリングにより介在物を強制的に除去したり、溶解後30分程度の鎮静時間を与えて溶湯中に巻き込まれた介在物を溶湯との比重差により浮上させて除去したりする操作が必用になり、結果的には抵抗炉での溶解時間とそれほど変わらなかった。
【0011】
誘導炉の特長を活かす別の試みとして複室誘導炉が考案された。これは、一方を溶解専用室とし、他方を溶湯を保持、鎮静してその溶湯を鋳造に供するようにした鋳造室とし、両室を溝部と呼ばれる連通管で接続したものである。
この炉は溶解と、鋳造との機能を別室に分けたことで一応の成果を見たものの、連通管が存在することで基本的には溝形誘導炉と同じであり、連通管を含む連通管近辺の耐火物の寿命を長引かせるために連通管内を常時溶湯で満たしておく必要があることから休祭日でも溶湯保温しておくことが不可欠であった。
【0012】
さらに炉の耐火物構造が複雑であるので湯漏れし易く安定した耐火物寿命が得られない欠点があった。
上述のことから誘導炉で溶解した溶湯を直ちにそのまま加圧鋳造することはできず、誘導炉は加圧鋳造機用の手元炉には不向きであると言う結果を余儀なくされている。
【0013】
また、最近の試みとしては成分調整されたビレットを一回分の鋳造に見合う重量に切断しておき、鋳込み直前に半溶融状態にして加圧成形する半溶融法や半凝固法の開発が盛んであるが、これらは特殊鋳造に区分されるもので一般的な加圧鋳造に適用される溶湯とは基本的に異なったものである。
この発明は上記課題を解決するためになされたもので、その目的とするところは、短時間で、かつガス吸収や介在物の巻き込みが無い静かな溶解ができる加圧鋳造機の手元炉を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するために請求項1記載の発明は、非鉄金属もしくは非鉄金属合金を溶解して保持し、そこから溶湯を汲み出して鋳造機に供給して加圧鋳造する加圧鋳造機の手元炉において、金属の加熱過程を固相領域と液相領域とに区分し、固相領域の加熱には金属自身が発熱する直接加熱装置を設け、固相領域の加熱に続く液相領域の加熱には、抵抗線、燃焼ガスなどの熱源により加熱した黒鉛るつぼからの輻射および熱伝達により溶解する間接加熱炉を設けることを特徴とする。
【0015】
上記の金属の加熱過程を固相領域と液相領域とに区分する加熱について図2に示す純アルミニウムを例に説明する。この図2は横軸に加熱温度(℃)を、縦軸に理論加熱エネルギー(KWH/T)(熱容量)を示したもので金属をある温度にするために単位重量当たりに必用な加熱エネルギーを示す。図においてaは固相領域を示し、bは溶解潜熱受容領域を、cは液相領域を示す。aの固相領域の加熱は金属が固体であるから加熱中にガス吸収や介在物の巻き込みは無く、また酸化も殆ど無い。bの溶解潜熱受容領域は金属の温度が殆ど変化しない固体の領域であり、cは金属が溶解して液相になった領域である。純アルミニウムの場合固相領域aの理論加熱エネルギーは180KWH/Tであり、そこから鋳造温度750℃にまで加熱するエネルギーは140KWH/Tである。
【0016】
この固相領域の加熱を誘導加熱にして、それ以上の加熱を抵抗炉とする場合と、固相領域から液相領域までの加熱を抵抗炉のみで行う場合について比較すると表1となる。
【0017】
【表1】
ただし、200Kg/45KW抵抗炉の加熱時間を約3.5時間として電気効率を(320KWH/T)/(45KW×3.5H/0.2T)=約0.4、誘導炉の電気効率を0.7として求めた。また、抵抗炉での液相領域の加熱時間は(140KWH/T)/(320KWH/T)×3.5時間×60分=約90分とした。
【0018】
表1に示すように上記誘導加熱と抵抗炉とを組み合せる構成は加熱時間を略半分に短縮し、溶解エネルギーを約76%に削減することが可能であり、固相領域で急速加熱を行ってもガス吸収や介在物の巻き込みが無くそこから鋳造温度までの加熱を抵抗炉で行えば最初から抵抗炉で加熱する場合の利点を損なわないので加圧鋳造機の手元炉として使用することが可能になる。
【0019】
また、請求項2記載の発明のように、請求項1記載の加圧鋳造機の手元炉において、直接加熱装置は非鉄金属もしくは非鉄金属合金のインゴット、もしくはビレットを誘導加熱する誘導加熱コイルと、該誘導加熱コイルに非鉄金属もしくは非鉄金属合金のインゴット、もしくはビレットを供給し、加熱終了後直ちに後段の間接加熱炉に投入する材料搬送装置とから構成することができる。
【0020】
さらに、請求項3記載の発明のように、請求項1または請求項2に記載の加圧鋳造機の手元炉において、間接加熱炉で熔解を行う際に間接加熱炉から汲み出した溶湯重量に見合う重量のインゴット、もしくはビレットを誘導加熱コイルで加熱して間接加熱炉に投入するようにしても良い。
上記請求項2および3の構成により、加圧鋳造機の手元炉としては一般的な2台の抵抗炉から交互に出湯させる方式に一台の誘導加熱コイルとインゴットもしくはビレット供給装置を組み合せることで固相領域の加熱時間を短くして立ち上がり時間を短縮することができるとともに、鋳造機に溶湯を供給し終わった抵抗炉に汲み出した溶湯重量に見合う重量のインゴットもしくはビレットを誘導加熱して抵抗炉に投入し溶解してスタンバイすることにより抵抗炉の交互使用のインターバルを短縮することも可能になる。
【0021】
上記の交互使用のインターバルを短縮することは鋳造機に余裕があれば稼働率を上げる効果があり、鋳造機に余裕が無ければ抵抗炉を小型にして抵抗炉でのエネルギー消費量を削減することができる。
【0022】
【発明の実施の形態】
図1はこの発明の実施の形態の主要部の構成図を示す。この図1において、1は図示されていない高周波電源に接続された誘導加熱コイル、2は前段の材料払い出し装置から払い出されて縦一列に並べて搬送されたビレット3を誘導加熱コイル1内に供給してそこで加熱した後振り分けシュート4を経て抵抗炉(間接加熱炉)5に供給するビレット3の搬送装置、6は抵抗炉5の溶湯を加圧鋳造する加圧鋳造機を示す。図において、円筒形の誘導加熱コイル1を通して加熱したビレット3を振り分けシュート4にまで搬送する搬送装置2は2本のスキッドレールと図示されていないピンチロールおよびチェーンコンベヤ、もしくはプッシャー、ウォーキングビームのいずれかからなる搬送機構とで構成されており、前記払い出し機構から払い出されてスキッドレール上に縦一列に並べられたビレット3に該搬送機構で前進力を与えてそこから前方にあるビレット3を押してスキッドレール上を滑らせて搬送する。このようにして誘導加熱コイル1内に搬送されたビレット3は誘導加熱コイル3内を通過中に固相領域の目標温度に加熱されて振り分けシュート4に送り出されそこからは自重で振り分けシュート4上を滑って抵抗炉5に投入される。そして抵抗炉5内で所望の温度にまで溶解されて若干の鎮静時間を経て図示されていないラドルで溶湯を汲み出して加圧鋳造機6に給湯して加圧鋳造する。なお、この装置に適用されるビレット3は予め別の炉で溶解して成分調整されており抵抗炉5内で再溶解するだけで所望の成分の溶湯が得られるようになっている。
【0023】
また、誘導加熱コイル1に供給するビレット3の重量を抵抗炉5で汲み出した溶湯重量に見合う重量にして誘導コイル1内で所望の温度に加熱した後抵抗炉5に投入し、次に抵抗炉5にビレット3を供給する事態になるまで加熱を停止するようにした誘導加熱コイル1をバッチ加熱炉としても良い。
また、図に示すように抵抗炉5は2台用意されており、一方の抵抗炉5が出湯中は他方の抵抗炉5で溶解して次の出湯に備えてスタンバイする交互出湯により、加圧鋳造機6が連続運転できるようにしている。
【0024】
【発明の効果】
この発明によれば、手元炉の立ち上げ時間を短縮できるので休祭日などの長時間の操業停止時に溶湯を保温しておく必要が無くなり省エネルギーになるとともに、休祭日中に溶湯を保持することにより発せする事故を無くする効果がある。また、交互出湯の際の溶解時間を短縮できるのでその分加圧鋳造機の稼働率を上昇させ、生産性を向上させる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態の主要部分の構成図
【図2】各種金属の加熱温度に対応する理論熱容量を示す図
【符号の説明】
1 誘導加熱コイル
2 搬送装置
3 ビレット
4 振り分けシュート
5 抵抗炉
6 加圧鋳造機[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hand furnace for a pressure casting machine that melts and holds a non-ferrous metal or a non-ferrous metal alloy, draws molten metal therefrom, supplies the molten metal to a casting machine, and performs pressure casting.
[0002]
[Prior art]
In order to eliminate casting defects, the molten metal used for pressure casting is a clean molten metal that absorbs less gas in the molten metal, does not contain oxides or other suspended slag, or does not contain inclusions or slag. It is desirable. The following items are indispensable for obtaining this clean molten metal.
[0003]
(1) Resistance furnace for resistance heating of a graphite crucible, or a gas furnace for heating with a gas or heavy oil, or a heavy oil furnace to heat the graphite crucible to melt the metal by radiant heat from the graphite crucible and transfer heat, During heat insulation for hot water, etc., the gas absorption is reduced by making it quiet so as not to give the stirring force to the molten metal that occurs during induction melting.
(2) Give some sedation time after dissolution is complete.
[0004]
{Circle around (3)} Ingots and return materials whose components are adjusted in advance are mainly used as the melting material.
(4) When other materials are dissolved, the inclusions are removed by chlorination and fluorine treatment after dissolution, and impurities are removed by gas bubbling if necessary.
(5) For hot water supply to the pressure casting machine, the molten metal inside the furnace is pumped out with a ladle or the like so that the slag film on the surface is not caught. If necessary, inclusions are removed through a filter during pouring.
[0005]
Molten metal such as aluminum, magnesium and alloys thereof may have a low melting temperature, and conventionally, a gas furnace or a resistance furnace considering the above items has generally been used as a hand furnace of a pressure casting machine.
[0006]
[Problems to be solved by the invention]
By the way, conventional gas furnaces, heavy oil furnaces, resistance furnaces, etc. are indirect heating, and because they are quiet heating that does not stir the molten metal, it takes a long melting time and uses a lot of energy with low energy efficiency. It is a mold facility.
For example, to obtain 200 kg of molten aluminum, a resistance furnace requires an energy of 800 KWH / T and a melting time of 3.5 to 4 hours.
[0007]
Indirect heating furnaces such as gas furnaces, heavy oil furnaces, and resistance furnaces have the following problems.
(1) Since the time from the start of melting to completion (rise time) is long, extra energy is required to keep the molten metal warm during the holidays and to keep up with the operation after the holidays.
(2) Since the molten metal is not agitated, it is difficult to adjust the composition of the molten metal and degassing work in the furnace, and it is necessary to use an ingot whose components have been adjusted in advance in another melting furnace, which increases the material cost. Due to the double dissolution, the total energy consumption increases.
[0008]
(3) In order to deal with various alloys of different denominations in a small lot, if one furnace is emptied and a new alloy is melted, a blank of 3.5 to 4 hours is generated. It will be used for various alloys, and heat insulation energy is required in each furnace, and the total energy consumption increases as the number of furnaces increases.
However, at present, the main method of the pressure furnace is to use a method in which the molten metal is melted in a resistance furnace using a graphite crucible or a gas furnace, and then the molten metal is pumped out by a ladle and supplied to the pressure casting machine.
[0009]
In order to solve the above problems, an attempt was made to use an induction furnace as a local furnace. It utilizes the high-speed melting characteristics of induction furnaces and the homogenization of the molten metal by stirring force to enable melting in a short time to accommodate small lots even if the number of local furnaces is reduced. The aim was to obtain a molten metal of the same component as the ingot melting by combining the inexpensive materials by adjusting the components, but the result was unsuccessful.
[0010]
This is a problem that gas is absorbed in the molten metal due to the stirring power that is a feature of the induction furnace, and oxides such as metals combined with oxygen are involved in the molten metal as inclusions.
In order to solve this problem, inclusions are forcibly removed by gas bubbling, or a sedation time of about 30 minutes is given after melting and the inclusions entrained in the molten metal are floated due to the difference in specific gravity from the molten metal. The removal operation was necessary, and as a result, the melting time in the resistance furnace was not so different.
[0011]
A multi-chamber induction furnace was devised as another attempt to make use of the features of the induction furnace. In this case, one is a melting chamber, the other is a casting chamber in which the molten metal is held and calmed and used for casting, and both chambers are connected by a communication pipe called a groove.
Although this furnace has seen some results by dividing the functions of melting and casting into separate chambers, it is basically the same as a grooved induction furnace because of the presence of a communication pipe, and the communication including the communication pipe In order to prolong the life of the refractory near the pipe, it was indispensable to keep the molten metal warm even on holidays, because it was necessary to always fill the communication pipe with the molten metal.
[0012]
Furthermore, since the refractory structure of the furnace is complicated, there is a drawback that it is easy for water to leak and a stable refractory life cannot be obtained.
From the above, the molten metal melted in the induction furnace cannot be immediately subjected to pressure casting, and the induction furnace is forced to be unsuitable for a hand furnace for a pressure casting machine.
[0013]
Also, as a recent attempt, the development of a semi-melting method and a semi-solidifying method in which a billet whose component has been adjusted is cut to a weight suitable for a single casting and is made into a semi-molten state and pressure-molded immediately before casting is actively developed. Although these are classified into special castings, they are basically different from molten metal applied to general pressure casting.
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a local furnace for a pressure casting machine capable of performing a quiet melting in a short time without gas absorption or inclusion inclusions. There is to do.
[0014]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention according to claim 1 is a hand of a pressure casting machine that melts and holds a non-ferrous metal or a non-ferrous metal alloy, draws a molten metal from the molten metal, supplies the molten metal to a casting machine, and performs pressure casting In the furnace, the heating process of the metal is divided into a solid phase region and a liquid phase region, and the solid phase region is heated by providing a direct heating device that generates heat from the metal itself. Is characterized by providing an indirect heating furnace that melts by radiation and heat transfer from a graphite crucible heated by a heat source such as a resistance wire or combustion gas.
[0015]
The heating for dividing the metal heating process into a solid phase region and a liquid phase region will be described by taking pure aluminum shown in FIG. 2 as an example. This FIG. 2 shows the heating temperature (° C.) on the horizontal axis and the theoretical heating energy (KWH / T) (heat capacity) on the vertical axis. The heating energy required per unit weight to bring the metal to a certain temperature. Show. In the figure, a represents a solid phase region, b represents a solution latent heat receptive region, and c represents a liquid phase region. In the heating of the solid phase region a, since the metal is solid, there is no gas absorption or inclusion inclusion during heating, and there is almost no oxidation. The melting latent heat receptive region of b is a solid region where the temperature of the metal hardly changes, and c is a region where the metal is dissolved and becomes a liquid phase. In the case of pure aluminum, the theoretical heating energy of the solid phase region a is 180 KWH / T, and the energy for heating from there to a casting temperature of 750 ° C. is 140 KWH / T.
[0016]
Table 1 shows a comparison between the case where the heating of the solid phase region is induction heating and further heating is performed in the resistance furnace, and the case where the heating from the solid phase region to the liquid phase region is performed only in the resistance furnace.
[0017]
[Table 1]
However, when the heating time of the 200 Kg / 45 KW resistance furnace is about 3.5 hours, the electric efficiency is (320 KWH / T) / (45 KW × 3.5 H / 0.2 T) = about 0.4, and the electric efficiency of the induction furnace is 0. .7. The heating time of the liquid phase region in the resistance furnace was (140 KWH / T) / (320 KWH / T) × 3.5 hours × 60 minutes = about 90 minutes.
[0018]
As shown in Table 1, the combination of the induction heating and the resistance furnace can shorten the heating time to about half and reduce the melting energy to about 76%. Rapid heating is performed in the solid phase region. However, if there is no gas absorption or inclusion entrainment and heating from there to the casting temperature in a resistance furnace, the advantage of heating in the resistance furnace from the beginning is not impaired, so it can be used as a hand furnace for a pressure casting machine It becomes possible.
[0019]
Further, as in the invention according to claim 2, in the hand furnace of the pressure casting machine according to claim 1, the direct heating device is an induction heating coil for induction heating a non-ferrous metal or non-ferrous metal alloy ingot, or a billet, The induction heating coil can be configured by a non-ferrous metal or non-ferrous metal alloy ingot or billet, and a material conveying device that is put into a subsequent indirect heating furnace immediately after the heating is completed.
[0020]
Further, as in the invention according to claim 3, in the local furnace of the pressure casting machine according to claim 1 or claim 2, it corresponds to the weight of the melt pumped from the indirect heating furnace when melting in the indirect heating furnace. A heavy ingot or billet may be heated by an induction heating coil and put into an indirect heating furnace.
According to the constructions of claims 2 and 3 described above, a single induction heating coil and an ingot or billet supply device are combined in a system in which hot water is alternately discharged from two general resistance furnaces as a hand furnace of a pressure casting machine. In addition to shortening the heating time in the solid phase region, the rise time can be shortened, and the ingot or billet with a weight suitable for the weight of the molten metal pumped into the resistance furnace after the molten metal has been supplied to the casting machine is heated by induction. It is also possible to shorten the interval of alternate use of the resistance furnace by putting it in the furnace and melting it to stand-by.
[0021]
Shortening the above-mentioned alternate use interval has the effect of increasing the operating rate if there is a margin in the casting machine, and reducing the energy consumption in the resistance furnace by reducing the resistance furnace if there is no margin in the casting machine. Can do.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a block diagram showing the main part of an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes an induction heating coil connected to a high-frequency power source (not shown), and 2 denotes a billet 3 that is discharged from the material discharging apparatus in the previous stage and conveyed in a vertical row and is supplied into the induction heating coil 1. The billet 3 is fed to the resistance furnace (indirect heating furnace) 5 after being heated and then distributed to the resistance furnace (indirect heating furnace) 5, and 6 is a pressure casting machine for pressure casting the molten metal of the
[0023]
Further, the weight of the billet 3 supplied to the induction heating coil 1 is set to a weight corresponding to the weight of the molten metal pumped out by the
In addition, as shown in the figure, two
[0024]
【The invention's effect】
According to the present invention, since the start-up time of the local furnace can be shortened, it is not necessary to keep the molten metal warm when the operation is stopped for a long time such as a holiday, and the energy is saved, and the molten metal is held during the holiday. This has the effect of eliminating accidents. Moreover, since the melting time in the alternate hot water can be shortened, there is an effect of increasing the operating rate of the pressure casting machine and improving the productivity accordingly.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of main parts of an embodiment of the present invention. FIG. 2 is a diagram showing theoretical heat capacities corresponding to heating temperatures of various metals.
DESCRIPTION OF SYMBOLS 1 Induction heating coil 2 Conveyor 3 Billet 4
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37219699A JP4255043B2 (en) | 1999-12-28 | 1999-12-28 | Hand furnace for pressure casting machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37219699A JP4255043B2 (en) | 1999-12-28 | 1999-12-28 | Hand furnace for pressure casting machine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001191164A JP2001191164A (en) | 2001-07-17 |
JP4255043B2 true JP4255043B2 (en) | 2009-04-15 |
Family
ID=18500024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37219699A Expired - Lifetime JP4255043B2 (en) | 1999-12-28 | 1999-12-28 | Hand furnace for pressure casting machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4255043B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102989810A (en) * | 2012-10-30 | 2013-03-27 | 无锡鸿声铝业有限公司 | Temperature preservation cylinder for temperature preservation of high-temperature metal extrusion section |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6059389B1 (en) * | 2016-06-20 | 2017-01-11 | 北芝電機株式会社 | Melting control method for fast induction melting furnace |
CN112276042A (en) * | 2020-09-27 | 2021-01-29 | 上海大学 | Method for improving casting quality |
CN113945763A (en) * | 2021-11-15 | 2022-01-18 | 湖北亿纬动力有限公司 | Method for testing liquid-phase resistance of pole piece |
-
1999
- 1999-12-28 JP JP37219699A patent/JP4255043B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102989810A (en) * | 2012-10-30 | 2013-03-27 | 无锡鸿声铝业有限公司 | Temperature preservation cylinder for temperature preservation of high-temperature metal extrusion section |
Also Published As
Publication number | Publication date |
---|---|
JP2001191164A (en) | 2001-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101748293B (en) | Magnesium alloy refining unit | |
EP1292411B1 (en) | Production of on-demand semi-solid material for castings | |
CN100419102C (en) | Method for smelting magnesium alloy | |
JP4255043B2 (en) | Hand furnace for pressure casting machine | |
JP3949208B2 (en) | Metal remelting method and apparatus used for manufacturing continuous casting | |
CN104195397B (en) | A kind of high-intensity thermal deformation resistant magnesium alloy and manufacture method thereof | |
JP2873593B2 (en) | Rapid melting method and equipment for aluminum ingot by supplying cold material | |
KR100673618B1 (en) | Manufacturing apparatus for casting semi-solid materials and process method thereof | |
JP2004160507A (en) | Direct casting apparatus | |
RU2719051C1 (en) | Method of semi-finished products production from heat-resistant alloy h25n45v30 | |
JP6150972B2 (en) | Method for melting cold iron source using hot metal in storage furnace equipped with heating device | |
JP2683771B2 (en) | Rapid melting device with preheating section | |
SU1361181A1 (en) | Method of producing method of modifying cast steel | |
US6250363B1 (en) | Rapid induction melting of metal-matrix composite materials | |
JP2826865B2 (en) | Rapid melting method and equipment for aluminum ingot by supplying cold material | |
US3736127A (en) | Method of treating and handling molten metal | |
JP2592274B2 (en) | Dual frequency rapid melting equipment | |
KR101010002B1 (en) | Method of manufacturing of al-si-ti-zn alloy ingot | |
SU399540A1 (en) | VPTBFOND ENOOERT | |
SU233126A1 (en) | VACUUM INDUCTION INSTALLATION FOR CASTING INGETS AND DETAILS | |
JP3263928B2 (en) | Continuous heating melting method | |
JP2914717B2 (en) | Continuous heating and melting equipment | |
JP2695433B2 (en) | Method for adjusting magnesium content of molten aluminum | |
SU801977A1 (en) | Method of producing bearing steel tube blanks | |
SU1765181A1 (en) | Method for melting synthetic iron |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040930 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060323 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060517 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060522 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20060703 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060704 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061219 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20081215 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090123 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4255043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20090219 |
|
A072 | Dismissal of procedure [no reply to invitation to correct request for examination] |
Free format text: JAPANESE INTERMEDIATE CODE: A072 Effective date: 20090618 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |