JP4252391B2 - Collective semiconductor device - Google Patents

Collective semiconductor device Download PDF

Info

Publication number
JP4252391B2
JP4252391B2 JP2003279990A JP2003279990A JP4252391B2 JP 4252391 B2 JP4252391 B2 JP 4252391B2 JP 2003279990 A JP2003279990 A JP 2003279990A JP 2003279990 A JP2003279990 A JP 2003279990A JP 4252391 B2 JP4252391 B2 JP 4252391B2
Authority
JP
Japan
Prior art keywords
semiconductor device
organic substrate
collective
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003279990A
Other languages
Japanese (ja)
Other versions
JP2005045171A (en
Inventor
敏洋 緒方
益廣 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2003279990A priority Critical patent/JP4252391B2/en
Publication of JP2005045171A publication Critical patent/JP2005045171A/en
Application granted granted Critical
Publication of JP4252391B2 publication Critical patent/JP4252391B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Description

本発明は、有機基板を用いた集合半導体装置に関し、特に樹脂封止する際の基板変形を防止する集合半導体装置に関する。 The present invention relates to a condenser if a semiconductor device using an organic substrate, relates current if a semiconductor device that to prevent substrate deformation especially when resin sealing.

絶縁基板上に配線を自由に引き回すことが可能な有機基板を用いた半導体装置として、Ball Grid Array(以下BGAという)構造やLand Grid Array(以下LGAという)構造などのリードレスタイプの表面実装型半導体装置が広く利用されている。また、最近では図4に示すように配線の引き回しが不要なパッドオンビアタイプと呼ばれる構造が、面積を小さくできるため、超小型のChip Scale Package(以下CSPという)に広く採用されるようになっている。   As a semiconductor device using an organic substrate capable of freely routing wiring on an insulating substrate, a surfaceless type of leadless type such as a Ball Grid Array (hereinafter referred to as BGA) structure or a Land Grid Array (hereinafter referred to as LGA) structure. Semiconductor devices are widely used. Recently, a structure called a pad-on-via type that does not require wiring as shown in FIG. 4 can be reduced in area, so that it is widely adopted in ultra-small Chip Scale Package (hereinafter referred to as CSP). ing.

このような半導体装置では、スタンドオフ(有機基板の基材下面からファンクション電極下面までの高さa、図4参照)は、20μm〜150μm程度の高さに形成することにより、半導体装置およびそれを実装するマザーボードの反りや、半導体装置およびマザーボード表面への異物付着などによる実装不良の発生を低減し、実装信頼性の向上に有利に機能している。   In such a semiconductor device, the standoff (height a from the lower surface of the base material of the organic substrate to the lower surface of the function electrode, see FIG. 4) is formed to a height of about 20 μm to 150 μm. This reduces the occurrence of mounting defects due to warpage of the mounted motherboard and foreign matter adhering to the surface of the semiconductor device and the motherboard, and functions to improve mounting reliability.

例えばBGA構造の半導体装置では、チップ実装面の配線は、スルーホールを用いてマザーボード実装面(有機基板裏面)に取り出され、所定のファンクション電極まで配線パターンを引き回して接続される。マザーボード実装面では、その後のハンダボール搭載時にハンダ流れが発生しないようファンクション電極のみを残し、スルーホール部および配線パターンを含め20μm程度のソルダーレジストで選択的に被覆され、露出するファンクション電極にハンダボールを形成することによって、100μm程度のスタンドオフが得られる構造となっている。   For example, in a semiconductor device having a BGA structure, the wiring on the chip mounting surface is taken out to the mother board mounting surface (back surface of the organic substrate) using a through hole, and is connected by drawing a wiring pattern to a predetermined function electrode. On the motherboard mounting surface, only the function electrodes are left so that solder flow does not occur when the solder balls are subsequently mounted, and the solder balls are selectively covered with a solder resist of about 20 μm including the through-hole portion and the wiring pattern, and the exposed function electrodes are solder balls. By forming the structure, a standoff of about 100 μm can be obtained.

一方LGA構造の半導体装置は、一般にBGA構造の半導体装置にハンダボールを取り付けない構造であるから、ファンクション電極表面の高さは、ソルダーレジスト表面の高さより低くなり、そのスタンドオフはマイナスとなる。本出願人は特開2002−83900号公報において、LGA構造のファンクション電極(ランド)がソルダーレジストより凹んだ形状にならないようにするため、スルーホールに充填した樹脂をスルーホール開口面から突出させ、その上にメッキすることによって実装性や信頼性の高いランドを形成する技術を開示している。   On the other hand, a semiconductor device having an LGA structure generally has a structure in which a solder ball is not attached to a semiconductor device having a BGA structure. Therefore, the height of the function electrode surface is lower than the height of the solder resist surface, and the standoff is negative. In the Japanese Patent Application Laid-Open No. 2002-83900, the present applicant projects the resin filled in the through hole from the through hole opening surface so that the function electrode (land) of the LGA structure does not have a shape recessed from the solder resist. A technique for forming a land with high mountability and high reliability by plating on it is disclosed.

パッドオンビアタイプの半導体装置は、図4に示すように有機基板2に形成されたスルーホール8の下面がファンクション電極1としてそのまま使用できるよう、スルーホールメッキ後に、スルーホール2を樹脂9で埋め、樹脂9上にメッキが施された構造となっている。このような構造の半導体装置は、引き回し配線エリアが不要のため、有機基板の面積を小さくできるとともに、ハンダ流れ防止等で実施していたソルダーレジストで被覆する必要がなく、配線厚およびメッキ厚分のスタンドオフ分が確保できることになる。したがって、このような構造の半導体装置ではスタンドオフは30〜40μm程度となっている。   In the pad-on-via type semiconductor device, as shown in FIG. 4, the through-hole 2 is filled with a resin 9 after through-hole plating so that the lower surface of the through-hole 8 formed in the organic substrate 2 can be used as the function electrode 1 as it is. The resin 9 is plated. Since the semiconductor device having such a structure does not require a routing wiring area, the area of the organic substrate can be reduced, and it is not necessary to cover with the solder resist that has been implemented to prevent solder flow. The stand-off amount can be secured. Therefore, in the semiconductor device having such a structure, the standoff is about 30 to 40 μm.

これら有機基板を用いた半導体装置では、半導体チップ7を樹脂封止する方法としてトランスファーモールド法により、有機基板の片面のみを樹脂封止するのが一般的である。トランスファーモールド法により成形された半導体装置は、ポッティング方法等によるその他の封止方法よりも半導体装置の厚さのバラツキが小さく、またポッティング方法等で使用される樹脂よりも安価な樹脂を使用でき、生産性も高く低コストで生産できる。   In a semiconductor device using these organic substrates, it is general that only one surface of the organic substrate is resin-sealed by a transfer molding method as a method of resin-sealing the semiconductor chip 7. The semiconductor device formed by the transfer mold method has a smaller variation in the thickness of the semiconductor device than other sealing methods such as a potting method, and can use a less expensive resin than the resin used in the potting method, High productivity and low cost production.

しかしながら、トランスファーモールド法では樹脂充填した後、硬化前に数トン程度の保圧をかけることによって注入中に発生した樹脂ボイドをエアベントから押し出し、水分溜りとなる個所を減らすことによって、実装リフロー時のパッケージクラック発生等の不具合を防いでいる。
特開2002−83900号公報
However, in the transfer mold method, after filling the resin and applying a holding pressure of several tons before curing, the resin void generated during injection is pushed out of the air vent, reducing the number of places where water remains, so that during mounting reflow It prevents problems such as package cracks.
JP 2002-83900 A

しかし、図5に模式的に示すように、トランスファーモールド法による保圧によって、基板変形が起こりやすく、この反り応力により半導体チップ7の剥離などが発生し、半導体装置の信頼性の低下を招くおそれがある。特に、半導体装置の外周のみにファンクション電極があるペリフェラルタイプの半導体装置では、図5に示すように半導体装置下面中央部が凸状に変形してしまう。このような基板変形はワイヤボンドなどの接続性の低下、チップクラックなどの不具合の発生にもつながる場合がある。特に、半導体装置の薄型化にともない、有機基板を用いた半導体パッケージでは、その基板の厚さは0.2〜0.4mm程度から0.1〜0.2mm程度と薄くなる傾向にあり、基板強度が低く、さらに基板変形が大きな問題となってきている。   However, as schematically shown in FIG. 5, the substrate is likely to be deformed by the holding pressure by the transfer mold method, and the warp stress may cause the semiconductor chip 7 to be peeled off, resulting in a decrease in reliability of the semiconductor device. There is. In particular, in a peripheral type semiconductor device having a function electrode only on the outer periphery of the semiconductor device, the center portion of the lower surface of the semiconductor device is deformed into a convex shape as shown in FIG. Such deformation of the substrate may lead to a decrease in connectivity such as wire bonding and occurrence of defects such as chip cracks. In particular, as a semiconductor device is made thinner, a semiconductor package using an organic substrate tends to be thinned from about 0.2 to 0.4 mm to about 0.1 to 0.2 mm. The strength is low, and further substrate deformation has become a big problem.

上記のように、有機基板を用いた所定のスタンドオフを有する半導体装置は、スタンドオフは実装信頼性の観点から所定の範囲にあることが好ましいが、他方トランスファーモールド時に基板変形が生じてしまう。本発明は所定のスタンドオフを有する半導体装置において、樹脂封止時に樹脂基板の変形を防止する半導体装置及び集合半導体装置を提供することを目的とする。   As described above, in a semiconductor device having a predetermined standoff using an organic substrate, the standoff is preferably within a predetermined range from the viewpoint of mounting reliability, but on the other hand, substrate deformation occurs during transfer molding. An object of the present invention is to provide a semiconductor device and a collective semiconductor device that prevent deformation of a resin substrate during resin sealing in a semiconductor device having a predetermined standoff.

上記目的を達成するため、本願発明に係る集合半導体装置は、集合有機基板表面に複数の半導体チップが搭載され、該半導体チップが樹脂封止されているとともに、前記集合有機基板裏面に、所定のスタンドオフを有するファンクション電極と、前記ファンクション電極と略等しい高さで、前記半導体チップを樹脂封止する際、前記基板の変形を防止する位置に配置され、ファンクション電極にかかる応力を分散させることにより基板変形を防止するための補助パターンを備えた集合半導体装置であって、前記集合有機基板を切断し、半導体装置を形成する際、切断除去される領域上に前記補助パターンが形成されていることを特徴とするものである。
In order to achieve the above object, the collective semiconductor device according to the present invention has a plurality of semiconductor chips mounted on the surface of the collective organic substrate, the semiconductor chips are resin-sealed, and a predetermined surface is formed on the back surface of the collective organic substrate. A function electrode having a stand-off and a height substantially equal to the function electrode are arranged at a position to prevent deformation of the substrate when resin-sealing the semiconductor chip, and by dispersing stress applied to the function electrode A collective semiconductor device provided with an auxiliary pattern for preventing substrate deformation , wherein the auxiliary pattern is formed on a region to be cut and removed when the collective organic substrate is cut to form a semiconductor device. It is characterized by.

本発明の多数個取りの集積半導体装置では、切断ライン上にファンクション電極と同じスタンドオフを有する補助パターンを備えることによって、ファンイン構造に代表されるようなファンクション電極間の距離が0.5mm程度と大きい電極配置の半導体装置を生産する場合でも基板変形を防止することができる。 In integrated semiconductor device of multi-cavity of the present invention, by providing the auxiliary patterns that have a same standoff as function electrode on the cutting line, the distance between the function electrode as typified by fan-in structure 0 Even when a semiconductor device having an electrode arrangement as large as about 5 mm is produced, substrate deformation can be prevented.

本発明の実施形態について、図1〜図3を参照して説明する。図1は本願発明の第1の参考例を示したもので、半導体装置裏面全面にファンクション電極および補助パターンを格子状に配置したフルグリッド電極配置の一例である。1は半導体チップに接続されるファンクション電極、2は有機基板、3は補助パターンである。ファンクション電極1およびファンクション電極1と同一形状の補助パターン3は、有機基板2上に同時に形成されるため、30〜40μm程度の同じ高さのスタンドオフとなる。その結果、トランスファーモールド時には、金型に対し同一面で接することにより樹脂充填直後の保圧時に、補助パターン3はファンクション電極1にかかる応力を分散させ、基板変形を防止することができる。ファンクション電極1および補助パターン3は、基板変形が発生しないように有機基板の材料、厚さ、トランスファーモールド時の条件等を考慮し、それぞれ所定の間隔で配置される。一例として、0.4mm程度以下の配線スペースで配置すると、有機基板の変形を防止することができる。またファンクション電極1および補助パターン3の配置についても、種々変更することが可能で、有機基板2の変形を防止できるようにすれば良く、格子状の配置に限定されるものではない。 An embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a first reference example of the present invention, which is an example of a full grid electrode arrangement in which function electrodes and auxiliary patterns are arranged in a lattice pattern on the entire back surface of a semiconductor device. Reference numeral 1 denotes a function electrode connected to the semiconductor chip, 2 denotes an organic substrate, and 3 denotes an auxiliary pattern. Since the function electrode 1 and the auxiliary pattern 3 having the same shape as the function electrode 1 are formed on the organic substrate 2 at the same time, the standoff is about 30 to 40 μm in height. As a result, at the time of transfer molding, the auxiliary pattern 3 can disperse stress applied to the function electrode 1 and prevent deformation of the substrate at the time of holding pressure immediately after filling the resin by making contact with the mold on the same surface. The function electrode 1 and the auxiliary pattern 3 are arranged at predetermined intervals in consideration of the material of the organic substrate, the thickness, conditions at the time of transfer molding, and the like so that the substrate does not deform. As an example, when the wiring space is about 0.4 mm or less, the organic substrate can be prevented from being deformed. Further, the arrangement of the function electrode 1 and the auxiliary pattern 3 can be variously changed and the deformation of the organic substrate 2 may be prevented, and the arrangement is not limited to the lattice arrangement.

図2は本願発明の第2の参考例を示したもので、半導体装置裏面中央部に正方形の補助パターン4を配置した例である。補助パターン4もファンクション電極1と同じ高さに形成され、第1の参考例の補助パターン3と同様に応力分散の効果があり、基板変形を防止することができる。本参考例においても、ファンクション電極1および補助パターン4の配置、形状は、樹脂封止条件に応じて種々変更することが可能で、有機基板2の変形を防止できるようにすれば良く、中央部に正方形の補助パターンが配置される構造に限定されるものではない。 FIG. 2 shows a second reference example of the present invention, which is an example in which a square auxiliary pattern 4 is arranged at the center of the back surface of the semiconductor device. The auxiliary pattern 4 is also formed at the same height as the function electrode 1 and has the effect of stress dispersion in the same manner as the auxiliary pattern 3 of the first reference example , and can prevent substrate deformation. Also in this reference example , the arrangement and shape of the function electrode 1 and the auxiliary pattern 4 can be variously changed according to the resin sealing conditions, and it is sufficient that the deformation of the organic substrate 2 can be prevented. However, the present invention is not limited to a structure in which square auxiliary patterns are arranged.

図3は本願発明の実施形態を示したもので、多数個取りの集合有機基板上の半導体装置の配置図である。5は集合有機基板、6は集合有機基板5の裏面に形成されたダイシング切断ライン上に形成した補助パターン、10はダイシングにより個片化される半導体装置である。なお図では、ファンクション電極は図示されておらず、補助パターンは模式的に示している。このような構造の集合有機基板は、次のように形成される。まず、裏面にファンクション電極と補助パターン6が形成された集合有機基板5を用意し、その表面に半導体チップを搭載する。半導体チップをトランスファーモールド法により樹脂封止する。その後、集合有機基板5裏面に形成された、補助パターン6の中心線で切断して、半導体装置10に個別化する。トランスファーモールド法により樹脂封止する際、ファンイン構造に代表されるような個々の半導体装置に形成されたファンクション電極間の距離が大きい場合、樹脂封止の際の保圧時に有機基板が変形してしまう。そこで本発明では、切断ライン上にファンクション電極1と同じスタンドオフの補助パターン6を配置することによって応力が分散し、上記距離が大きい場合であっても有機基板を変形させることなく樹脂封止が可能となる。なおこの場合において、補助パターン6を切断ライン上に形成する場合に、本願発明における参考例1、2に示した補助パターン3または4を同時に形成しておくことも可能である。 FIG. 3 shows an embodiment of the present invention and is a layout view of semiconductor devices on a multi-piece collective organic substrate. Reference numeral 5 denotes a collective organic substrate, 6 denotes an auxiliary pattern formed on a dicing cutting line formed on the back surface of the collective organic substrate 5, and 10 denotes a semiconductor device separated into pieces by dicing. In the figure, the function electrode is not shown, and the auxiliary pattern is schematically shown. The aggregate organic substrate having such a structure is formed as follows. First, a collective organic substrate 5 having function electrodes and auxiliary patterns 6 formed on the back surface is prepared, and a semiconductor chip is mounted on the surface. The semiconductor chip is resin-sealed by a transfer mold method. Thereafter, the semiconductor device 10 is individualized by cutting along the center line of the auxiliary pattern 6 formed on the back surface of the collective organic substrate 5. When resin molding is performed by transfer molding, if the distance between function electrodes formed on individual semiconductor devices, such as a fan-in structure, is large, the organic substrate deforms when holding pressure during resin sealing. End up. Therefore, in the present invention, by disposing the same standoff auxiliary pattern 6 as the function electrode 1 on the cutting line, the stress is dispersed, and even if the distance is large, the resin sealing can be performed without deforming the organic substrate. It becomes possible. In this case, when the auxiliary pattern 6 is formed on the cutting line, the auxiliary pattern 3 or 4 shown in the reference examples 1 and 2 in the present invention can be formed at the same time.

ダイシング切断ライン上に形成される補助パターン6は、ダイシングにより全て除去されるのが好ましい。そこで、ダイシングブレード幅が0.1〜0.2mm程度の場合、補助パターン幅はその位置ズレなどの公差も考慮し、0.050〜0.15mm程度とすることによって、ダイシング時に全て切り落とされ、個片化された半導体装置10に補助パターン6が残ることはない。   It is preferable that all the auxiliary patterns 6 formed on the dicing cutting line are removed by dicing. Therefore, when the dicing blade width is about 0.1 to 0.2 mm, the auxiliary pattern width is about 0.050 to 0.15 mm in consideration of tolerances such as positional deviation, and is cut off during dicing, The auxiliary pattern 6 does not remain in the separated semiconductor device 10.

本願発明の第1の参考例を説明する図である。It is a figure explaining the 1st reference example of this invention . 本願発明の第2の参考例を説明する図である。It is a figure explaining the 2nd reference example of this invention . 本願発明の実施形態を説明する図である。It is a figure explaining embodiment of this invention . 従来のこの種の半導体装置を説明する図である。It is a figure explaining this kind of conventional semiconductor device. 従来の半導体装置の有機基板の変形を説明する図である。It is a figure explaining the deformation | transformation of the organic substrate of the conventional semiconductor device.

符号の説明Explanation of symbols

1:ファンクション電極、2:有機基板、3、4、6:補助パターン、5:集合有機基板、7:半導体チップ、8:スルーホール、9:樹脂、10:半導体装置 1: function electrode, 2: organic substrate, 3, 4, 6: auxiliary pattern, 5: collective organic substrate, 7: semiconductor chip, 8: through hole, 9: resin, 10: semiconductor device

Claims (1)

集合有機基板表面に複数の半導体チップが搭載され、該半導体チップが樹脂封止されているとともに、前記集合有機基板裏面に、所定のスタンドオフを有するファンクション電極と、前記ファンクション電極と略等しい高さで、前記半導体チップを樹脂封止する際、前記基板の変形を防止する位置に配置され、ファンクション電極にかかる応力を分散させることにより基板変形を防止するための補助パターンを備えた集合半導体装置であって、
前記集合有機基板を切断し、半導体装置を形成する際、切断除去される領域上に前記補助パターンが形成されていることを特徴とする集合半導体装置。
A plurality of semiconductor chips are mounted on the surface of the collective organic substrate, the semiconductor chips are resin-sealed, a function electrode having a predetermined standoff on the back surface of the collective organic substrate, and a height substantially equal to the function electrode In the collective semiconductor device provided with an auxiliary pattern for preventing the deformation of the substrate by dispersing the stress applied to the function electrode when the semiconductor chip is resin-sealed. There,
The collective semiconductor device, wherein the auxiliary pattern is formed on a region to be cut and removed when the collective organic substrate is cut to form a semiconductor device.
JP2003279990A 2003-07-25 2003-07-25 Collective semiconductor device Expired - Lifetime JP4252391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279990A JP4252391B2 (en) 2003-07-25 2003-07-25 Collective semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279990A JP4252391B2 (en) 2003-07-25 2003-07-25 Collective semiconductor device

Publications (2)

Publication Number Publication Date
JP2005045171A JP2005045171A (en) 2005-02-17
JP4252391B2 true JP4252391B2 (en) 2009-04-08

Family

ID=34265947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279990A Expired - Lifetime JP4252391B2 (en) 2003-07-25 2003-07-25 Collective semiconductor device

Country Status (1)

Country Link
JP (1) JP4252391B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096865A (en) * 2009-10-30 2011-05-12 Sharp Corp Substrate member, module, electric equipment, and manufacturing method of modules
JP2013222877A (en) * 2012-04-18 2013-10-28 Sharp Corp Semiconductor module

Also Published As

Publication number Publication date
JP2005045171A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US7279780B2 (en) Quad flat no-lead (QFN) grid array package, method of making and memory module and computer system including same
US6664615B1 (en) Method and apparatus for lead-frame based grid array IC packaging
US7508066B2 (en) Heat dissipating semiconductor package and fabrication method thereof
US7723157B2 (en) Method for cutting and molding in small windows to fabricate semiconductor packages
US20090102030A1 (en) Integrated circuit package with etched leadframe for package-on-package interconnects
US7141868B2 (en) Flash preventing substrate and method for fabricating the same
JP2012104790A (en) Semiconductor device
US8115288B2 (en) Lead frame for semiconductor device
KR20060042872A (en) A method of surface mounting a semiconductor device
JP2002110718A (en) Manufacturing method of semiconductor device
JP2009147053A (en) Semiconductor device and method of manufacturing the same
JP4252391B2 (en) Collective semiconductor device
US10381293B2 (en) Integrated circuit package having an IC die between top and bottom leadframes
JP2009182004A (en) Semiconductor device
JP2007208153A (en) Semiconductor device, and manufacturing method thereof
JP3920657B2 (en) Manufacturing method of resin-encapsulated semiconductor device
US6512287B1 (en) Board frame, method for fabricating thereof and method for fabricating semiconductor apparatus
KR100319400B1 (en) Semiconductor Package and Manufacturing Method
EP3982405A1 (en) Semiconductor package with improved board level reliability
JP4477976B2 (en) Manufacturing method of semiconductor device
JP2011061055A (en) Method of manufacturing semiconductor device
KR100520443B1 (en) Chip scale package and its manufacturing method
JP3271500B2 (en) Semiconductor device
KR100369394B1 (en) substrate for semiconductor package and manufacturing method of semiconductor package using it
JP2007042761A (en) Substrate for semiconductor device, manufacturing method of semiconductor device, and sealing metal mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Ref document number: 4252391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term