JP4252128B2 - Method for removing aldehyde from crude nitrile containing aldehyde as impurity - Google Patents

Method for removing aldehyde from crude nitrile containing aldehyde as impurity Download PDF

Info

Publication number
JP4252128B2
JP4252128B2 JP18291598A JP18291598A JP4252128B2 JP 4252128 B2 JP4252128 B2 JP 4252128B2 JP 18291598 A JP18291598 A JP 18291598A JP 18291598 A JP18291598 A JP 18291598A JP 4252128 B2 JP4252128 B2 JP 4252128B2
Authority
JP
Japan
Prior art keywords
group
aldehyde
acid
exchange resin
crude nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18291598A
Other languages
Japanese (ja)
Other versions
JP2000015113A (en
Inventor
秀也 高橋
公一 朝生
光男 松下
与志一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP18291598A priority Critical patent/JP4252128B2/en
Publication of JP2000015113A publication Critical patent/JP2000015113A/en
Application granted granted Critical
Publication of JP4252128B2 publication Critical patent/JP4252128B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する分野】
本発明は、アルデヒドを不純物として含む粗製ニトリルからアルデヒドを効果的にかつ安価に除去する方法に関する。
【0002】
【従来の技術】
ニトリル、特に、多くの脂肪族ニトリルはオレフィンのアンモ酸化により得られ、その際、アルデヒドが不純物として、微量に含まれる。これらアルデヒドは、該ニトリルの回収工程において系内を汚染したり、製品を着色させるという問題を引き起こす。また、近年の化学技術の発達により、より高純度のニトリルが必要になってきている。しかしながら、ニトリルとそれに不純物として含まれるアルデヒドは、比揮発度が小さいことが多く、単に蒸留によって分離するには多くの蒸留段数を必要とし、且つ多くのエネルギーを消費するから極めて不経済となる。そこで、アルデヒドを不純物として含む粗製ニトリルからアルデヒドを効果的に除去する樹脂が切望されており、これまでにも、いくつかの樹脂が用いられている。
【0003】
例えば、粗製アクリロニトリル中のアクロレインを除去する樹脂として、1級及び/又は2級アミノ基を交換基としてもつポーラス型陰イオン交換樹脂(特公昭58−1108号)、ゲル型陰イオン交換樹脂(特開昭58−134063号)等、イオン交換樹脂があり、これらイオン交換樹脂は、系内に新たな不純物を増加させることなく、特異的にアルデヒドを除去することが可能である。
【0004】
しかしながら、1級及び/又は2級アミノ基を交換基としてもつ陰イオン交換樹脂は、アルデヒドが樹脂のアミノ基とアミノ−カルボニル反応により共有結合を形成するため、通常の方法では樹脂のアミノ基からアルデヒドを離脱することができない。そのため、イオン交換樹脂は再生困難で、使い捨てを前提に使用せざるを得ず、処理費用が増加し極めて不経済である。さらに、アルデヒド除去レベルも不十分なものである。
【0005】
また、粗製ニトリル中の不純物であるアルデヒドを除去する樹脂として、多価アミンを担持させた陽イオン交換樹脂があり、この樹脂は、該粗製ニトリル中のアルデヒドを吸着させたのち、アルデヒド除去不能となったイオン交換樹脂を酸性水溶液に接触させて水洗させることにより再生することができる(特開平10−7638号)。本発明者らの知見によれば、この樹脂で、到達できるアルデヒドの除去レベルは、ゲル型陰イオン交換樹脂の場合(特開昭58−134063号)と同様に十分なものではない。更に、陽イオン交換樹脂と反応吸着する官能基と、アルデヒドと反応する官能基とが共にアミノ基で同じであり、担持させた多価アミンの利用率が低く、そのため、貫流交換容量は0.05モル/L−樹脂未満であり、満足できるものではない。
【0006】
【発明が解決しようとする課題】
本発明は、再生が可能で、貫流交換容量が0.15〜0.25モル/L−樹脂程度の十分満足できる陰イオン交換樹脂を用いて、アルデヒドを不純物として含む粗製ニトリルからアルデヒドを高い除去レベルで除去する方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題を解決すべく鋭意検討した結果、同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂に担持させた樹脂が極めて有効であることを見いだし本発明に至った。
【0008】
即ち、本発明は、同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂に担持させ樹脂を用いて、アルデヒドを不純物として含む粗製ニトリルからアルデヒドを除去する方法に関するものである。
【0009】
ここで活性メチレン基とは、例えばOrganic Reactions Vol.15(1967), JOHN WILEY & SONS, INC. 刊行、第223頁に記載されているように、X−CH2 −Yの一般式を有し、XやYが、NO2 、CN、COR、COAr、CONHR、CONHAr、CO2 R、CO2 H、SO2 、S、オルト位及び/又はパラ位に電子吸引性基を有するAr、4級ピリジニウム塩及びその類似ヘテロ環等の官能基であり、メチレン基がこれらの官能基と結合しているメチレン基をいう。但し、Rはアルキル基、Arはアリール基を表す。
【0010】
本発明の担持において用いられる化合物は、活性メチレン基と共に酸性基を有しているが、その酸性基としての種類は、カルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基、ホスフィン酸基、などが挙げられる。
【0011】
この様な酸性基の中でもカルボキシル基、スルホン酸基は上記のXやYにも該当し、酸性基も兼ねることから、前記化合物は、XやYが酸性基であれば、必ずしもX、Y以外に酸性基を有していなくてもよい。このような化合物は、構造が単純であり、従って安価で入手が容易になる等の利点があるので、好ましい。
【0012】
このようなXやYが酸性基を兼ねる化合物の例としては、マロン酸、マロン酸モノエステル、マロン酸モノアミド、シアノ酢酸、アセト酢酸、アセトンジカルボン酸、スルホ酢酸、スルホ酢酸エステル、スルホ酢酸アミド、アセトンスルホン酸等が挙げられる。
【0013】
これらの中でも、酢酸のメチル基の炭素を前述のX、Yの官能基で置換したα−置換酢酸、即ち、マロン酸、マロン酸モノメチル、マロン酸モノエチル、シアノ酢酸、アセト酢酸、スルホ酢酸、アセトンジカルボン酸が、効果並びに入手の容易さから特に好ましい。これらのα−置換酢酸は単独で用いても、あるいは2種以上を併用してもよい。
【0014】
本発明に使用される陰イオン交換樹脂は、特にその種類を問わないが、ニトリルを加水分解させないためには、弱塩基性又は中塩基性陰イオン交換樹脂が好ましい。具体的には、レバチットMP62(商品名、バイエル社製)、ダイアイオンWA20(商品名、三菱化学社製)、ダウエックスMWA−1(商品名、ダウケミカル社製)等の弱塩基性樹脂、あるいは、レバチットMP64(商品名、バイエル社製)、アンバーライトIRA68(商品名、オルガノ社製)等の中塩基性樹脂等が挙げられる。これらの陰イオン交換樹脂は、市販のものを予め、希薄なアルカリで前処理した後、十分水洗して使用するのが好ましい。
【0015】
本発明において使用される粗製ニトリルのニトリルとしては、脂肪族ニトリルおよび芳香族ニトリルのいずれもが対象となり、具体的には、例えば、アクリロニトリル、メタクリロニトリル、アセトニトリルおよびプロピオニトリルなどの炭素数2〜4の脂肪族ニトリル、べンゾニトリルなどの芳香族ニトリルであり、粗製ニトリル中に含まれるアルデヒドとしてアクロレイン、メタクロレイン、アセトアルデヒド、プロピレンアルデヒドおよびベンズアルデヒドなどである。
【0016】
同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂へ担持する方法は、例えば、イオン交換樹脂と同一分子内に活性メチレン基及び酸性基を有する化合物の水溶液を、固定層、移動層又は流動層を用い、回分的または連続的に陰イオン交換樹脂と接触させることにより行うことができるが、経済性、操作性の面から、塔類に該イオン交換樹脂を充填した固定層を用いて連続的に行う方法が好ましく用いられる。
【0017】
この場合、同一分子内に活性メチレン基及び酸性基を有する化合物の水溶液濃度は、通常0.01モル/L〜飽和濃度、好ましくは、0.1〜5モル/Lである。また、流通する際の空間速度(SV)は、通常0.1〜10hr-1、好ましくは0.5〜5hr-1である。なお、SVとは、流通速度〔mL・hr-1〕を充填量〔mL〕で除した値である。さらに、同一分子内に活性メチレン基及び酸性基を有する化合物の流通量は、イオン交換樹脂のアミノ基に対して通常1〜10当量、好ましくは、2〜5当量である。
【0018】
本発明の樹脂へ、精製させたい粗製ニトリルを接触させる方法としては、固定層、移動層又は流動層を用い、回分的又は連続的に流通させて接触させる方法で行うことができるが、経済性、操作性の面から、塔類に該イオン交換樹脂を充填した固定層を用い連続的に行う方法が好ましい。
【0019】
この方法における、粗製ニトリルを流通させる際のSVは、粗製ニトリル中のアルデヒ
ド濃度に依存するが、通常0.1〜20hr-1、好ましくは0.5〜10hr-1である。
【0020】
本発明の樹脂の中で、同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂にイオン交換反応により担持させた樹脂は、アルデヒド吸着後のイオン交換樹脂の再生が容易に行える。すなわち、イオン交換反応により担持させた同一分子内に活性メチレン基及び酸性基を有する化合物の活性メチレン基と、粗製ニトリル中のアルデヒドとが反応を起こして生成した結合物の樹脂からの離脱は、通常の陰イオン交換樹脂の再生方法により極めて容易に行うことができる。例えば、塩基性水溶液に接触させた後、十分に水洗すればよい。次いで、同一分子内に活性メチレン基及び酸性基を有する化合物を再び担持し、蒸留水による洗浄、ニトリルによる水の除去を行った後、再び、アルデヒドを不純物として含む粗製ニトリルの精製に使用することができる。
【0021】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0022】
実施例1〜7
弱塩基性陰イオン交換樹脂レバチットMP62(バイエル社製)15mLを3本のガラスカラムに充填し、室温下で、2N苛性ソーダ水溶液を45mL/hrの速度で4時間通液し、蒸留水1Lで十分に洗浄した。カラム上部より1モル/Lの表1に示す同一分子内に活性メチレン基及び酸性基を有する化合物を15mL/hrの速度で4時間通液して該同一分子内に活性メチレン基及び酸性基を有する化合物をイオン交換樹脂に担持させた。これを蒸留水1Lで十分に洗浄後、ニトリルで水を除去した。次いで、それぞれカラム上部より粗製アクリロニトリル(アクロレイン3ppmを含む)、粗製メタクリロニトリル(メタクロレイン3ppmを含む)、粗製アセトニトリル(アセトアルデヒド3ppmを含む)を45mL/hrの速度で通液させた。通液2日後、カラム下部から流出してきた精製ニトリルをサンプリングし、不純物として含まれるアルデヒドの濃度をガスクロマトグラム装置で測定した。
【0023】
比較例1
弱塩基性陰イオン交換樹脂レバチットMP62(バイエル社製)を強酸性陽イオン交換樹脂アンバーリスト15(オルガノ社製)に、2N苛性ソーダを1N硫酸に、また、同一分子内に活性メチレン基及び酸性基を有する化合物をエチレンジアミンに変えた以外は、実施例1〜7と同様に操作を実施した。
【0024】
比較例2
同一分子内に活性メチレン基及び酸性基を有する化合物を担持させないこと以外は、実施例1〜7と同様に操作を実施した。実施例1〜7及び、比較例1、2の結果を表1、2、3に示す。
【0025】
【表1】

Figure 0004252128
【0026】
【表2】
Figure 0004252128
【0027】
【表3】
Figure 0004252128
【0028】
実施例8
アルデヒドを不純物として含む粗製ニトリルを、粗製アクリロニトリル(アクロレイン3ppmを含む)のみにし、通液日数を40日とした以外は、実施例1と同様に操作を実施した。
【0029】
比較例3
アルデヒドを不純物として含む粗製ニトリルを、粗製アクリロニトリル(アクロレイン3ppmを含む)のみにし、通液日数を40日とした以外は、比較例1と同様に操作を実施した。実施例8、比較例3の結果を表4に示す。
【0030】
【表4】
Figure 0004252128
【0031】
実施例9および比較例4
弱塩基性陰イオン交換樹脂レバチットMP62(バイエル社製)15mLをガラスカラムに充填し、室温下で、2N苛性ソーダ水溶液を45mL/hrの速度で4時間通液し、蒸留水1Lで十分に洗浄した。カラム上部より1モル/Lマロン酸を15mL/hrの速度で4時間通液してマロン酸をイオン交換樹脂に担持させた。この樹脂をビーカーに取り、蒸留水1Lで十分に洗浄後、アクリロニトリルで水を除去した。ここに、アクロレイン5%を含む粗製アクリロニトリル50mLを加え、室温下、5時間攪拌し、さらに一晩放置して樹脂に担持されたマロン酸とアクロレインとの反応を完了させた。この樹脂を再びガラスカラムに充填し、カラム上部より粗製アクリロニトリル(アクロレイン3ppmを含む)を、15mL/hrの速度で3日通液させ、カラム下部から流出してきた精製アクリロニトリルをサンプリングし、不純物として含まれるアクロレインの濃度が3ppmであることを確認した(比較例4)。このイオン交換樹脂を、蒸留水1Lで十分に洗浄し、2N苛性ソーダ水溶液を15mL/hrの速度で4時間通液して再生して、さらに蒸留水1Lで洗浄した。マロン酸の担持および粗製アクリロニトリル(アクロレイン3ppmを含む)の通液を比較例4と同様に行い、通液2日後、カラム下部から流出してきた精製アクリロニトリルをサンプリングし、不純物として含まれるアクロレインの濃度を実施例1〜7と同様に測定した。結果を表5に示す。
【0032】
【表5】
Figure 0004252128
【0033】
実施例10〜13
ダイアイオンWA20、ダウエックスMWA−1、レバチットMP64、アンバーライトIRA68各々15mLをガラスカラムに充填し、室温下で、2N苛性ソーダ水溶液を45mL/hrの速度で4時間通液し、蒸留水1Lで十分に洗浄した。カラム上部より1モル/Lのマロン酸を15mL/hrの速度で4時間通液してイオン交換樹脂に担持させた。これを蒸留水1Lで十分に洗浄後、アクリロニトリルで水を除去した。次いで、それぞれカラム上部より粗製アクリロニトリル(アクロレイン3ppmを含む)を45mL/hrの速度で通液させた。通液2日後、カラム下部から流出してきた精製アクリロニトリルをサンプリングし、不純物として含まれるアクロレインの濃度を実施例1〜7と同様に測定した。結果を表6に示す。
【0034】
【表6】
Figure 0004252128
【0035】
【発明の効果】
本発明の、同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂に担持させてなる樹脂は、活性メチレン基がアルデヒドと迅速に反応するため、アルデヒドの除去レベルが高く、また、陰イオン交換樹脂に反応吸着する官能基は担持化合物中の酸性基であり、アルデヒドと反応する官能基は担持化合物中の活性メチレン基であるので、貫流交換容量が十分大きく、効果的に粗製ニトリル中の不純物アルデヒドを除去することができる。さらに、不純物と反応させた後、不純物と結合している、同一分子内に活性メチレン基及び酸性基を有する化合物は、通常のイオン交換樹脂再生法により容易にイオン交換樹脂から離脱させることができるため、不純物の除去能力を失った樹脂の再生を行うことが可能である。
【0036】
従って、粗製ニトリル中のアルデヒドを効率的に精製することができ、工業的に極めて価値が高い。[0001]
[Field of the Invention]
The present invention relates to a method for effectively and inexpensively removing aldehyde from a crude nitrile containing aldehyde as an impurity .
[0002]
[Prior art]
Nitriles, especially many aliphatic nitriles, are obtained by ammoxidation of olefins, in which aldehydes are included in trace amounts as impurities. These aldehydes cause problems such as contamination of the system and coloration of the product in the nitrile recovery process. Further, with the recent development of chemical technology, higher purity nitriles are required. However, nitriles and aldehydes contained as impurities often have a low relative volatility, and require a large number of distillation stages to be separated simply by distillation, which consumes a lot of energy and is extremely uneconomical. Therefore, resins that effectively remove aldehydes from crude nitriles containing aldehydes as impurities are highly desired, and several resins have been used so far.
[0003]
For example, as a resin for removing acrolein in crude acrylonitrile, a porous anion exchange resin having a primary and / or secondary amino group as an exchange group (Japanese Patent Publication No. 58-1108), a gel anion exchange resin (special There are ion exchange resins such as No. 58-134063), and these ion exchange resins can specifically remove aldehydes without increasing new impurities in the system.
[0004]
However, an anion exchange resin having a primary and / or secondary amino group as an exchange group has an aldehyde that forms a covalent bond with the amino group of the resin through an amino-carbonyl reaction. Inability to leave the aldehyde. Therefore, it is difficult to recycle the ion exchange resin, and it must be used on the premise that it is disposable, which increases processing costs and is extremely uneconomical. Furthermore, the aldehyde removal level is also insufficient.
[0005]
Further, as the resin to remove the aldehyde as an impurity in the crude nitrile, there are polyvalent amine cation exchange resins was supported, the resin mixture was allowed to adsorb aldehyde in the crude nitrile, impossible aldehyde removal The resulting ion exchange resin can be regenerated by bringing it into contact with an acidic aqueous solution and washing it with water (Japanese Patent Laid-Open No. 10-7638). According to the knowledge of the present inventors, the removal level of aldehyde that can be reached with this resin is not sufficient as in the case of gel type anion exchange resin (Japanese Patent Laid-Open No. 58-134063). Furthermore, the functional group that reacts and adsorbs with the cation exchange resin and the functional group that reacts with the aldehyde are both amino groups, and the utilization rate of the supported polyvalent amine is low. It is less than 05 mol / L-resin and is not satisfactory.
[0006]
[Problems to be solved by the invention]
The present invention removes aldehyde from a crude nitrile containing impurities as an impurity by using an anion exchange resin that can be regenerated and has a satisfactory once-through exchange capacity of 0.15 to 0.25 mol / L-resin. It is an object to provide a method for removing at a level .
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that a resin obtained by supporting an anion exchange resin with a compound having an active methylene group and an acidic group in the same molecule is extremely effective. It came to.
[0008]
That is, the present invention relates to a method for removing an aldehyde from a crude nitrile containing an aldehyde as an impurity, using a resin obtained by supporting an anion exchange resin with a compound having an active methylene group and an acidic group in the same molecule. .
[0009]
Herein, the active methylene group has a general formula of X—CH 2 —Y as described in, for example, Organic Reactions Vol. 15 (1967), JOHN WILEY & SONS, INC., Page 223. , X and Y are NO 2 , CN, COR, COAr, CONHR, CONHAr, CO 2 R, CO 2 H, SO 2 , S, Ar, and / or Ar having an electron withdrawing group in the para position It is a functional group such as a pyridinium salt and its similar heterocycle, and refers to a methylene group in which a methylene group is bonded to these functional groups. However, R represents an alkyl group and Ar represents an aryl group.
[0010]
The compound used in the support of the present invention has an acidic group together with an active methylene group, and the types as the acidic group include a carboxyl group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group, a phosphinic acid group, Etc.
[0011]
Among such acidic groups, the carboxyl group and the sulfonic acid group also correspond to the above X and Y, and also serve as the acidic group. Therefore, if X or Y is an acidic group, the compound is not necessarily X or Y. May not have an acidic group. Such a compound is preferable because it has a simple structure and thus has advantages such as being inexpensive and easily available.
[0012]
Examples of such compounds in which X and Y also serve as an acidic group include malonic acid, malonic acid monoester, malonic acid monoamide, cyanoacetic acid, acetoacetic acid, acetone dicarboxylic acid, sulfoacetic acid, sulfoacetic acid ester, sulfoacetic acid amide, Examples include acetone sulfonic acid.
[0013]
Among these, α-substituted acetic acid in which the carbon of the methyl group of acetic acid is substituted with the aforementioned X and Y functional groups, that is, malonic acid, monomethyl malonate, monoethyl malonate, cyanoacetic acid, acetoacetic acid, sulfoacetic acid, acetone Dicarboxylic acids are particularly preferred because of their effects and availability. These α-substituted acetic acids may be used alone or in combination of two or more.
[0014]
The anion exchange resin used in the present invention is not particularly limited, but a weakly basic or moderately basic anion exchange resin is preferable in order not to hydrolyze the nitrile. Specifically, weakly basic resins such as Levacit MP62 (trade name, manufactured by Bayer), Diaion WA20 (trade name, manufactured by Mitsubishi Chemical), Dowex MWA-1 (trade name, manufactured by Dow Chemical), Alternatively, medium basic resins such as Levacit MP64 (trade name, manufactured by Bayer) and Amberlite IRA68 (trade name, manufactured by Organo) can be used. These anion exchange resins are preferably pre-treated with a dilute alkali in advance and then washed thoroughly with water before use.
[0015]
As the nitrile of the crude nitrile used in the present invention, both aliphatic nitriles and aromatic nitriles are targeted, and specifically, for example, carbon number 2 such as acrylonitrile, methacrylonitrile, acetonitrile and propionitrile. to 4 aliphatic nitriles, aromatic nitriles, such as downy Nzonitoriru, the aldehyde contained in the crude nitrile is acrolein, methacrolein, acetaldehyde, propylene and benzaldehyde.
[0016]
The method of supporting an anion exchange resin with a compound having an active methylene group and an acidic group in the same molecule is, for example, an aqueous solution of a compound having an active methylene group and an acidic group in the same molecule as the ion exchange resin, This can be carried out by contacting the anion exchange resin batchwise or continuously using a moving bed or a fluidized bed. From the viewpoint of economy and operability, a fixed bed in which the ion exchange resin is packed in the towers. A method of continuously using the is preferably used.
[0017]
In this case, the aqueous solution concentration of the compound having an active methylene group and an acidic group in the same molecule is usually 0.01 mol / L to a saturated concentration, preferably 0.1 to 5 mol / L. Moreover, the space velocity (SV) at the time of distribution is 0.1 to 10 hr < -1 > normally, Preferably it is 0.5 to 5 hr < -1 >. In addition, SV is a value obtained by dividing the flow rate [mL · hr −1 ] by the filling amount [mL]. Furthermore, the circulation amount of the compound having an active methylene group and an acidic group in the same molecule is usually 1 to 10 equivalents, preferably 2 to 5 equivalents, relative to the amino group of the ion exchange resin.
[0018]
As a method of bringing the crude nitrile to be purified into contact with the resin of the present invention, a fixed bed, a moving bed or a fluidized bed can be used. From the viewpoint of operability, a method of continuously performing using a fixed layer in which the towers are filled with the ion exchange resin is preferable.
[0019]
The SV when the crude nitrile is circulated in this method depends on the aldehyde concentration in the crude nitrile, but is usually from 0.1 to 20 hr −1 , preferably from 0.5 to 10 hr −1 .
[0020]
Among the resins of the present invention, a resin in which a compound having an active methylene group and an acidic group in the same molecule is supported on an anion exchange resin by an ion exchange reaction can easily regenerate the ion exchange resin after aldehyde adsorption. . That is, the release from the resin of the bond formed by the reaction between the active methylene group of the compound having an active methylene group and an acidic group in the same molecule supported by the ion exchange reaction and the aldehyde in the crude nitrile, This can be done very easily by a conventional method for regenerating anion exchange resin. For example, after contacting with a basic aqueous solution, it may be sufficiently washed with water. Next, a compound having an active methylene group and an acidic group in the same molecule is supported again, washed with distilled water, removed with nitrile, and then used again for purification of crude nitrile containing aldehyde as an impurity. Can do.
[0021]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[0022]
Examples 1-7
15 mL of weakly basic anion exchange resin Levacit MP62 (manufactured by Bayer) is packed into three glass columns, and 2N sodium hydroxide aqueous solution is passed at a rate of 45 mL / hr for 4 hours at room temperature, and 1 L of distilled water is sufficient. Washed. A compound having an active methylene group and an acidic group in the same molecule shown in Table 1 at 1 mol / L from the top of the column is passed for 4 hours at a rate of 15 mL / hr, and the active methylene group and acidic group are introduced into the same molecule. The compound having it was supported on an ion exchange resin. This was sufficiently washed with 1 L of distilled water, and then water was removed with nitrile. Next, crude acrylonitrile (including 3 ppm of acrolein), crude methacrylonitrile (including 3 ppm of methacrolein), and crude acetonitrile (including 3 ppm of acetaldehyde) were passed from the top of the column at a rate of 45 mL / hr. Two days after the passage, the purified nitrile flowing out from the bottom of the column was sampled, and the concentration of aldehyde contained as an impurity was measured with a gas chromatogram apparatus.
[0023]
Comparative Example 1
Weakly basic anion exchange resin Levacit MP62 (manufactured by Bayer) is used as strongly acidic cation exchange resin Amberlyst 15 (manufactured by Organo), 2N caustic soda is used as 1N sulfuric acid, and active methylene groups and acidic groups are contained in the same molecule. The operation was carried out in the same manner as in Examples 1 to 7 except that the compound having an A was changed to ethylenediamine.
[0024]
Comparative Example 2
The operation was carried out in the same manner as in Examples 1 to 7 except that no compound having an active methylene group and an acidic group was supported in the same molecule. The results of Examples 1 to 7 and Comparative Examples 1 and 2 are shown in Tables 1, 2, and 3.
[0025]
[Table 1]
Figure 0004252128
[0026]
[Table 2]
Figure 0004252128
[0027]
[Table 3]
Figure 0004252128
[0028]
Example 8
The operation was carried out in the same manner as in Example 1 except that the crude nitrile containing aldehyde as an impurity was changed to only crude acrylonitrile (including 3 ppm of acrolein) and the liquid passage time was 40 days.
[0029]
Comparative Example 3
The operation was carried out in the same manner as in Comparative Example 1 except that the crude nitrile containing aldehyde as an impurity was changed to crude acrylonitrile (including 3 ppm of acrolein) and the liquid passage time was 40 days. Table 4 shows the results of Example 8 and Comparative Example 3.
[0030]
[Table 4]
Figure 0004252128
[0031]
Example 9 and Comparative Example 4
A glass column was charged with 15 mL of weakly basic anion exchange resin Levacit MP62 (manufactured by Bayer), and 2N sodium hydroxide aqueous solution was passed at a rate of 45 mL / hr for 4 hours at room temperature, and washed thoroughly with 1 L of distilled water. . 1 mol / L malonic acid was passed from the top of the column at a rate of 15 mL / hr for 4 hours to allow malonic acid to be supported on the ion exchange resin. This resin was taken in a beaker, thoroughly washed with 1 L of distilled water, and then water was removed with acrylonitrile. To this, 50 mL of crude acrylonitrile containing 5% acrolein was added, stirred at room temperature for 5 hours, and allowed to stand overnight to complete the reaction between malonic acid supported on the resin and acrolein. This resin is filled again into a glass column, and crude acrylonitrile (including 3 ppm of acrolein) is passed through the column at a rate of 15 mL / hr for 3 days, and purified acrylonitrile flowing out from the bottom of the column is sampled and contained as impurities. It was confirmed that the concentration of acrolein produced was 3 ppm (Comparative Example 4). This ion exchange resin was sufficiently washed with 1 L of distilled water, regenerated by passing a 2N aqueous sodium hydroxide solution at a rate of 15 mL / hr for 4 hours, and further washed with 1 L of distilled water. Malonic acid was supported and crude acrylonitrile (including 3 ppm of acrolein) was passed in the same manner as in Comparative Example 4, and after 2 days, the purified acrylonitrile flowing out from the bottom of the column was sampled, and the concentration of acrolein contained as an impurity was determined. Measurement was performed in the same manner as in Examples 1-7. The results are shown in Table 5.
[0032]
[Table 5]
Figure 0004252128
[0033]
Examples 10-13
DIAION WA20, Dowex MWA-1, Levacit MP64, Amberlite IRA68 15mL each is packed in a glass column, 2N sodium hydroxide aqueous solution is passed at a rate of 45mL / hr for 4 hours at room temperature, and 1L of distilled water is sufficient. Washed. From the upper part of the column, 1 mol / L of malonic acid was passed for 4 hours at a rate of 15 mL / hr and supported on the ion exchange resin. This was sufficiently washed with 1 L of distilled water, and then water was removed with acrylonitrile. Next, crude acrylonitrile (containing 3 ppm of acrolein) was passed through the column at a rate of 45 mL / hr. Two days after the passage, purified acrylonitrile flowing out from the lower part of the column was sampled, and the concentration of acrolein contained as an impurity was measured in the same manner as in Examples 1-7. The results are shown in Table 6.
[0034]
[Table 6]
Figure 0004252128
[0035]
【The invention's effect】
The resin of the present invention in which a compound having an active methylene group and an acidic group in the same molecule is supported on an anion exchange resin has a high aldehyde removal level because the active methylene group reacts rapidly with the aldehyde. , functional group reacting adsorbed on the anion exchange resin is an acidic group in the supported compounds, since functional group reactive with the aldehyde are active methylene group in the supported compounds, throughflow exchange capacity is sufficiently large, effectively crude Impurity aldehydes in the nitrile can be removed. Further, after reacting with the impurity, the compound having an active methylene group and an acidic group in the same molecule bonded to the impurity can be easily detached from the ion exchange resin by a normal ion exchange resin regeneration method. Therefore, it is possible to regenerate the resin that has lost the ability to remove impurities.
[0036]
Therefore, the aldehyde in the crude nitrile can be purified efficiently and is extremely valuable industrially.

Claims (7)

同一分子内に活性メチレン基及び酸性基を有する化合物を陰イオン交換樹脂に担持させた樹脂を用いて、アルデヒドを不純物として含む粗製ニトリルからアルデヒドを除去する方法 A method of removing an aldehyde from a crude nitrile containing an aldehyde as an impurity, using a resin obtained by supporting an anion exchange resin with a compound having an active methylene group and an acidic group in the same molecule. 活性メチレン基が、下記の一般式で表されるメチレン基である請求項1記載の粗製ニトリルからアルデヒドを除去する方法
Figure 0004252128
(式中、X及びYは、NO2 、CN、COR、COAr、CONHR、CONHAr、CO2 R、CO2 H、SO2 、S、オルト位及び/又はパラ位に電子吸引基を有するAr、並びに4級ピリジニウム塩のうちのいずれかである。但し、Rはアルキル基、Arはアリール基を表す。)
The method for removing aldehyde from a crude nitrile according to claim 1, wherein the active methylene group is a methylene group represented by the following general formula.
Figure 0004252128
(Wherein X and Y are NO 2 , CN, COR, COAr, CONHR, CONHAr, CO 2 R, CO 2 H, SO 2 , S, Ar 2 having an electron withdrawing group at the ortho position and / or para position , And a quaternary pyridinium salt , wherein R represents an alkyl group and Ar represents an aryl group.)
酸性基が、カルボキシル基、スルホン酸基、スルフィン酸基、ホスホン酸基又はホスフィン酸基である請求項1記載の粗製ニトリルからアルデヒドを除去する方法The method for removing an aldehyde from a crude nitrile according to claim 1, wherein the acidic group is a carboxyl group, a sulfonic acid group, a sulfinic acid group, a phosphonic acid group or a phosphinic acid group. 同一分子内に活性メチレン基及び酸性基を有する化合物が、α−置換酢酸である請求項1記載の粗製ニトリルからアルデヒドを除去する方法The method for removing an aldehyde from a crude nitrile according to claim 1, wherein the compound having an active methylene group and an acidic group in the same molecule is α-substituted acetic acid. α−置換酢酸がマロン酸、マロン酸モノメチル、マロン酸モノエチル、シアノ酢酸、アセト酢酸、スルホ酢酸又はアセトンジカルボン酸である請求項4記載の粗製ニトリルからアルデヒドを除去する方法The method for removing aldehyde from a crude nitrile according to claim 4, wherein the α-substituted acetic acid is malonic acid, monomethyl malonate, monoethyl malonate, cyanoacetic acid, acetoacetic acid, sulfoacetic acid or acetonedicarboxylic acid. 同一分子内に活性メチレン基及び酸性基を有する化合物の担持量が、陰イオン交換樹脂のアミノ基に対して0.50〜1.0当量である請求項1記載の粗製ニトリルからアルデヒドを除去する方法The aldehyde is removed from the crude nitrile according to claim 1, wherein the amount of the compound having an active methylene group and an acidic group in the same molecule is 0.50 to 1.0 equivalent relative to the amino group of the anion exchange resin. Way . 前記陰イオン交換樹脂が、弱塩基性又は中塩基性陰イオン交換樹脂であることを特徴とする請求項1に記載の粗製ニトリルからアルデヒドを除去する方法 The method for removing aldehyde from a crude nitrile according to claim 1, wherein the anion exchange resin is a weakly basic or medium basic anion exchange resin .
JP18291598A 1998-06-29 1998-06-29 Method for removing aldehyde from crude nitrile containing aldehyde as impurity Expired - Fee Related JP4252128B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18291598A JP4252128B2 (en) 1998-06-29 1998-06-29 Method for removing aldehyde from crude nitrile containing aldehyde as impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18291598A JP4252128B2 (en) 1998-06-29 1998-06-29 Method for removing aldehyde from crude nitrile containing aldehyde as impurity

Publications (2)

Publication Number Publication Date
JP2000015113A JP2000015113A (en) 2000-01-18
JP4252128B2 true JP4252128B2 (en) 2009-04-08

Family

ID=16126619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18291598A Expired - Fee Related JP4252128B2 (en) 1998-06-29 1998-06-29 Method for removing aldehyde from crude nitrile containing aldehyde as impurity

Country Status (1)

Country Link
JP (1) JP4252128B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101162810B1 (en) * 2006-04-06 2012-07-05 미쓰이 가가쿠 가부시키가이샤 Method of producing acrylamide
JP4959683B2 (en) 2006-04-06 2012-06-27 三井化学株式会社 Method for producing acrylamide

Also Published As

Publication number Publication date
JP2000015113A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
KR101840951B1 (en) Aldehyde adsorbent, method for removing aldehyde, method for producing acetic acid, and method for regenerating aldehyde adsorbent
CN1029841C (en) Process for regenerating carbonylation catalyst solution to remove corrosion metals
JP5153335B2 (en) Method for producing high purity acetonitrile
EP0618185A1 (en) Process for the removal of corrosion metal contaminants from liquid compositions
US20060189833A1 (en) Treatment of an aqueous mixture containing an alkylene oxide with an ion exchange resin
EP0814076B1 (en) Purification of nitrile
JP3868118B2 (en) Purification method of nitrile
JP4252128B2 (en) Method for removing aldehyde from crude nitrile containing aldehyde as impurity
JPH0629221B2 (en) Method for catalytic production of alkoxylated ester
JP4018751B2 (en) Process for purification of intermediates during the preparation of iopamidol
KR950002838B1 (en) Process for the preparation of azines
CZ296096B6 (en) Process for preparing N,N&#39;-bis[2, 3-dihydroxypropyl]-5-[(hydroxyacetyl) methylamino]-2, 4,6-triiodo-1,3-benzenedicarboxamide
JP3243891B2 (en) Purification method of pyruvate
JP4190032B2 (en) Method for purifying amino alcohol
JP2001288147A (en) Method for producing methyl methacrylate
US5030750A (en) Process for preparing DL-serine and process for separation and purification of the same
JP3804818B2 (en) Method for producing dialkyl oxalate
JPH0631306B2 (en) Process for producing crystals of cytidine-5&#39;-choline diphosphate monohydrate
JPH10130218A (en) Method for removing water and ammonia from effluent from benzophenone imine reactor
JP2002105022A (en) Method for producing 2-alkyl-2-adamantyl ester
JPS5836680B2 (en) Method for producing sebacic acid diester
JPH0466215B2 (en)
CA2229470C (en) Process for the purification of an intermediate in the preparation of iopamidol
JPH0215042A (en) Method for purifying diacetone alcohol
JPH07126235A (en) Production of ketazine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051122

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees