JP4254363B2 - Warm-up control device - Google Patents

Warm-up control device Download PDF

Info

Publication number
JP4254363B2
JP4254363B2 JP2003168551A JP2003168551A JP4254363B2 JP 4254363 B2 JP4254363 B2 JP 4254363B2 JP 2003168551 A JP2003168551 A JP 2003168551A JP 2003168551 A JP2003168551 A JP 2003168551A JP 4254363 B2 JP4254363 B2 JP 4254363B2
Authority
JP
Japan
Prior art keywords
warm
cooling water
automatic transmission
flow rate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003168551A
Other languages
Japanese (ja)
Other versions
JP2005003134A (en
Inventor
康裕 中井
神尾  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003168551A priority Critical patent/JP4254363B2/en
Publication of JP2005003134A publication Critical patent/JP2005003134A/en
Application granted granted Critical
Publication of JP4254363B2 publication Critical patent/JP4254363B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の冷却水と自動変速機の作動油との間の熱交換を行う熱交換器を備えた暖機制御装置に関するものである。
【0002】
【従来の技術】
近年、自動変速機(AT)を搭載した車両では、燃費向上を目的として、自動変速機のトルクコンバータの入力側と出力側とを直結状態にするロックアップ制御を行って自動変速機の伝達効率を向上させるようにしたものがある。一般に、自動変速機の暖機終了前(自動変速機の作動油の温度が低いとき)にロックアップ制御を行うと、ドライバビリティに悪影響を及ぼす可能性があるため、自動変速機の作動油の温度(以下「AT油温」という)が低い期間には、ロックアップ制御を禁止するようにしている。
【0003】
このため、内燃機関の始動後に自動変速機の暖機(AT油温の上昇)が遅いと、内燃機関の始動からロックアップ制御が許可されるまでの時間が長くなって、ロックアップ制御による燃費向上効果を早期に得ることができない。しかも、自動変速機の暖機終了前(AT油温が低いとき)には、自動変速機の摩擦損失が増大するため、摩擦損失増大による燃費悪化期間も長くなってしまう。
【0004】
この対策として、例えば、特許文献1(特開2002−161747号公報)に記載されているように、内燃機関の冷却水と自動変速機の作動油との間の熱交換を行う熱交換器(いわゆるATFウォーマ)を設け、内燃機関の暖機運転終了後に内燃機関で温められた冷却水をATFウォーマに循環させて、その冷却水の熱で自動変速機の作動油を温めて自動変速機を暖機するようにしたものがある。
【0005】
【特許文献1】
特開2002−161747号公報(第1頁〜第2頁等)
【0006】
【発明が解決しようとする課題】
ところで、内燃機関の早期暖機と自動変速機の早期暖機による燃費向上効果を最大限に発揮させるためには、内燃機関(冷却水)と自動変速機(作動油)をバランス良く暖機して、両者の暖機をできるだけ早期に終わらせる必要がある。
【0007】
しかし、上記特許文献1の暖機システムでは、内燃機関の暖機運転が終了するまで内燃機関の冷却水をATFウォーマに循環させないため、内燃機関の暖機運転終了を待って自動変速機の暖機を開始することになり、自動変速機の暖機(AT油温の上昇)が遅れてしまう。このため、内燃機関の始動からロックアップ制御が許可されるまでの時間が長くなって、ロックアップ制御による燃費向上効果を早期に得ることができい。しかも、自動変速機の暖機終了前の摩擦損失による燃費増加も早期に改善できない。
【0008】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、始動後に内燃機関と自動変速機をバランス良く暖機して、両者の暖機をできるだけ早期に終わらせることができ、両者の暖機終了までに要する燃費を効果的に節減することができる暖機制御装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の暖機制御装置は、内燃機関の冷却水と自動変速機の作動油との間の熱交換を行う熱交換器を備えたシステムにおいて、自動変速機のトルクコンバータの入力側と出力側とを直結状態にするロックアップ制御が実施される運転領域(以下「ロックアップ領域」という)は運転モードや変速段に応じて変化させられるものであって、該ロックアップ領域に応じて前記熱交換器に循環する冷却水の流量を制御することで、内燃機関の冷却水の温度(以下「機関冷却水温」という)と自動変速機の作動油の温度(以下「AT油温」という)を制御する暖機制御手段を備えていることを特徴とする。
【0011】
一般に、自動変速機のロックアップ制御を行うシステムでは、運転モードや変速段に応じてロックアップ制御が実行される運転領域であるロックアップ領域を変化させるようにしている。このため、同じ条件で自動変速機の暖機(AT油温の上昇)を促進してロックアップ制御を早期に許可しても、ロックアップ領域が変わればロックアップ制御の実行頻度も変わるため、自動変速機の早期暖機による燃費向上効果もロックアップ領域によって変化する。
【0012】
そこで、請求項1に係る発明では、運転モードや変速段に応じて変化するロックアップ領域に応じて熱交換器に循環する冷却水の流量を制御して機関冷却水温とAT油温を制御するようにしている。このようにすれば、ロックアップ領域が、自動変速機の早期暖機による燃費向上効果が比較的大きくなる領域のときには、熱交換器に循環する冷却水の流量を多くして、燃費向上効果が大きい方の暖機(自動変速機の暖機)を優先的に促進したり、また、ロックアップ領域が、自動変速機の早期暖機による燃費向上効果が小さくなる領域のときには、熱交換器に循環する冷却水の流量を少なくして、燃費向上効果が大きい方の暖機(内燃機関の暖機)を優先的に促進するという、ロックアップ領域に応じた暖機制御が可能となる。これにより、ロックアップ領域に左右されない安定した燃費向上効果を得ることができる。
【0013】
更に、請求項のように、機関冷却水温とAT油温のうちの少なくとも一方とロックアップ領域とに基づいて熱交換器に循環する冷却水の流量を制御するようにしても良い。このようにすれば、機関冷却水温やAT油温を監視しながら、ロックアップ領域に応じて熱交換器に循環する冷却水の流量を制御することができ、より燃費向上効果の大きい暖機制御を実現できる。
【0017】
【発明の実施の形態】
《実施形態(1)》
以下、本発明の実施形態(1)を図1乃至図6に基づいて説明する。まず、図1に基づいてシステム全体の概略構成を説明する。内燃機関であるエンジン11の冷却水通路(ウォータジャケット)の入口には、エンジン11の動力によって駆動される機械式ウォータポンプ12が設けられている。このエンジン11の冷却水通路の出口とラジエータ13の入口とが冷却水循環パイプ14によって接続され、ラジエータ13の出口と機械式ウォータポンプ12の吸込み口とが冷却水循環パイプ15によって接続されている。これにより、エンジン11の冷却水通路→冷却水循環パイプ14→ラジエータ13→冷却水循環パイプ15→機械式ウォータポンプ12→エンジン11の冷却水通路の経路で冷却水が循環する冷却水循環回路16が構成されている。
【0018】
この冷却水循環回路16には、ラジエータ13と並列にバイパス流路17が設けられ、このバイパス流路17の両端が冷却水循環パイプ14,15の途中に接続されている。そして、バイパス流路17と冷却水循環パイプ15との合流部に流量調整バルブ18が設けられている。この流量調整バルブ18は、バイパス流路17に流れる冷却水の流量(バイパス流量)と、ラジエータ13に流れる冷却水の流量(ラジエータ流量)の流量比を調整することができる電磁バルブにより構成されている。また、エンジン11の冷却水出口側の冷却水循環パイプ14には、冷却水の温度を検出する水温センサ19が設けられている。
【0019】
また、冷却水循環回路16には、暖房用の温水回路20がエンジン11に対して並列に接続されている。この温水回路20の途中に、暖房用のヒータ21が設けられ、このヒータ21の下流側(又は上流側)に、自動変速機22の作動油を温めるためのATFウォーマ23(熱交換器)が設けられている。このATFウォーマ23には、自動変速機22の作動油が循環する作動油循環回路24が接続され、温水回路20を流れるエンジン11の冷却水(エンジン11で温められた冷却水)と作動油循環回路24を流れる自動変速機22の作動油との間で熱交換するようになっている。この作動油循環回路24には、作動油の温度を検出する油温センサ25が設けられている。
【0020】
また、温水回路20の上流部には、ウォーマ流量調整バルブ26が設けられている。このウォーマ流量調整バルブ26は、温水回路20に循環する冷却水の流量を調整することでATFウォーマ23に循環する冷却水の流量を調整することができる電磁弁で構成されている。
【0021】
前述した水温センサ19、油温センサ25等の各種センサの出力は、制御回路(以下「ECU」と表記する)27に入力される。このECU27は、マイクロコンピュータを主体として構成され、そのROM(記憶媒体)に記憶された水温制御プログラム(図示せず)を実行することで、流量調整バルブ18を制御してバイパス流量とラジエータ流量を調整して冷却水の温度を制御する。
【0022】
また、自動変速機22を制御するAT−ECU(図示せず)は、運転状態が所定の運転領域になったときに、自動変速機22のトルクコンバータ(図示せず)の入力側と出力側とを直結状態にするロックアップ制御や半直結状態(若干滑らせる状態)にするフレックスロックアップ制御を行うことで、自動変速機22の伝達効率を向上させて燃費を向上させるようにしている。
【0023】
図2に示すように、ロックアップ制御が実行される運転領域(ロックアップ領域)と、フレックスロックアップ制御が実行される運転領域(フレックスロックアップ領域)は、例えば、車速とスロットル開度とに応じてマップにより設定されている。このマップは、運転モードや変速段毎に設定されているため、運転モードや変速段が変化すると、ロックアップ領域やフレックスロックアップ領域が変化する。
【0024】
一般に、自動変速機22の暖機終了前(自動変速機22の作動油の温度が低いとき)にロックアップ制御を行うと、ドライバビリティに悪影響を及ぼす可能性があるため、AT−ECUは、自動変速機22の作動油の温度(以下「AT油温」という)が所定値よりも低い期間には、ロックアップ制御を禁止するようにしている。
【0025】
また、ECU27(又はAT−ECU)は、後述する図3に示す暖機制御プログラムを実行することで、エンジン11と自動変速機22を暖機する際に、エンジン冷却水温ThwとAT油温Thoとに基づいて、ATFウォーマ23を流れる冷却水の流量Qatf (ウォーマ流量Qatf )を制御する。これにより、エンジン11で温められた冷却水からATFウォーマ23を介して自動変速機22の作動油に伝達される熱量を制御して、エンジン冷却水温ThwとAT油温Thoをそれぞれ適正な挙動で昇温させて、エンジン11と自動変速機22をバランス良く暖機する。
【0026】
図3に示す暖機制御プログラムは、例えばイグニッションスイッチ(図示せず)のオン後に所定周期で実行される。本プログラムが起動されると、まず、ステップ101で、図4に示すマップを用いて、水温センサ19で検出したエンジン冷却水温Thwと油温センサ25で検出したAT油温Thoとに応じて、ウォーマ流量Qatf (ATFウォーマ23を流れる冷却水の流量)を算出する。
【0027】
図4のマップは、例えば、AT油温Thoが高く且つエンジン冷却水温Thwが低い領域からAT油温Thoが低く且つエンジン冷却水温Thwが高い領域に向かうに従って、ウォーマ流量Qatf がQ1 →Q2 →Q3 →Q4 の順に多くなって、エンジン11で温められた冷却水から自動変速機22の作動油に伝達される熱量が多くなるように設定されている。
この後、ステップ102に進み、上記ステップ101で設定したウォーマ流量Qatf となるようにウォーマ流量調整バルブ26の開度を制御する。
【0028】
以上説明した本実施形態(1)の暖機制御の実行例と比較例を図5及び図6のタイムチャートを用いて説明する。図5はエンジン冷却水温ThwとAT油温Thoが約40℃の状態でエンジン始動した後のエンジン冷却水温ThwとAT油温Thoの挙動を示すタイムチャートであり、図6はエンジン冷却水温ThwとAT油温Thoが約0℃の状態でエンジン始動した後のエンジン冷却水温ThwとAT油温Thoの挙動を示すタイムチャートである。
【0029】
図5及び図6に示す比較例では、エンジン冷却水温ThwとAT油温Thoに関係なく、一定の条件でウォーマ流量調整バルブ26の開度を制御してウォーマ流量Qatf を制御するため、エンジン始動直後のウォーマ流量調整バルブ26の開度が大き過ぎて冷却水から作動油に伝達される熱量が多くなり過ぎ、エンジン冷却水温Thwの上昇が遅れる。このため、エンジン11の暖機が遅れて、燃費向上効果及びエミッション低減効果を十分に得ることができない。
【0030】
これに対して、本実施形態(1)では、エンジン冷却水温ThwとAT油温Thoとに応じてマップ等で設定したウォーマ流量Qatf になるようにウォーマ流量調整バルブ26の開度を制御するので、エンジン冷却水温ThwとAT油温Thoを監視しながら、ウォーマ流量Qatf を制御して冷却水から作動油に伝達される熱量を制御することができ、エンジン冷却水温ThwとAT油温Thoをそれぞれ適正な挙動で昇温させることができる。これにより、エンジン11と自動変速機22をバランス良く暖機することができて、エンジン11と自動変速機22の暖機をできるだけ早期に終わらせることができ、両者の暖機終了までに要する燃費を効果的に節減することができる。
【0031】
《実施形態(2)》
次に、図7を用いて本発明の実施形態(2)を説明する。前述したように、運転モードや変速段に応じて自動変速機22のロックアップ領域が変化する。このため、同じ条件で自動変速機22の暖機(AT油温の昇温)を促進してロックアップ制御を早期に許可しても、ロックアップ領域が変わればロックアップ制御の実行頻度も変わるため、自動変速機22の早期暖機による燃費向上効果もロックアップ領域によって変化する。
【0032】
そこで、本実施形態(2)では、図7に示す暖機制御プログラムを実行することで、ロックアップ領域が広いとき、つまり、自動変速機22の早期暖機による燃費向上効果が大きいときには、ウォーマ流量Qatf を多くして自動変速機22の暖機(AT油温の昇温)を優先し、一方、ロックアップ領域が狭いとき、つまり、自動変速機22の早期暖機による燃費向上効果が小さいときには、ウォーマ流量Qatf を少なくしてエンジン11の暖機(冷却水温の昇温)を優先するようにしている。
【0033】
図7に示す暖機制御プログラムは、例えばイグニッションスイッチ(図示せず)のオン後に所定周期で実行され、特許請求の範囲でいう暖機制御手段としての役割を果たす。本プログラムが起動されると、まず、ステップ201で、AT油温Thoが所定の判定値T1以下であるか否かを判定する。この判定値T1は、例えばロックアップ制御の禁止判定に用いるAT油温に設定され、AT油温Thoが判定値T1以下のときには、ロックアップ制御が禁止される。
【0034】
AT油温Thoが判定値T1以下であると判定された場合には、ステップ202に進み、現在、設定されているロックアップ領域が広いか否かを判定する。その結果、ロックアップ領域が狭いと判定された場合には、ステップ203に進み、ウォーマ流量Qatf をロックアップ領域が狭いときの流量QMに設定する。このロックアップ領域が狭いときの流量QMは、後述するロックアップ領域が広いときの流量QLよりも少ない流量に設定されている(QM<QL)。
【0035】
AT油温Thoが判定値T1以下でロックアップ領域が狭いときには、自動変速機22の暖機(AT油温の昇温)を促進してロックアップ制御を早期に許可しても、ロックアップ制御の実行頻度が少ないため、自動変速機22の早期暖機による燃費向上効果が少ない。このようなときには、AT油温Thoが低くても、ウォーマ流量Qatf を少なくしてエンジン11の暖機(冷却水温の昇温)を優先して、エンジン11の早期暖機による燃費向上効果を大きくする。
【0036】
一方、上記ステップ202で、ロックアップ領域が広いと判定された場合には、ステップ204に進み、ウォーマ流量Qatf をロックアップ領域が広いときの流量QLに設定する。このロックアップ領域が広いときの流量QLは、前述したロックアップ領域が狭いときの流量QMよりも多い流量に設定されている(QL>QM)。
【0037】
AT油温Thoが判定値T1以下でロックアップ領域が広いときには、自動変速機22の暖機(AT油温の昇温)を促進してロックアップ制御を早期に許可すれば、ロックアップ制御の実行頻度が多いため、自動変速機22の早期暖機による燃費向上効果が大きい。このようなときには、ウォーマ流量Qatf を多くして自動変速機22の暖機(AT油温の昇温)を優先して、自動変速機22の早期暖機による燃費向上効果を大きくする。
【0038】
その後、上記ステップ201で、AT油温Thoが判定値T1よりも高いと判定されたときに、ステップ205に進み、ウォーマ流量Qatf を最小流量QSに設定する(QS<QM<QL)。
【0039】
ステップ203又は204又は205でウォーマ流量Qatf を設定した後は、ステップ206に進み、設定したウォーマ流量Qatf となるようにウォーマ流量調整バルブ26の開度を制御する。
【0040】
以上説明した本実施形態(2)では、ロックアップ領域が広いとき、つまり、自動変速機22の早期暖機による燃費向上効果が大きいときには、ウォーマ流量Qatf を多くして自動変速機22の暖機(AT油温の昇温)を優先し、一方、ロックアップ領域が狭いとき、つまり、自動変速機22の早期暖機による燃費向上効果が小さいときには、ウォーマ流量Qatf を少なくしてエンジン11の暖機(冷却水温の昇温)を優先するようにしたので、ロックアップ領域に左右されない安定した燃費向上効果を得ることができる。
【0041】
尚、本実施形態(2)では、ロックアップ領域に応じてウォーマ流量Qatf を2段階で切り換えるようにしたが、3段階以上又は無段階(連続的)に切り換えるようにしても良い。
【0042】
また、エンジン冷却水温ThwとAT油温Thoのうちの少なくとも一方とロックアップ領域とに応じてウォーマ流量Qatf を設定するようにしても良い。このようにすれば、エンジン冷却水温ThwやAT油温Thoを監視しながら、ロックアップ領域に応じてウォーマ流量Qatf を制御することができ、より燃費向上効果の高い暖機制御を実現できる。
【0043】
その他、本発明は、冷却水循環回路16、温水回路20等のシステム構成を適宜変更して実施しても良く、要は、エンジン11の冷却水と自動変速機22の作動油との間の熱交換を行うATFウォーマ23(熱交換器)を備えたシステムであれば、本発明を適用して実施することができる。
【図面の簡単な説明】
【図1】本発明の実施形態(1)におけるシステム全体の概略構成図
【図2】ロックアップ領域のマップを概念的に示す図
【図3】実施形態(1)の暖機制御プログラムの処理の流れを示すフローチャート
【図4】ウォーマ流量のマップを概念的に示す図
【図5】実施形態(1)の暖機制御の実行例と比較例におけるエンジン冷却水温とAT油温の挙動を示すタイムチャート(その1)
【図6】実施形態(1)の暖機制御の実行例と比較例におけるエンジン冷却水温とAT油温の挙動を示すタイムチャート(その2)
【図7】実施形態(2)の暖機制御プログラムの処理の流れを示すフローチャート
【符号の説明】
11…エンジン(内燃機関)、12…機械式ウォータポンプ、16…冷却水循環回路、19…水温センサ、20…温水回路、22…自動変速機、23…ATFウォーマ(熱交換器)、24…作動油循環回路、25…油温センサ、26…ウォーマ流量調整バルブ、27…ECU(暖機制御手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a warm-up control device including a heat exchanger that performs heat exchange between cooling water of an internal combustion engine and hydraulic fluid of an automatic transmission.
[0002]
[Prior art]
In recent years, in vehicles equipped with an automatic transmission (AT), for the purpose of improving fuel efficiency, the transmission efficiency of the automatic transmission is controlled by performing lock-up control that directly connects the input side and the output side of the torque converter of the automatic transmission. There is something to improve. Generally, if lockup control is performed before the end of warm-up of the automatic transmission (when the temperature of the hydraulic oil in the automatic transmission is low), drivability may be adversely affected. Lock-up control is prohibited during a period when the temperature (hereinafter referred to as “AT oil temperature”) is low.
[0003]
For this reason, if the automatic transmission warms up (AT oil temperature rise) is slow after the internal combustion engine is started, the time from the start of the internal combustion engine until the lockup control is permitted becomes longer, and the fuel consumption by the lockup control becomes longer. The improvement effect cannot be obtained early. Moreover, since the friction loss of the automatic transmission increases before the end of warming up of the automatic transmission (when the AT oil temperature is low), the fuel consumption deterioration period due to the increased friction loss also becomes longer.
[0004]
As a countermeasure, for example, as described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-161747), a heat exchanger that performs heat exchange between cooling water of the internal combustion engine and hydraulic fluid of the automatic transmission ( A so-called ATF warmer) is provided, and after the warm-up operation of the internal combustion engine is finished, the coolant warmed by the internal combustion engine is circulated to the ATF warmer and the hydraulic fluid of the automatic transmission is heated by the heat of the coolant to Some are designed to warm up.
[0005]
[Patent Document 1]
JP 2002-161747 (first page to second page, etc.)
[0006]
[Problems to be solved by the invention]
By the way, in order to maximize the fuel efficiency improvement effect of the early warm-up of the internal combustion engine and the early warm-up of the automatic transmission, warm up the internal combustion engine (cooling water) and the automatic transmission (hydraulic oil) in a well-balanced manner. Therefore, it is necessary to finish the warm-up of both parties as soon as possible.
[0007]
However, in the warming-up system of Patent Document 1, the cooling water of the internal combustion engine is not circulated to the ATF warmer until the warming-up operation of the internal combustion engine is completed. The automatic transmission will be warmed up (AT oil temperature rise) will be delayed. For this reason, it takes a long time from the start of the internal combustion engine until the lockup control is permitted, and it is difficult to obtain the fuel efficiency improvement effect by the lockup control at an early stage. In addition, an increase in fuel consumption due to friction loss before the completion of warm-up of the automatic transmission cannot be improved at an early stage.
[0008]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to warm up the internal combustion engine and the automatic transmission in a well-balanced manner after the start and finish the warm-up of both as soon as possible. An object of the present invention is to provide a warm-up control device that can effectively reduce the fuel consumption required until both warm-ups are completed.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a warm-up control device according to claim 1 of the present invention is a system including a heat exchanger that performs heat exchange between cooling water of an internal combustion engine and hydraulic fluid of an automatic transmission. The operation region (hereinafter referred to as “lock-up region”) in which lock-up control is performed to directly connect the input side and output side of the torque converter of the automatic transmission can be changed according to the operation mode and the gear position. And, by controlling the flow rate of the cooling water circulating to the heat exchanger according to the lockup region, the temperature of the cooling water of the internal combustion engine (hereinafter referred to as “engine cooling water temperature”) and the hydraulic oil of the automatic transmission Characterized in that it is provided with warm-up control means for controlling the temperature (hereinafter referred to as “AT oil temperature”).
[0011]
In general, in a system for performing lock-up control of the automatic transmission, so that to change the lock-up area is an operating region where the lock-up control in accordance with the operating mode and gear position are executed. For this reason, even if the automatic transmission warm-up (a rise in AT oil temperature) is promoted under the same conditions and the lock-up control is permitted early, if the lock-up region changes, the execution frequency of the lock-up control also changes. The fuel efficiency improvement effect due to the early warm-up of the automatic transmission also varies depending on the lockup region.
[0012]
Therefore, in the invention according to claim 1, the engine coolant temperature and the AT oil temperature are controlled by controlling the flow rate of the coolant circulating to the heat exchanger according to the lock-up region that changes according to the operation mode and the shift speed. I am doing so . In this way, when the lockup region is a region where the fuel efficiency improvement effect due to the early warm-up of the automatic transmission is relatively large, the flow rate of the cooling water circulating to the heat exchanger is increased, and the fuel efficiency improvement effect is achieved. When the larger warm-up (automatic transmission warm-up) is preferentially promoted, or when the lock-up region is a region where the fuel efficiency improvement effect due to the early warm-up of the automatic transmission is small, the heat exchanger It is possible to perform warm-up control according to the lock-up region by preferentially promoting warm-up (warm-up of the internal combustion engine) having a greater fuel efficiency improvement effect by reducing the flow rate of circulating cooling water. Thereby, the stable fuel-consumption improvement effect which is not influenced by the lockup area | region can be acquired.
[0013]
Further, as in claim 2 , the flow rate of the cooling water circulating to the heat exchanger may be controlled based on at least one of the engine cooling water temperature and the AT oil temperature and the lockup region. In this way, while monitoring the engine coolant temperature and the AT oil temperature, it is possible to control the flow rate of the coolant circulating to the heat exchanger according to the lock-up region, and the warm-up control with a greater fuel efficiency improvement effect Can be realized.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
<< Embodiment (1) >>
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. First, a schematic configuration of the entire system will be described with reference to FIG. A mechanical water pump 12 driven by the power of the engine 11 is provided at an inlet of a cooling water passage (water jacket) of the engine 11 which is an internal combustion engine. The outlet of the cooling water passage of the engine 11 and the inlet of the radiator 13 are connected by a cooling water circulation pipe 14, and the outlet of the radiator 13 and the suction port of the mechanical water pump 12 are connected by a cooling water circulation pipe 15. As a result, a cooling water circulation circuit 16 is constructed in which the cooling water circulates in the path of the cooling water passage of the engine 11 → the cooling water circulation pipe 14 → the radiator 13 → the cooling water circulation pipe 15 → the mechanical water pump 12 → the cooling water passage of the engine 11. ing.
[0018]
The cooling water circulation circuit 16 is provided with a bypass flow path 17 in parallel with the radiator 13, and both ends of the bypass flow path 17 are connected to the cooling water circulation pipes 14 and 15. A flow rate adjusting valve 18 is provided at the junction of the bypass flow path 17 and the cooling water circulation pipe 15. The flow rate adjusting valve 18 is configured by an electromagnetic valve that can adjust a flow rate ratio between the flow rate of the cooling water flowing through the bypass passage 17 (bypass flow rate) and the flow rate of the cooling water flowing through the radiator 13 (radiator flow rate). Yes. A coolant temperature sensor 19 that detects the temperature of the coolant is provided in the coolant circulation pipe 14 on the coolant outlet side of the engine 11.
[0019]
In addition, a heating hot water circuit 20 is connected to the cooling water circulation circuit 16 in parallel to the engine 11. A heater 21 for heating is provided in the middle of the hot water circuit 20, and an ATF warmer 23 (heat exchanger) for warming the hydraulic oil of the automatic transmission 22 is provided downstream (or upstream) of the heater 21. Is provided. The ATF warmer 23 is connected to a hydraulic oil circulation circuit 24 through which the hydraulic oil of the automatic transmission 22 circulates. Cooling water of the engine 11 flowing through the hot water circuit 20 (cooling water heated by the engine 11) and hydraulic oil circulation. Heat is exchanged with the hydraulic fluid of the automatic transmission 22 that flows through the circuit 24. The hydraulic oil circulation circuit 24 is provided with an oil temperature sensor 25 that detects the temperature of the hydraulic oil.
[0020]
A warmer flow rate adjustment valve 26 is provided upstream of the hot water circuit 20. The warmer flow rate adjustment valve 26 is configured by an electromagnetic valve that can adjust the flow rate of the cooling water circulating to the ATF warmer 23 by adjusting the flow rate of the cooling water circulating to the hot water circuit 20.
[0021]
Outputs of various sensors such as the water temperature sensor 19 and the oil temperature sensor 25 described above are input to a control circuit (hereinafter referred to as “ECU”) 27. The ECU 27 is mainly composed of a microcomputer, and by executing a water temperature control program (not shown) stored in its ROM (storage medium), the ECU 27 controls the flow rate adjusting valve 18 to control the bypass flow rate and the radiator flow rate. Adjust to control the temperature of the cooling water.
[0022]
The AT-ECU (not shown) that controls the automatic transmission 22 is connected to an input side and an output side of a torque converter (not shown) of the automatic transmission 22 when the driving state is in a predetermined driving range. By performing lock-up control that makes the direct connection state and flex lock-up control that makes the semi-direct connection state (sliding state slightly), the transmission efficiency of the automatic transmission 22 is improved and the fuel efficiency is improved.
[0023]
As shown in FIG. 2, an operation region (lock-up region) in which lockup control is executed and an operation region (flex lock-up region) in which flex lockup control is executed include, for example, vehicle speed and throttle opening. The map is set accordingly. Since this map is set for each operation mode and shift speed, the lockup area and flex lockup area change when the operation mode and shift speed change.
[0024]
In general, if lock-up control is performed before the end of warm-up of the automatic transmission 22 (when the temperature of hydraulic oil in the automatic transmission 22 is low), drivability may be adversely affected. The lock-up control is prohibited during a period when the temperature of the hydraulic oil of the automatic transmission 22 (hereinafter referred to as “AT oil temperature”) is lower than a predetermined value.
[0025]
Further, the ECU 27 (or AT-ECU) executes a warm-up control program shown in FIG. 3 to be described later, so that when the engine 11 and the automatic transmission 22 are warmed up, the engine coolant temperature Thw and the AT oil temperature Tho Based on the above, the flow rate Qatf (warmer flow rate Qatf) of the cooling water flowing through the ATF warmer 23 is controlled. As a result, the amount of heat transferred from the cooling water warmed by the engine 11 to the hydraulic oil of the automatic transmission 22 via the ATF warmer 23 is controlled, and the engine cooling water temperature Thw and the AT oil temperature Thho are each appropriately operated. The temperature is raised and the engine 11 and the automatic transmission 22 are warmed up in a balanced manner.
[0026]
Warm-up control program shown in FIG. 3, Ru is executed in a predetermined cycle, for example, after the ignition switch is turned on (not shown). When this program is started, first, in step 101, using the map shown in FIG. 4, according to the engine coolant temperature Thw detected by the water temperature sensor 19 and the AT oil temperature Th detected by the oil temperature sensor 25, A warmer flow rate Qatf (a flow rate of cooling water flowing through the ATF warmer 23) is calculated.
[0027]
The map of FIG. 4 shows, for example, that the warmer flow rate Qatf is Q1 → Q2 → Q3 from the region where the AT oil temperature Th is high and the engine coolant temperature Thw is low toward the region where the AT oil temperature Th is low and the engine coolant temperature Thw is high. It is set so that the amount of heat transferred from the coolant warmed by the engine 11 to the hydraulic oil of the automatic transmission 22 increases in order of Q4.
Thereafter, the process proceeds to step 102, and the opening degree of the warmer flow rate adjusting valve 26 is controlled so as to be the warmer flow rate Qatf set in step 101.
[0028]
The execution example and comparative example of the warm-up control of the present embodiment (1) described above will be described with reference to the time charts of FIGS. FIG. 5 is a time chart showing the behavior of the engine cooling water temperature Thw and the AT oil temperature Tho after the engine is started with the engine cooling water temperature Thw and the AT oil temperature Th being about 40 ° C. FIG. It is a time chart which shows the behavior of engine cooling water temperature Thw and AT oil temperature Tho after starting an engine in the state where AT oil temperature Th is about 0 ° C.
[0029]
In the comparative example shown in FIGS. 5 and 6, the opening of the engine is controlled in order to control the warmer flow rate Qatf by controlling the opening degree of the warmer flow rate adjustment valve 26 under a constant condition regardless of the engine coolant temperature Thw and the AT oil temperature Tho. Immediately after the opening of the warmer flow rate adjustment valve 26 is too large, the amount of heat transferred from the coolant to the hydraulic oil becomes excessive, and the increase in the engine coolant temperature Thw is delayed. For this reason, the warm-up of the engine 11 is delayed, and the fuel efficiency improvement effect and the emission reduction effect cannot be sufficiently obtained.
[0030]
On the other hand, in the present embodiment (1), the opening degree of the warmer flow rate adjustment valve 26 is controlled so as to become the warmer flow rate Qatf set by a map or the like according to the engine coolant temperature Thw and the AT oil temperature Tho. While monitoring the engine coolant temperature Thw and the AT oil temperature Th, the amount of heat transferred from the coolant to the hydraulic oil can be controlled by controlling the warmer flow rate Qatf, and the engine coolant temperature Thw and the AT oil temperature Th can be controlled respectively. The temperature can be raised with an appropriate behavior. As a result, the engine 11 and the automatic transmission 22 can be warmed up in a well-balanced manner, and the warming up of the engine 11 and the automatic transmission 22 can be completed as early as possible. Can be effectively saved.
[0031]
<< Embodiment (2) >>
Next, Embodiment (2) of this invention is demonstrated using FIG. As described above, the lockup region of the automatic transmission 22 changes according to the operation mode and the gear position. For this reason, even if the warm-up of the automatic transmission 22 (the temperature increase of the AT oil temperature) is promoted under the same conditions and the lock-up control is permitted early, if the lock-up region changes, the execution frequency of the lock-up control also changes. Therefore, the fuel efficiency improvement effect due to the early warm-up of the automatic transmission 22 also varies depending on the lockup region.
[0032]
Therefore, in the present embodiment (2), when the warm-up control program shown in FIG. 7 is executed, when the lockup region is wide, that is, when the fuel efficiency improvement effect by the early warm-up of the automatic transmission 22 is large, the warmer The flow rate Qatf is increased to give priority to warm-up of the automatic transmission 22 (temperature increase of the AT oil temperature). On the other hand, when the lock-up region is narrow, that is, the fuel efficiency improvement effect due to early warm-up of the automatic transmission 22 is small. In some cases, the warmer flow rate Qatf is decreased to give priority to warming up of the engine 11 (temperature increase of the cooling water temperature).
[0033]
The warm-up control program shown in FIG. 7 is executed at a predetermined cycle after an ignition switch (not shown) is turned on, for example, and serves as warm-up control means in the claims. When this program is started, first, in step 201, it is determined whether or not the AT oil temperature Tho is equal to or lower than a predetermined determination value T1. This determination value T1 is set to, for example, the AT oil temperature used for the lockup control prohibition determination. When the AT oil temperature Th is equal to or lower than the determination value T1, the lockup control is prohibited.
[0034]
When it is determined that the AT oil temperature Tho is equal to or lower than the determination value T1, the process proceeds to step 202, and it is determined whether or not the currently set lockup region is wide. As a result, if it is determined that the lockup region is narrow, the process proceeds to step 203, where the warmer flow rate Qatf is set to the flow rate QM when the lockup region is narrow. The flow rate QM when the lockup region is narrow is set to a flow rate smaller than the flow rate QL when the lockup region described later is wide (QM <QL).
[0035]
When the AT oil temperature Tho is equal to or less than the determination value T1 and the lockup region is narrow, even if the automatic transmission 22 is warmed up (temperature rise of the AT oil temperature) and the lockup control is permitted early, the lockup control is performed. Since the execution frequency of the automatic transmission 22 is low, the fuel efficiency improvement effect due to the early warm-up of the automatic transmission 22 is small. In such a case, even if the AT oil temperature Tho is low, the warmer flow rate Qatf is reduced to give priority to warming up the engine 11 (temperature increase of the cooling water temperature), and the fuel efficiency improvement effect by early warming up of the engine 11 is greatly increased. To do.
[0036]
On the other hand, if it is determined in step 202 that the lockup region is wide, the process proceeds to step 204 where the warmer flow rate Qatf is set to the flow rate QL when the lockup region is wide. The flow rate QL when the lockup region is wide is set to be higher than the flow rate QM when the lockup region is narrow (QL> QM).
[0037]
When the AT oil temperature Tho is equal to or less than the determination value T1 and the lockup range is wide, if the automatic transmission 22 is warmed up (temperature rise of the AT oil temperature) and lockup control is permitted at an early stage, the lockup control Since the execution frequency is high, the fuel efficiency improvement effect due to the early warm-up of the automatic transmission 22 is great. In such a case, the warmer flow rate Qatf is increased to give priority to warming up of the automatic transmission 22 (temperature increase of the AT oil temperature), and the fuel efficiency improvement effect due to the early warming up of the automatic transmission 22 is increased.
[0038]
Thereafter, when it is determined in step 201 that the AT oil temperature Tho is higher than the determination value T1, the process proceeds to step 205, where the warmer flow rate Qatf is set to the minimum flow rate QS (QS <QM <QL).
[0039]
After the warmer flow rate Qatf is set in step 203, 204 or 205, the process proceeds to step 206, and the opening degree of the warmer flow rate adjustment valve 26 is controlled so as to become the set warmer flow rate Qatf.
[0040]
In the present embodiment (2) described above, when the lock-up region is wide, that is, when the effect of improving the fuel consumption by the early warm-up of the automatic transmission 22 is large, the warmer flow rate Qatf is increased to warm up the automatic transmission 22. On the other hand, when the lock-up region is narrow, that is, when the effect of improving the fuel efficiency due to the early warm-up of the automatic transmission 22 is small, the warmer flow rate Qatf is decreased to warm the engine 11. Since priority is given to the machine (temperature increase of the cooling water temperature), it is possible to obtain a stable fuel efficiency improvement effect that is not affected by the lockup region.
[0041]
In the present embodiment (2), the warmer flow rate Qatf is switched in two steps according to the lock-up region, but it may be switched in three steps or more or continuously (continuously).
[0042]
Further, the warmer flow rate Qatf may be set according to at least one of the engine coolant temperature Thw and the AT oil temperature Thho and the lockup region. In this way, it is possible to control the warmer flow rate Qatf in accordance with the lockup region while monitoring the engine coolant temperature Thw and the AT oil temperature Tho, thereby realizing warm-up control with a higher fuel efficiency improvement effect.
[0043]
In addition, the present invention may be implemented by appropriately changing the system configuration of the cooling water circulation circuit 16, the hot water circuit 20, etc. In short, the heat between the cooling water of the engine 11 and the hydraulic oil of the automatic transmission 22 is important. The present invention can be applied to any system provided with an ATF warmer 23 (heat exchanger) that performs replacement.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an entire system in an embodiment (1) of the present invention. FIG. 2 is a diagram conceptually showing a map of a lock-up area. FIG. 4 conceptually shows a map of warmer flow rate. FIG. 5 shows behaviors of engine coolant temperature and AT oil temperature in an execution example and a comparative example of warm-up control in the embodiment (1). Time chart (part 1)
FIG. 6 is a time chart (part 2) showing behaviors of engine coolant temperature and AT oil temperature in the execution example and comparative example of the warm-up control of the embodiment (1).
FIG. 7 is a flowchart showing the flow of processing of the warm-up control program according to the embodiment (2).
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Mechanical water pump, 16 ... Cooling water circulation circuit, 19 ... Water temperature sensor, 20 ... Hot water circuit, 22 ... Automatic transmission, 23 ... ATF warmer (heat exchanger), 24 ... Operation Oil circulation circuit, 25 ... oil temperature sensor, 26 ... warmer flow rate adjustment valve, 27 ... ECU (warm-up control means).

Claims (2)

内燃機関の冷却水と自動変速機の作動油との間の熱交換を行う熱交換器を備えた暖機制御装置において、
自動変速機のトルクコンバータの入力側と出力側とを直結状態にするロックアップ制御が実施される運転領域(以下「ロックアップ領域」という)は運転モードや変速段に応じて変化させられるものであって、該ロックアップ領域に応じて前記熱交換器に循環する冷却水の流量を制御することで、内燃機関の冷却水の温度(以下「機関冷却水温」という)と自動変速機の作動油の温度(以下「AT油温」という)を制御する暖機制御手段を備えていることを特徴とする暖機制御装置。
In a warm-up control device including a heat exchanger that performs heat exchange between cooling water of an internal combustion engine and hydraulic oil of an automatic transmission,
The operation region (hereinafter referred to as “lock-up region”) in which lock-up control is performed to directly connect the input side and output side of the torque converter of the automatic transmission is changed according to the operation mode and the gear position. And controlling the flow rate of the cooling water circulating to the heat exchanger in accordance with the lock-up region, whereby the temperature of the cooling water for the internal combustion engine (hereinafter referred to as “engine cooling water temperature”) and the hydraulic oil for the automatic transmission A warm-up control device comprising warm-up control means for controlling the temperature (hereinafter referred to as “AT oil temperature”).
前記暖機制御手段は、前記機関冷却水温と前記AT油温のうちの少なくとも一方と前記ロックアップ領域とに基づいて前記熱交換器に循環する冷却水の流量を制御することを特徴とする請求項に記載の暖機制御装置。The warm-up control means controls a flow rate of cooling water circulating to the heat exchanger based on at least one of the engine cooling water temperature, the AT oil temperature, and the lockup region. Item 2. The warm-up control device according to Item 1 .
JP2003168551A 2003-06-13 2003-06-13 Warm-up control device Expired - Lifetime JP4254363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003168551A JP4254363B2 (en) 2003-06-13 2003-06-13 Warm-up control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003168551A JP4254363B2 (en) 2003-06-13 2003-06-13 Warm-up control device

Publications (2)

Publication Number Publication Date
JP2005003134A JP2005003134A (en) 2005-01-06
JP4254363B2 true JP4254363B2 (en) 2009-04-15

Family

ID=34093960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003168551A Expired - Lifetime JP4254363B2 (en) 2003-06-13 2003-06-13 Warm-up control device

Country Status (1)

Country Link
JP (1) JP4254363B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234016B2 (en) 2015-08-06 2019-03-19 Toyota Jidosha Kabushiki Kaisha Heat exchanging device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100557274C (en) * 2007-04-27 2009-11-04 比亚迪股份有限公司 A kind of oil liquid cooling system of speed transmission
US8919520B2 (en) 2008-11-05 2014-12-30 Ford Global Technologies, Llc Transmission with durability enhancement techniques
JP5146372B2 (en) * 2009-03-11 2013-02-20 トヨタ自動車株式会社 Warm-up judgment device
KR101047752B1 (en) 2009-11-05 2011-07-07 현대자동차주식회사 Valves for Heat Exchange of Fluids
US8409055B2 (en) 2009-11-11 2013-04-02 Ford Global Technologies, Llc Powertrain thermal management system
US8783433B2 (en) 2010-10-02 2014-07-22 Ford Global Technologies, Llc Dry-clutch transmission with cooling techniques
US8965628B2 (en) 2010-11-16 2015-02-24 Ford Global Technologies, Llc Powertrain thermal management system for a dry-clutch transmission
KR102212444B1 (en) * 2018-11-13 2021-02-04 주식회사 현대케피코 Operating method of thermal management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10234016B2 (en) 2015-08-06 2019-03-19 Toyota Jidosha Kabushiki Kaisha Heat exchanging device

Also Published As

Publication number Publication date
JP2005003134A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4196802B2 (en) Cooling water circuit
US8205443B2 (en) Heat exchanging systems for motor vehicles
JP6473105B2 (en) Cooling device for internal combustion engine for vehicle and control method for cooling device
US9324199B2 (en) Method and system for controlling an engine cooling system
JP6264443B2 (en) COOLING SYSTEM CONTROL DEVICE AND COOLING SYSTEM CONTROL METHOD
US20130255599A1 (en) Engine cooling system control
US10107176B2 (en) Cooling device of internal combustion engine for vehicle and control method thereof
WO2011046058A1 (en) Thermostat and cooling device for vehicle
JP2006283872A (en) Temperature adjustment device in automatic transmission
JP4254363B2 (en) Warm-up control device
JP2004360509A (en) Cooling system for internal combustion engine
JP4292888B2 (en) Engine cooling system
JP2006161806A (en) Cooling device for liquid cooling type internal combustion engine
KR20080027683A (en) Engine coolant control system for exhaust gas recirculation in automobile
JP2003172141A (en) Engine cooling device
JP2006105093A (en) Engine cooling system
JP2021148048A (en) On-vehicle cooling system
JP4994546B2 (en) Cooling device for liquid-cooled internal combustion engine
JP2019027313A (en) Control device for internal combustion engine
JP2020090948A (en) Control device for vehicular system
JP2006161745A (en) Control device for vehicle
JP2006105104A (en) Engine cooling system
JP2006112344A (en) Engine cooling system
JP2013124546A (en) Cooling device of vehicle
JP2001248439A (en) Cooling system of liquid-cooled internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term