JP4252757B2 - Method for producing activated carbon for electrode of electric double layer capacitor - Google Patents
Method for producing activated carbon for electrode of electric double layer capacitor Download PDFInfo
- Publication number
- JP4252757B2 JP4252757B2 JP2002080476A JP2002080476A JP4252757B2 JP 4252757 B2 JP4252757 B2 JP 4252757B2 JP 2002080476 A JP2002080476 A JP 2002080476A JP 2002080476 A JP2002080476 A JP 2002080476A JP 4252757 B2 JP4252757 B2 JP 4252757B2
- Authority
- JP
- Japan
- Prior art keywords
- mesophase pitch
- activated carbon
- electrode
- electric double
- layer capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は電気二重層キャパシタの電極用活性炭の製造方法、特に、炭素化処理およびアルカリ賦活処理を行って電極用活性炭を製造する方法に関する。
【0002】
【従来の技術】
従来、静電容量密度の増加を狙い、活性炭用原料として、合成メソフェーズピッチや蒸留ピッチ(蒸留により得られた石油ピッチ、コールタールピッチ等を意味する)より得られたメソフェーズピッチが用いられている。
【0003】
【発明が解決しようとする課題】
本発明者等は合成メソフェーズピッチ等について種々検討を加えた結果、そのメソフェーズピッチ等におけるH(水素)量が活性炭の静電容量密度に影響を与える、ということを究明した。
【0004】
【課題を解決するための手段】
本発明は、特に蒸留ピッチより得られたメソフェーズピッチにおけるH量を特定することによって、静電容量密度の高い電極用活性炭を得ることができる前記製造方法を提供することを目的とする。
【0005】
前記目的を達成するため本発明によれば、金属触媒を用い、温度Tを100℃≦T≦350℃、かつ圧力Pを0.3MPa≦P≦8.0MPaの条件で、蒸留ピッチより得られたメソフェーズピッチに対して水素添加処理を行うことにより、平均分子量Mが500≦M≦1000であり且つ軟化点SPが140℃≦SP≦300℃であり、且つH原子数とC原子数の比H/CをH/C≧0.35に調節されたメソフェーズピッチを得て、前記メソフェーズピッチに炭素化処理を行うことで炭素化物を得て、前記炭素化物にアルカリ賦活処理を行う、電気二重層キャパシタの電極用活性炭の製造方法が提供される。
【0006】
前記のような蒸留ピッチより得られたメソフェーズピッチを用いることにより、均一なミクロポアを持ち、且つ窒素ガス吸着法によって測定される比表面積が1000m2 /g以下であって、高い静電容量密度を有する電極用活性炭を得ることができる。
【0007】
これは次のような理由によるものと考えられる。即ち、比H/Cを前記のように設定すると、炭素化処理時に蒸留ピッチより得られたメソフェーズピッチにおける脱ガス量が多くなるため炭素化物に多くの、ミクロポアよりも小なる微小孔が形成され、これらの微小孔がアルカリ賦活処理に際し、ミクロポア形成の起点となるからであり、また炭素化処理時に多環芳香族化合物の重縮合による黒鉛の発達を抑制し得るからである。
【0008】
ただし、比H/CがH/C<0.35では水素量が不十分となるため、高静電容量密度の電極用活性炭を得ることができない。比H/Cは、好ましくはH/C≧0.60である。一方、比H/Cの上限値はH/C=0.80であることが望ましい。H/C>0.80では、蒸留ピッチより得られたメソフェーズピッチにおける芳香族環が著しく減少するため、その揮発性が高くなって歩留りが悪くなるからである。
【0009】
【発明の実施の形態】
図1において、ボタン型電気二重層キャパシタ1は、ケース2と、そのケース2内に収容された一対の分極性電極3,4およびそれらの間に挟まれたスペーサ5と、ケース2内に充填された電解液とを有する。ケース2は開口部6を有するAl製器体7およびその開口部6を閉鎖するAl製蓋板8よりなり、その蓋板8の外周部および器体7の内周部間はシール材9によりシールされている。各分極性電極3,4は電極用活性炭、導電フィラおよび結着剤の混合物よりなる。
【0010】
電極用活性炭の原料としては、H原子数とC原子数の比H/CがH/C≧0.35である合成メソフェーズピッチが用いられる。この合成メソフェーズピッチは、ナフタレン、アントラセン、ナフトール等のモノマーとその誘導体、例えば、1−メチルナフタレン、1−エチルナフタレン、2−エチルナフタレン、1,2−ジメチルナフタレン、1,3−ジメチルナフタレン、1,4−ジメチルナフタレン、1,5−ジメチルナフタレン、1,6−ジメチルナフタレン、1,7−ジメチルナフタレン、1,8−ジメチルナフタレン、2,3−ジメチルナフタレン、2,6−ジメチルナフタレン、2,7−ジメチルナフタレン、1,6,7−トリメチルナフタレン、2−メチルアントラセン、9−メチルアントラセン、1−ナフトール、2−ナフトール、1,2−ナフタレンジオール、1,3−ナフタレンジオール等とを縮合させたものであって、側鎖にアルカン、アルケン等の脂肪族基を有する縮合多環式炭化水素である。
【0011】
また電極用活性炭の原料としては、蒸留ピッチより得られたメソフェーズピッチに水素添加処理を施してH原子数とC原子数の比H/CをH/C≧0.35に調節されたメソフェーズピッチも用いられる。この蒸留ピッチより得られたメソフェーズピッチ中には不純物IP として、Al、Fe、V、Mg、Na、Ca等の金属不純物およびその他の不純物が、IP ≧1000ppm 含まれている。それら金属不純物等が多くなると、それらがアルカリ賦活処理時に活性点となり、活性炭の細孔分布に影響を与えるだけでなく、活性炭中に残留して反応することにより、電気二重層キャパシタの静電容量低下、ガス発生、抵抗上昇等の不具合を招くおそれがある。そこで、蒸留ピッチより得られたメソフェーズピッチ中のC、O、H以外の不純物IP はIP ≦100ppm であることが望ましい。
【0012】
水素添加処理は、メソフェーズピッチの芳香環への水素添加による比H/Cの向上を目的としており、その処理に当っては、金属触媒を用いる高圧接触水素添加法が適用される。この場合、温度Tは100℃≦T≦350℃に、圧力Pは0.3MPa≦P≦8.0MPaにそれぞれ設定される。水素添加後のメソフェーズピッチは配向性を持った分子クラスタの集合体であることが好ましい。よって、メソフェーズピッチの平均分子量MはM≧200、好ましくは500≦M≦1000であり、また軟化点SPは140℃≦SP≦300℃であることが望ましい。
【0013】
電極用活性炭の製造に当っては、次のような諸工程が順次実施される。
【0014】
(a)メソフェーズピッチに粉砕処理を施して、平均粒径dが100μm≦d≦1000μmのメソフェーズピッチ粉末を得る。粉砕機としては、ボールミル、ジェットミル、高速ミル、ラボカッタミル等が用いられる。
【0015】
(b)メソフェーズピッチ粉末10gに対して、空気供給量Aを0.1L/min ≦A≦100L/min に、昇温速度Rtを0.1℃/h≦Rt≦30℃/hに、加熱温度Tを200℃≦T≦400℃に、加熱時間tを0.5h≦t≦10hにそれぞれ設定された不融化処理を施す。
【0016】
(c)メソフェーズピッチ粉末に、不活性ガス気流中にて、昇温速度Rtを100℃/h≦Rt≦1000℃/hに、加熱温度Tを500℃≦T≦1000℃に、加熱時間tを0.5h≦t≦10hにそれぞれ設定された炭素化処理を施して炭素化物を得る。この炭素化物において、黒鉛構造を有する複数の結晶子の層間距離d002 はd002 ≧0.345nmであることが望ましい。
【0017】
(d)炭素化物に粉砕処理を施す、または粉砕後粒度調節を行ってメジアン径d1 が5μm≦d1 ≦1000μmの粉末状炭素化物を得る。粉砕機としては前記同様のものが用いられる。
【0018】
(e)粉末状炭素化物の重量をW1 とし、KOHの重量をW2 としたとき比W2 /W1を1≦W2 /W1 ≦3に設定して、その炭素化物に、不活性ガス雰囲気下にて、昇温速度Rtを100℃/h≦Rt≦1000℃/hに、加熱温度Tを600℃≦T≦1000℃に、加熱時間tを0.5h≦t≦10hにそれぞれ設定されたアルカリ賦活処理を施す。加熱温度Tは、好ましくは700℃≦T≦900℃である。また加熱温度Tおよび加熱時間tは必要に応じて複数段階に分けられる。
【0019】
(f)処理粉末に酸洗、水洗、ろ過、乾燥を順次施して活性炭を得る。
【0020】
以下、具体例について説明する。
【0021】
〔I〕電極用活性炭の製造
A.粉末状炭素化物の製造
原料として、比H/Cがそれぞれ0.36、0.40、0.65、0.73である4種類の合成メソフェーズピッチを選定した。また比較のため、原料として、比H/Cが0.33である、蒸留ピッチより得られたメソフェーズピッチとしての石油メソフェーズピッチを選定した。比H/Cの測定は、柳本製CHNコーダMT−5型を用いて行われた。
【0022】
(a)比H/Cが0.36の合成メソフェーズピッチに、ラボカッタミルを用いて粉砕処理を施して平均粒径dが0.5mmの合成メソフェーズピッチ粉末を得た。
【0023】
(b)合成メソフェーズピッチ粉末に、空気供給量Aを10L/min に、昇温速度Rtを1℃/hに、加熱温度Tを200℃に、加熱時間tを3hにそれぞれ設定された不融化処理を施した。
【0024】
(c)合成メソフェーズピッチ粉末に、窒素ガス気流中にて、昇温速度Rtを200℃/hに、加熱温度Tを700℃に、加熱時間tを1hにそれぞれ設定された炭素化処理を施して炭素化物を得た。
【0025】
(d)炭素化物にラボカッタミルを用いて粉砕処理を施して、メジアン径d1 が25μmの粉末状炭素化物を得た。
【0026】
(e)粉末状炭素化物の重量をW1 とし、KOH(純度85%)の重量をW2 としたとき比W2 /W1 =2に設定して、それらを混合した。混合物をNi製ボートに充填し、次いでそのボートを管状炉内に設置し、その後、粉末状炭素化物に、窒素ガス雰囲気下、昇温速度Rtを200℃/hに設定して、加熱温度Tが450℃で、且つ加熱時間tが3hの1次処理および加熱温度Tが800℃で、且つ加熱時間tが3hの2次処理を順次行うアルカリ賦活処理を施した。
【0027】
(f)処理粉末に、塩酸洗浄によるKOHの除去、温水による洗浄、ろ過、乾燥を順次施して、平均粒径20μmの電極用活性炭を得た。この電極用活性炭を例(1)とする。
残りの、比H/Cが0.40、0.65、0.73である合成メソフェーズピッチおよび比H/Cが0.33である石油メソフェーズピッチを用い、前記同様の方法を行って前記同様の電極用活性炭の例(2)〜(5)をそれぞれ製造した。また各電極用活性炭の例(1)〜(5)について窒素ガス吸着法に則って比表面積を測定した。
【0028】
〔II〕ボタン型電気二重層キャパシタの製作
電極用活性炭の例(1)、黒鉛粉末(導電フィラ)およびPTFE(結着剤)を90:5:5の重量比となるように秤量し、次いでその秤量物を混練し、その後、混練物を用いて圧延を行うことによって、厚さ185μmの電極シートを製作した。電極シートから直径20mmの2枚の分極性電極3,4を切出し、これら2枚の分極性電極3,4と、直径20mm、厚さ75μmのPTFE製スペーサ5、電解液等を用いて図1のボタン型電気二重層キャパシタ1を製作した。電解液としては、1.8Mのトリエチルメチルアンモニウム・テトラフルオロボーレイト[(C2 H5 )3 CH3 NBF4 ]のプロピレンカーボネイト溶液を用いた。
【0029】
電極用活性炭の例(2)〜(5)を用い、前記同様の方法で、4種のボタン型電気二重層キャパシタを製作した。
【0030】
〔III 〕電極用活性炭の静電容量密度
各電気二重層キャパシタについて、充電終止電位2.7V、放電終止電位0V、充放電電流5mAにて、120分間の充電および20分間の放電を行う充放電試験を行い、次いでエネルギ換算法にて電極用活性炭の例(1)〜(5)の静電容量密度(F/cc)を求めた。
【0031】
表1は、電極用活性炭の例(1)〜(5)に関する合成メソフェーズピッチ〔例(5)については石油メソフェーズピッチ〕の比H/Cおよび軟化点SPならびに活性炭の静電容量密度(F/cc)および比表面積を示す。
【0032】
【表1】
【0033】
表1から明らかなように、電極用活性炭の例(1)〜(4)のごとく、合成メソフェーズピッチとして比H/CがH/C≧0.35、実施例では、H/C≧0.36のものを用いることによって電極用活性炭の静電容量密度を高めることができ、これは比H/CがH/C≧0.6のものを用いると一層顕著となる。
【0034】
次に、前述の、H/Cが0.33である石油メソフェーズピッチに水素添加処理を施して、H/Cが0.40の石油メソフェーズピッチを得た。この水素添加処理は、H/C=0.33の石油メソフェーズピッチを成形ニッケル系触媒と共にオートクレーブ内に入れ、温度Tを150℃に、また圧力Pを2.0MPaにそれぞれ設定して行われた。
【0035】
このようにして得られた石油メソフェーズピッチの軟化点SPを測定し、またその石油メソフェーズピッチを用いて、前記同様の方法で、電極用活性炭の例(6)の製造、その比表面積の測定および静電容量密度の算出を行ったところ、表2の結果を得た。表2には、表1の電極活性炭の例(5)に関するデータ、つまり水素添加前の石油メソフェーズピッチに関するデータも掲載した。
【0036】
【表2】
【0037】
表2より、水素添加による比H/C≧0.35の効果が明らかである。
【0038】
【発明の効果】
請求項1の発明によれば、前記のような手段を採用することによって、高い静電容量密度を有する、電気二重層キャパシタの電極用活性炭を得ることが可能な製造方法を提供することができる。
【0039】
請求項2の発明によれば、さらに高い静電容量密度を有する、電気二重層キャパシタの電極用活性炭を得ることが可能な製造方法を提供することができる。
【図面の簡単な説明】
【図1】 ボタン型電気二重層キャパシタの要部破断正面図である。
【符号の説明】
1…………ボタン型電気二重層キャパシタ
3,4……分極性電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing activated carbon for electrodes of an electric double layer capacitor, and more particularly to a method for producing activated carbon for electrodes by performing carbonization treatment and alkali activation treatment.
[0002]
[Prior art]
Conventionally, with the aim of increasing capacitance density, mesophase pitch obtained from synthetic mesophase pitch or distillation pitch (meaning petroleum pitch, coal tar pitch, etc. obtained by distillation) is used as a raw material for activated carbon. .
[0003]
[Problems to be solved by the invention]
As a result of various studies on the synthetic mesophase pitch and the like, the present inventors have found that the amount of H (hydrogen) in the mesophase pitch and the like affects the capacitance density of the activated carbon.
[0004]
[Means for Solving the Problems]
It is an object of the present invention to provide the production method capable of obtaining activated carbon for electrodes having a high capacitance density by specifying the amount of H in a mesophase pitch obtained from a distillation pitch.
[0005]
In order to achieve the above object, according to the present invention, a metal catalyst is used, and the temperature T is obtained from the distillation pitch under the conditions of 100 ° C. ≦ T ≦ 350 ° C. and the pressure P of 0.3 MPa ≦ P ≦ 8.0 MPa. By performing hydrogenation treatment on the mesophase pitch, the average molecular weight M is 500 ≦ M ≦ 1000, the softening point SP is 140 ° C. ≦ SP ≦ 300 ° C., and the ratio of the number of H atoms to the number of C atoms A mesophase pitch in which H / C is adjusted to H / C ≧ 0.35 is obtained, a carbonized product is obtained by subjecting the mesophase pitch to carbonization, and an alkali activation treatment is performed on the carbonized product. A method for producing activated carbon for an electrode of a multilayer capacitor is provided.
[0006]
By using the mesophase pitch obtained from the distillation pitch as described above, it has a uniform micropore, and the specific surface area measured by the nitrogen gas adsorption method is 1000 m 2 / g or less, and has a high capacitance density. The activated carbon for electrodes which has can be obtained.
[0007]
This is thought to be due to the following reasons. That is, when the ratio H / C is set as described above, the amount of degassing in the mesophase pitch obtained from the distillation pitch during the carbonization treatment increases, so that many micropores smaller than micropores are formed in the carbonized product. This is because these micropores become the starting point of micropore formation during the alkali activation treatment, and it is possible to suppress the development of graphite due to polycondensation of polycyclic aromatic compounds during the carbonization treatment.
[0008]
However, when the ratio H / C is H / C <0.35, the amount of hydrogen becomes insufficient, so that a high capacitance density activated carbon for electrodes cannot be obtained. The ratio H / C is preferably H / C ≧ 0.60. On the other hand, the upper limit of the ratio H / C is preferably H / C = 0.80. When H / C> 0.80, the aromatic ring in the mesophase pitch obtained from the distillation pitch is remarkably reduced, so that the volatility is increased and the yield is deteriorated.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In FIG. 1, a button type electric double layer capacitor 1 is filled with a
[0010]
As a raw material for the activated carbon for electrodes, a synthetic mesophase pitch in which the ratio H / C of the number of H atoms to the number of C atoms is H / C ≧ 0.35 is used. This synthetic mesophase pitch is composed of monomers such as naphthalene, anthracene and naphthol and derivatives thereof such as 1-methylnaphthalene, 1-ethylnaphthalene, 2-ethylnaphthalene, 1,2-dimethylnaphthalene, 1,3-dimethylnaphthalene, 1 , 4-dimethylnaphthalene, 1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene, 2,3-dimethylnaphthalene, 2,6-dimethylnaphthalene, 2, 7-dimethylnaphthalene, 1,6,7-trimethylnaphthalene, 2-methylanthracene, 9-methylanthracene, 1-naphthol, 2-naphthol, 1,2-naphthalenediol, 1,3-naphthalenediol, etc. Alkane and alk A fused polycyclic hydrocarbon having an aliphatic group such as.
[0011]
As a raw material for activated carbon for electrodes, mesophase pitch obtained by subjecting mesophase pitch obtained from distillation pitch to hydrogenation treatment, and the ratio H / C of H atom number to C atom number is adjusted to H / C ≧ 0.35. Is also used. As impurities I P during the mesophase pitch obtained from this distillation pitch, Al, Fe, V, Mg, Na, metal impurities and other impurities such as Ca is included I P ≧ 1000 ppm. When these metal impurities increase, they become active sites during alkali activation treatment, which not only affects the pore distribution of the activated carbon, but also remains in the activated carbon and reacts to thereby increase the capacitance of the electric double layer capacitor. There is a risk of causing problems such as reduction, gas generation, and resistance increase. Therefore, it is desirable that the impurities I P other than C, O, and H in the mesophase pitch obtained from the distillation pitch satisfy I P ≦ 100 ppm.
[0012]
The hydrogenation treatment is aimed at improving the ratio H / C by adding hydrogen to the mesophase pitch aromatic ring, and a high-pressure catalytic hydrogenation method using a metal catalyst is applied for the treatment. In this case, the temperature T is set to 100 ° C. ≦ T ≦ 350 ° C., and the pressure P is set to 0.3 MPa ≦ P ≦ 8.0 MPa. The mesophase pitch after hydrogenation is preferably an assembly of molecular clusters having orientation. Therefore, the average molecular weight M of the mesophase pitch is M ≧ 200, preferably 500 ≦ M ≦ 1000, and the softening point SP is preferably 140 ° C. ≦ SP ≦ 300 ° C.
[0013]
In manufacturing the activated carbon for electrodes, the following steps are sequentially performed.
[0014]
(A) The mesophase pitch is pulverized to obtain mesophase pitch powder having an average particle diameter d of 100 μm ≦ d ≦ 1000 μm. As the pulverizer, a ball mill, a jet mill, a high speed mill, a lab cutter mill, or the like is used.
[0015]
(B) Heating air supply amount A to 0.1 L / min ≦ A ≦ 100 L / min and heating rate Rt to 0.1 ° C./h≦Rt≦30° C./h with respect to 10 g of mesophase pitch powder An infusibilization treatment is performed in which the temperature T is set to 200 ° C. ≦ T ≦ 400 ° C. and the heating time t is set to 0.5 h ≦ t ≦ 10 h.
[0016]
(C) Heating rate T to 100 ° C./h≦Rt≦1000° C./h, heating temperature T to 500 ° C. ≦ T ≦ 1000 ° C., heating time t in mesophase pitch powder in inert gas stream Is subjected to carbonization treatment set to 0.5 h ≦ t ≦ 10 h to obtain a carbonized product. In this carbonized material, it is desirable that the interlayer distance d 002 of the plurality of crystallites having a graphite structure is d 002 ≧ 0.345 nm.
[0017]
(D) The carbonized product is pulverized, or the particle size is adjusted after pulverization to obtain a powdered carbonized product having a median diameter d 1 of 5 μm ≦ d 1 ≦ 1000 μm. As the pulverizer, the same one as described above is used.
[0018]
(E) When the weight of the powdered carbonized product is W 1 and the weight of KOH is W 2 , the ratio W 2 / W 1 is set to 1 ≦ W 2 / W 1 ≦ 3. Under an active gas atmosphere, the heating rate Rt is set to 100 ° C./h≦Rt≦1000° C./h, the heating temperature T is set to 600 ° C. ≦ T ≦ 1000 ° C., and the heating time t is set to 0.5 h ≦ t ≦ 10 h. Each set alkali activation treatment is performed. The heating temperature T is preferably 700 ° C. ≦ T ≦ 900 ° C. The heating temperature T and the heating time t are divided into a plurality of stages as required.
[0019]
(F) The treated powder is subjected to pickling, water washing, filtration and drying in order to obtain activated carbon.
[0020]
Hereinafter, specific examples will be described.
[0021]
[I] Production of activated carbon for electrodes Production of powdered carbonized materials Four kinds of synthetic mesophase pitches having ratios H / C of 0.36, 0.40, 0.65, and 0.73, respectively, were selected as raw materials. For comparison, a petroleum mesophase pitch as a mesophase pitch obtained from a distillation pitch having a ratio H / C of 0.33 was selected as a raw material. The ratio H / C was measured using a Yanagimoto CHN coder MT-5 type.
[0022]
(A) A synthetic mesophase pitch having a ratio H / C of 0.36 was pulverized using a lab cutter mill to obtain a synthetic mesophase pitch powder having an average particle diameter d of 0.5 mm.
[0023]
(B) Infusibilization with synthetic mesophase pitch powder, air supply A set to 10 L / min, heating rate Rt set to 1 ° C / h, heating temperature T set to 200 ° C, and heating time t set to 3 h. Treated.
[0024]
(C) The synthetic mesophase pitch powder was subjected to a carbonization treatment in a nitrogen gas stream, with a heating rate Rt set to 200 ° C./h, a heating temperature T set to 700 ° C., and a heating time t set to 1 h. To obtain a carbonized product.
[0025]
(D) The carbonized product was pulverized using a lab cutter mill to obtain a powdered carbonized product having a median diameter d 1 of 25 μm.
[0026]
(E) When the weight of the powdered carbonized product was W 1 and the weight of KOH (purity 85%) was W 2 , the ratio W 2 / W 1 = 2 was set and they were mixed. The mixture is filled in a Ni-made boat, and then the boat is placed in a tubular furnace. Thereafter, the powdered carbonized product is heated in a nitrogen gas atmosphere at a heating rate Rt of 200 ° C./h. Was subjected to an alkali activation treatment in which a primary treatment at 450 ° C. and a heating time t of 3 h and a secondary treatment at a heating temperature T of 800 ° C. and a heating time t of 3 h were sequentially performed.
[0027]
(F) The treated powder was successively subjected to removal of KOH by washing with hydrochloric acid, washing with warm water, filtration, and drying to obtain activated carbon for electrodes having an average particle size of 20 μm. This activated carbon for electrodes is taken as an example (1).
Using the remaining synthetic mesophase pitch with ratio H / C of 0.40, 0.65, 0.73 and petroleum mesophase pitch with ratio H / C of 0.33, the same method as above was performed. Examples (2) to (5) of activated carbon for electrodes were prepared. Moreover, the specific surface area was measured according to the nitrogen gas adsorption method about the example (1)-(5) of each activated carbon for electrodes.
[0028]
[II] Production of Button Type Electric Double Layer Capacitor Example of activated carbon for electrode (1), graphite powder (conductive filler) and PTFE (binder) were weighed to a weight ratio of 90: 5: 5, then The weighed material was kneaded, and then rolled using the kneaded material to produce an electrode sheet having a thickness of 185 μm. Two
[0029]
Using button activated carbon examples (2) to (5), four types of button-type electric double layer capacitors were manufactured in the same manner as described above.
[0030]
[III] Capacitance Density of Activated Carbon for Electrode Each electric double layer capacitor is charged / discharged for 120 minutes of charge and 20 minutes of discharge at a charge end potential of 2.7 V, a discharge end potential of 0 V, and a charge / discharge current of 5 mA. Then, the capacitance density (F / cc) of Examples (1) to (5) of the activated carbon for electrodes was determined by an energy conversion method.
[0031]
Table 1 shows the ratio H / C and softening point SP of the synthetic mesophase pitch [petroleum mesophase pitch for example (5)] and examples of the activated carbon for electrodes (1) to (5) and the capacitance density (F / cc) and specific surface area.
[0032]
[Table 1]
[0033]
As apparent from Table 1, as in the examples (1) to (4) of the activated carbon for electrodes, the ratio H / C was H / C ≧ 0.35 as the synthetic mesophase pitch, and in the examples, H / C ≧ 0. By using 36, the capacitance density of the activated carbon for electrodes can be increased, and this becomes even more remarkable when the ratio H / C is H / C ≧ 0.6.
[0034]
Next, the above-described petroleum mesophase pitch with H / C of 0.33 was subjected to hydrogenation treatment to obtain petroleum mesophase pitch with H / C of 0.40. This hydrogenation treatment was performed by putting a petroleum mesophase pitch of H / C = 0.33 into the autoclave together with the formed nickel-based catalyst, setting the temperature T to 150 ° C., and the pressure P to 2.0 MPa. .
[0035]
The softening point SP of the petroleum mesophase pitch thus obtained was measured, and the petroleum mesophase pitch was used to produce the example (6) of the activated carbon for electrodes, measure its specific surface area, and When the capacitance density was calculated, the results shown in Table 2 were obtained. Table 2 also includes data on the electrode activated carbon example (5) in Table 1, that is, data on petroleum mesophase pitch before hydrogenation.
[0036]
[Table 2]
[0037]
From Table 2, the effect of the ratio H / C ≧ 0.35 by hydrogenation is clear.
[0038]
【The invention's effect】
According to the first aspect of the present invention, it is possible to provide a manufacturing method capable of obtaining activated carbon for an electrode of an electric double layer capacitor having a high capacitance density by employing the above-described means. .
[0039]
According to invention of
[Brief description of the drawings]
FIG. 1 is a cutaway front view of a main part of a button-type electric double layer capacitor.
[Explanation of symbols]
1 …… Button type electric
Claims (2)
平均分子量Mが500≦M≦1000であり且つ軟化点SPが140℃≦SP≦300℃であり、且つH原子数とC原子数の比H/CをH/C≧0.35に調節されたメソフェーズピッチを得て、
前記メソフェーズピッチに炭素化処理を行うことで炭素化物を得て、前記炭素化物にアルカリ賦活処理を行うことを特徴とする、電気二重層キャパシタの電極用活性炭の製造方法。Using a metal catalyst, the hydrogenation treatment is performed on the mesophase pitch obtained from the distillation pitch under the conditions of a temperature T of 100 ° C. ≦ T ≦ 350 ° C. and a pressure P of 0.3 MPa ≦ P ≦ 8.0 MPa. By
The average molecular weight M is 500 ≦ M ≦ 1000, the softening point SP is 140 ° C. ≦ SP ≦ 300 ° C., and the ratio H / C of H atoms to C atoms is adjusted to H / C ≧ 0.35. Get mesophase pitch,
A method for producing activated carbon for an electrode of an electric double layer capacitor, comprising: obtaining a carbonized product by subjecting the mesophase pitch to carbonization, and subjecting the carbonized product to an alkali activation treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002080476A JP4252757B2 (en) | 2002-03-22 | 2002-03-22 | Method for producing activated carbon for electrode of electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002080476A JP4252757B2 (en) | 2002-03-22 | 2002-03-22 | Method for producing activated carbon for electrode of electric double layer capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003282370A JP2003282370A (en) | 2003-10-03 |
JP4252757B2 true JP4252757B2 (en) | 2009-04-08 |
Family
ID=29229499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002080476A Expired - Fee Related JP4252757B2 (en) | 2002-03-22 | 2002-03-22 | Method for producing activated carbon for electrode of electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4252757B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100978604B1 (en) * | 2005-09-30 | 2010-08-27 | 가부시키가이샤 캬타라 | Carbonaceous material for electric double layer capacitor and electric double layer capacitor |
-
2002
- 2002-03-22 JP JP2002080476A patent/JP4252757B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003282370A (en) | 2003-10-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4294246B2 (en) | Carbon material for electric double layer capacitor electrode and method for producing the same, electric double layer capacitor and method for producing the same | |
JP4092344B2 (en) | Raw material composition of carbon material for electric double layer capacitor electrode | |
KR101470050B1 (en) | Process for producing activated carbon for electric double layer capacitor electrode | |
EP1977998B1 (en) | Original coal and stock oil composition for needle coke and for electricity storing carbon material | |
JP3715251B2 (en) | Method for producing activated carbon for electrode of electric double layer capacitor and carbon raw material | |
KR101553716B1 (en) | Active carbon for an electric double layer capacitor electrode and process for manufacturing the same | |
KR20070087047A (en) | Raw material coal composition for carbon material for electrode in electric double layer capacitor | |
EP1959462B1 (en) | Porous coke | |
KR102477035B1 (en) | The manufacturing method for petroleum based high softning point pitch | |
JP2011176043A (en) | Activated carbon for electric double layer capacitor | |
CN112830472A (en) | Preparation method of porous carbon, porous carbon obtained by preparation method and application of porous carbon | |
US7088570B2 (en) | Carbonized product used for production of activated carbon for electrode of electric double-layer capacitor | |
CN110136977B (en) | Preparation method of ordered mesoporous carbon-loaded manganese dioxide shell-core nanobelt for supercapacitor electrode material | |
JP2009013012A (en) | Method of producing active carbon for electric double-layer capacitor electrode | |
KR20080071038A (en) | Electric double-layer capacitor using carbon-based material-carbon nano fiber composite as an electrode | |
JP2006295144A (en) | Porous carbon material for electric double layer capacitor polarizing electrode | |
JP4252757B2 (en) | Method for producing activated carbon for electrode of electric double layer capacitor | |
JP5957793B2 (en) | Carbon material manufacturing method | |
JP2004014762A (en) | Carbon material for electric double layered capacitor and its manufacturing method | |
CN101552333A (en) | Method of preparing carbon anode active material of lithium-ion battery | |
JP2002265215A (en) | Activated carbon, method for manufacturing the same and electric double layer capacitor using the same | |
WO2015146459A1 (en) | Activated carbon, method for producing activated carbon and method for treating activated carbon | |
US7067051B2 (en) | Process for producing carbonized product used for producing activated carbon for electrode of electric double-layer capacitor, and organic material for carbonized product | |
JP2005142439A (en) | Manufacturing method of activated carbon for electric double layer capacitor electrode and its carbon raw material | |
JP3930739B2 (en) | Activated carbon for electric double layer capacitor and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060822 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060906 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061106 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080121 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080514 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080707 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080723 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081126 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090107 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090122 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120130 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |