JP4250730B2 - Diamond thermocouple temperature sensor - Google Patents

Diamond thermocouple temperature sensor Download PDF

Info

Publication number
JP4250730B2
JP4250730B2 JP04163999A JP4163999A JP4250730B2 JP 4250730 B2 JP4250730 B2 JP 4250730B2 JP 04163999 A JP04163999 A JP 04163999A JP 4163999 A JP4163999 A JP 4163999A JP 4250730 B2 JP4250730 B2 JP 4250730B2
Authority
JP
Japan
Prior art keywords
diamond
thermocouple
temperature sensor
temperature
heat sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04163999A
Other languages
Japanese (ja)
Other versions
JP2000241253A (en
Inventor
清男 河野
Original Assignee
清男 河野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清男 河野 filed Critical 清男 河野
Priority to JP04163999A priority Critical patent/JP4250730B2/en
Publication of JP2000241253A publication Critical patent/JP2000241253A/en
Application granted granted Critical
Publication of JP4250730B2 publication Critical patent/JP4250730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダイヤ熱電対温度センサに係り、特に、耐摩耗性および応答性に優れた安価なダイヤ熱電対温度センサに関する。
【0002】
【従来の技術】
従来から接触式の温度センサの一種として熱電対温度センサが、アスファルト製造装置、加熱炉、重油燃焼炉、薄膜形成装置などの各種の装置における温度測定に用いられている。
【0003】
このような従来の熱電対温度センサの一種として、熱電対の先端部に位置する測温部をダイヤモンドにより形成された感熱体を介して被測定体に接するように形成したダイヤ熱電対温度センサが、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができるなどの理由により提案されている。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のダイヤ熱電対温度センサにおいては、ダイヤモンドとして単結晶のダイヤモンドが用いられており、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができるものの、ダイヤモンドそのものの価格が高く、ダイヤモンドの加工に時間を要し製造コストが高いという問題点があった。
【0005】
そこで、耐摩耗性および応答性に優れた安価なダイヤ熱電対温度センサが求められている。
【0006】
本発明はこれらの点に鑑みてなされたものであり、耐摩耗性および応答性に優れた安価なダイヤ熱電対温度センサを提供することを目的とする。
【0007】
【課題を解決するための手段】
前述した目的を達成するため特許請求の範囲の請求項1に記載の本発明のダイヤ熱電対温度センサの特徴は、熱電対の先端部に位置する測温部先端をダイヤモンド焼結体により形成された感熱体を介して被測定体に接するように形成し、さらに前記熱電対の測温部の周囲に、少なくともダイヤモンドの微粒とタングステンカーバイドの微粉末とが容量比で1対1の割合で配合されてなるダイヤモンド焼結体により形成された保護体を設けた点にある。ここでいうダイヤモンド焼結体とは、ダイヤモンドの微粒を硬質要素材料とし、金属、セラミックスなどの微粉末とともに、高温高圧条件にて焼結したもので、例えば、米国GE社のコンパックス(商品名)や南アフリカのデ・ビアス社のシンダイト(商品名)工具素材のようにダイヤモンド砥粒の含有比率が極めて高く、砥粒同士の直接結合により機械的な強度を有するものである。そして、このような構成を採用したことにより、ダイヤモンド焼結体により形成された感熱体は、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができるとともに、焼結により形成されるので加工を容易に行うことができ、その結果、耐摩耗性および応答性に優れた安価なものを容易に得ることができる。また、保護体は、耐摩耗性に優れているので、被測定体が熱電対の測温部を摩耗させやすいものである場合においても、熱電対の測温部が被測定体と直接接触するのを防止することができるので、熱電対の測温部の摩耗を長期間に亘り確実に防止することができる。
【0009】
【発明の実施の形態】
以下、本発明を図面に示す実施形態により説明する。
【0010】
図1は本発明に係るダイヤ熱電対温度センサの実施形態の要部を示す拡大縦断面図である。
【0011】
本実施形態のダイヤ熱電対温度センサ1は、アスファルト製造プラントのミキサーの内部で混練りするアスファルト合材の温度測定に用いるものである。
【0012】
図1に示すように、本実施形態のダイヤ熱電対温度センサ1は、熱電対2と、感熱体3と、保護体4と、取付体5とを有している。
【0013】
前記熱電対2は、CA(クロメル・アルメル)の熱電対素線(図示せず)を具備し、例えば直径3.2mm程度の棒状に形成されたシース熱電対と称されるものであり、熱電対2の図1左方に示す先端部が測温部7とされている。なお、熱電対2としては、一般的な素線により形成されたものでもよい。また、熱電対素線としては、CA(クロメル・アルメル)の熱電対素線だけでなく、各種のものから測定対象温度などの必要に応じて選択することができる。
【0014】
前記感熱体3は、ダイヤモンド焼結体により、例えば直径6mm程度、厚さ0.7mm程度の円盤状に形成されており、この感熱体3の右端面には、熱電対2の先端部に位置する測温部7の先端が当接されており、感熱体3の左端面は、図示しない被測定体が接するようになっている。
【0015】
すなわち、本実施形態のダイヤ熱電対温度センサ1は、熱電対2の先端部に位置する測温部7の先端をダイヤモンド焼結体により形成された感熱体3を介して被測定体に接するように形成されている。
【0016】
また、ここでいうダイヤモンド焼結体とは、ダイヤモンドの微粒を硬質要素材料とし、金属、セラミックスなどの微粉末とともに、高温高圧条件にて焼結したもので、例えば、米国GE社のコンパックス(商品名)や南アフリカのデ・ビアス社のシンダイト(商品名)工具素材のようにダイヤモンド砥粒の含有比率が極めて高く、砥粒同士の直接結合により機械的な強度を有するものである。
【0017】
前記保護体4は、少なくともダイヤモンドの微粒とタングステンカーバイドの微粉末とが容量比で1対1の割合で配合されてなるダイヤモンド焼結体により、リング状に形成されており、この保護体4の軸心部には、感熱体が固着される取付孔12が形成されている。この取付孔12は、図1左方に示す左端側に位置する小径部13と、図1右方に示す右端側に位置する大径部14とにより2段に形成されている。この小径部13は、例えば直径4mm程度、長さ1.5mm程度に形成されており、大径部14は、例えば直径6.2mm程度に形成されている。そして、大径部14の底部分に前記感熱体3が配設されている。また、大径部14には、前記熱電対2が感熱体3の図1右方に示す右端面に測温部7の先端が当接するようにして配設されており、感熱体3の図1左方に示す左端面には、被測定体が接するようになっている。
【0018】
すなわち、熱電対2の先端部に位置する測温部7の周囲に保護体4が設けられている。
【0019】
本実施形態における感熱体3と保護体4とは、それぞれ個別に形成された後、ロー付けなどにより固着されて、全体として一体化されている。
【0020】
前記取付体5は、熱電対2を図示しないアスファルト製造プラントのミキサーに取着するためのものであり、例えば、SS400(JIS G 3101 1995)などの素材により形成されている。そして、本実施形態における取付体5は、ミキサーのミキサーライナーを固定するねじ孔(図示せず)に螺合されるねじ部10と、ミキサー(図示せず)の内部に配設される皿状の頭部11とにより全体として皿ボルト状に形成されている。
【0021】
前記取付体5の軸心部には、前記熱電対2が装着される貫通孔15が形成されている。この貫通孔15の直径は、前記保護体4の大径部14とほぼ同一寸法に形成されている。
【0022】
また、少なくとも保護体4の大径部14および取付体5の貫通孔15のそれぞれの内面と、熱電対2の外周面との間に形成される隙間には、例えばシリコン樹脂などの封止材16が充填されて密封されており、保護体4の小径部13内を通過して感熱体3に接した被測定体が大径部14を通過して外部へ漏洩するのを確実に防止するとともに、熱電対2を保護体4の大径部14および取付体5の貫通孔15内に固定することができるようになっている。
【0023】
なお、取付体5の外径形状は、ダイヤ熱電対温度センサ1の取付部位の形状などの必要に応じて、棒状などの各種の形状に変更することができる。
【0024】
さらに、感熱体3および保護体4の形状は、ダイヤ熱電対温度センサ1の取付位置や被測定体の種類などの必要に応じて変更することができる。
【0025】
つぎに、前述した構成からなる本実施形態の作用について説明する。
【0026】
本実施形態のダイヤ熱電対温度センサ1は、図示しないアスファルト製造プラントのミキサーのミキサーライナーを固定するねじ孔に取付体5のねじ部10をミキサーの内部側から螺合することにより、保護体4および取付体5の頭部11がミキサーの内部に位置するように取り付けられて設置が終了する。このダイヤ熱電対温度センサ1の取り付けは、アスファルト製造プラントの運転停止状態において行う。
【0027】
そして、アスファルト製造プラントが運転されると、ミキサーの内部で混練りされる被測定体としてのアスファルト合材(図示せず)が保護体4の小径部13を介して感熱体3に接触し、アスファルト合材の温度が感熱体3を介して熱電対2の先端部に位置する測温部7に伝達し温度測定がなされる。
【0028】
この時、ダイヤモンド焼結体により形成された感熱体3は、熱伝導率が540Wm-1-1であり、従来の単結晶のダイヤモンドにより形成された感熱体の熱伝導率とほぼ同等なので、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができる。
【0029】
図2は本発明のダイヤモンド焼結体によって形成された感熱体3を用いたダイヤ熱電対温度センサ1の熱応答性を示すものである。この図2においては、アスファルト製造時のミキサー内部の温度を、ミキサー内部に設置した温度計によって測定した実際温度と、本発明のダイヤ熱電対温度センサ1によって測定した本発明品温度と、従来のタングステンカーバイドを感熱体として用いた熱電対温度センサによって測定した従来品温度とを時間経過とともに示している。
【0030】
この図2からわかるように、従来品の熱電対温度センサは、実際温度への追随性が非常に悪いが、本発明品のダイヤ熱電対温度センサ1は、実際温度にほぼ追随して温度を検出でき、非常に熱応答性が高く、精度の高い温度測定を行うことができる。
【0031】
なお、タングステンカーバイドの熱伝導率は100Wm-1-1であり、単結晶ダイヤモンドの熱伝導率は500〜2000Wm-1-1である。
【0032】
さらに、ダイヤモンド焼結体により形成された感熱体3、および、少なくともダイヤモンドの微粒とタングステンカーバイドの微粉末とが容量比で1対1の割合で配合されてなるダイヤモンド焼結体により形成された保護体4は、両者ともに焼結により容易かつ精度良く形成することができるので、製造コストを低減することができるし、ダイヤモンドの微粒からなる素材自身のコストは、使用量が多くても従来の単結晶のダイヤモンドのコストより低廉である。
【0033】
したがって、本実施形態のダイヤ熱電対温度センサ1のダイヤモンド焼結体により形成された感熱体3は、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができるとともに、焼結により形成されるので加工を容易に行うことができ、その結果、耐摩耗性および応答性に優れた安価なものを容易に得ることができる。
【0034】
また、本実施形態のダイヤ熱電対温度センサ1の保護体4によれば、保護体4自身が耐摩耗性に優れており、しかも熱伝導性も優れているので、被測定体が熱電対2の測温部7を摩耗させやすいものである場合においても、熱電対2の測温部7が被測定体と直接接触するのを防止することができるので、熱電対2の測温部7の摩耗を長期間に亘り確実に防止することができる。したがって、被測定体が熱電対2の測温部7を摩耗しやすいものである場合においても、ダイヤ熱電対温度センサ1の長寿命化を容易に図ることができ、その結果、ダイヤ熱電対温度センサ1の交換頻度を少なくすることができるので、交換に要する時間およびコストを低減することができる。
【0037】
さらに、本実施形態のダイヤ熱電対温度センサ1は、アスファルト製造プラントにおいては、ミキサー部だけでなく、ホットビン部、ホットシュート部、合材サイロ部などの各種の部分に温度測定に用いることができる。
【0038】
さらにまた、本実施形態のダイヤ熱電対温度センサ1は、アスファルト製造プラント以外にも、例えばアスファルトフィニッシャーで道路の路面を舗装した直後の路面温度の測定や、薄膜製造装置における内部温度の測定などの多種多様の温度測定に用いることができる。
【0039】
なお、本発明は、前記実施形態に限定されるものではなく、必要に応じて種々変更することができる。
【0040】
【発明の効果】
以上説明したように請求項1に記載の本発明のダイヤ熱電対温度センサによれば、ダイヤモンド焼結体により形成された感熱体は、熱伝導率が高く応答速度が速いので正確な温度測定を行うことができるとともに、焼結により形成されるので加工を容易に行うことができ、その結果、耐摩耗性および応答性に優れた安価なものを容易に得ることができるなどの極めて優れた効果を奏する。さらに、保護体は、耐摩耗性に優れているので、被測定体が熱電対の測温部を摩耗させやすいものである場合においても、熱電対の測温部が被測定体と直接接触するのを防止することができるので、熱電対の測温部の摩耗を長期間に亘り確実に防止することができるなどの極めて優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明に係るダイヤ熱電対温度センサの実施形態の要部を示す拡大縦断面図
【図2】 実際温度と、本発明のダイヤ熱電対温度センサによって測定した本発明品温度と、従来のタングステンカーバイドを感熱体として用いた熱電対温度センサによって測定した従来品温度とを時間経過とともに示す線図
【符号の説明】
1 ダイヤ熱電対温度センサ
2 熱電対
3 感熱体
4 保護体
5 取付体
7 測温部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a diamond thermocouple temperature sensor, and more particularly, to an inexpensive diamond thermocouple temperature sensor excellent in wear resistance and responsiveness.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a thermocouple temperature sensor is used as a kind of contact temperature sensor for temperature measurement in various apparatuses such as an asphalt manufacturing apparatus, a heating furnace, a heavy oil combustion furnace, and a thin film forming apparatus.
[0003]
As one type of such a conventional thermocouple temperature sensor, a diamond thermocouple temperature sensor is formed such that a temperature measuring portion located at a tip portion of a thermocouple is in contact with an object to be measured through a heat sensitive body formed of diamond. It has been proposed for the reason that accurate temperature measurement can be performed because of high thermal conductivity and high response speed.
[0004]
[Problems to be solved by the invention]
However, in conventional diamond thermocouple temperature sensors, single crystal diamond is used as the diamond, and since the thermal conductivity is high and the response speed is fast, accurate temperature measurement can be performed, but the price of the diamond itself is low. There is a problem that it is expensive, time is required for processing of diamond, and manufacturing cost is high.
[0005]
Therefore, an inexpensive diamond thermocouple temperature sensor excellent in wear resistance and responsiveness is required.
[0006]
The present invention has been made in view of these points, and an object thereof is to provide an inexpensive diamond thermocouple temperature sensor excellent in wear resistance and responsiveness.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the diamond thermocouple temperature sensor according to claim 1 of the present invention is characterized in that the tip of the temperature measuring portion located at the tip of the thermocouple is formed of a diamond sintered body. It is formed so as to be in contact with the object to be measured through the heat sensitive body , and at least a diamond particle and a tungsten carbide powder are blended at a volume ratio of 1: 1 on the periphery of the temperature measuring part of the thermocouple. The protection body formed by the diamond sintered body thus formed is provided . The diamond sintered body here is a diamond element made of hard element material and sintered together with fine powders such as metal and ceramics under high temperature and high pressure conditions. For example, Compass (trade name of US GE) ) And Syndite (trade name) tool material of De Beers in South Africa, the content ratio of diamond abrasive grains is extremely high, and has mechanical strength due to direct bonding of the abrasive grains. And by adopting such a configuration, the heat sensitive body formed of the diamond sintered body has a high thermal conductivity and a high response speed, so that it can perform accurate temperature measurement and is formed by sintering. Therefore, processing can be easily performed, and as a result, an inexpensive product excellent in wear resistance and responsiveness can be easily obtained. In addition, since the protective body is excellent in wear resistance, the thermocouple temperature measuring part is in direct contact with the object to be measured even when the object to be measured easily wears the temperature measuring part of the thermocouple. Therefore, it is possible to reliably prevent wear of the temperature measuring portion of the thermocouple over a long period of time.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to embodiments shown in the drawings.
[0010]
FIG. 1 is an enlarged longitudinal sectional view showing a main part of an embodiment of a diamond thermocouple temperature sensor according to the present invention.
[0011]
The diamond thermocouple temperature sensor 1 of this embodiment is used for measuring the temperature of an asphalt mixture kneaded inside a mixer of an asphalt production plant.
[0012]
As shown in FIG. 1, the diamond thermocouple temperature sensor 1 of the present embodiment includes a thermocouple 2, a heat sensitive body 3, a protector 4, and an attachment body 5.
[0013]
The thermocouple 2 includes a CA (chromel-alumel) thermocouple wire (not shown), and is called a sheathed thermocouple formed in a rod shape having a diameter of about 3.2 mm, for example. The tip of the pair 2 shown on the left side of FIG. Note that the thermocouple 2 may be formed of a general strand. The thermocouple wires can be selected from various types as required, such as the temperature to be measured, as well as CA (chromel / alumel) thermocouple wires.
[0014]
The heat sensitive body 3 is formed of a diamond sintered body, for example, in a disk shape having a diameter of about 6 mm and a thickness of about 0.7 mm, and the right end surface of the heat sensitive body 3 is positioned at the tip of the thermocouple 2. The tip of the temperature measuring unit 7 is in contact with the left end surface of the heat sensitive body 3 so that a measured object (not shown) is in contact therewith.
[0015]
That is, the diamond thermocouple temperature sensor 1 of the present embodiment is configured so that the tip of the temperature measuring unit 7 located at the tip of the thermocouple 2 is in contact with the measurement object via the thermosensitive body 3 formed of a diamond sintered body. Is formed.
[0016]
The diamond sintered body here is a diamond element made of diamond as a hard element material and sintered together with fine powders such as metal and ceramics under high temperature and high pressure conditions. (Trade name) and Syndite (trade name) tool material of De Beers in South Africa, the content ratio of diamond abrasive grains is extremely high, and has mechanical strength due to direct bonding of the abrasive grains.
[0017]
The protective body 4 is formed in a ring shape by a diamond sintered body in which at least diamond fine particles and tungsten carbide fine powder are blended at a volume ratio of 1: 1, and the protective body 4 A mounting hole 12 to which the heat sensitive body is fixed is formed in the shaft center portion. The mounting hole 12 is formed in two stages by a small diameter portion 13 located on the left end side shown on the left side of FIG. 1 and a large diameter portion 14 located on the right end side shown on the right side of FIG. The small diameter portion 13 is formed with a diameter of about 4 mm and a length of about 1.5 mm, for example, and the large diameter portion 14 is formed with a diameter of about 6.2 mm, for example. The heat sensitive body 3 is disposed on the bottom portion of the large diameter portion 14. Further, the thermocouple 2 is disposed in the large diameter portion 14 such that the tip of the temperature measuring portion 7 is in contact with the right end surface of the heat sensitive body 3 shown in the right side of FIG. 1 The object to be measured is in contact with the left end surface shown on the left side.
[0018]
That is, the protector 4 is provided around the temperature measuring unit 7 located at the tip of the thermocouple 2.
[0019]
The heat sensitive body 3 and the protector 4 in the present embodiment are individually formed and then fixed by brazing or the like and integrated as a whole.
[0020]
The attachment body 5 is for attaching the thermocouple 2 to a mixer of an asphalt production plant (not shown), and is formed of a material such as SS400 (JIS G 3101 1995). And the attachment body 5 in this embodiment is the dish-like shape arrange | positioned inside the screw part 10 screwed in the screw hole (not shown) which fixes the mixer liner of a mixer, and the inside of a mixer (not shown). The head 11 is formed in the shape of a countersunk bolt as a whole.
[0021]
A through hole 15 in which the thermocouple 2 is mounted is formed in the axial center portion of the attachment body 5. The diameter of the through hole 15 is formed to be approximately the same as that of the large diameter portion 14 of the protector 4.
[0022]
Further, at least a gap formed between the inner surface of each of the large-diameter portion 14 of the protector 4 and the through hole 15 of the attachment body 5 and the outer peripheral surface of the thermocouple 2 is, for example, a sealing material such as silicon resin 16 is filled and sealed, and reliably prevents the measured object that has passed through the small diameter portion 13 of the protective body 4 and is in contact with the heat sensitive body 3 from passing through the large diameter portion 14 and leaking to the outside. At the same time, the thermocouple 2 can be fixed in the large diameter portion 14 of the protector 4 and the through hole 15 of the attachment body 5.
[0023]
In addition, the outer diameter shape of the attachment body 5 can be changed to various shapes such as a rod shape according to the necessity such as the shape of the attachment portion of the diamond thermocouple temperature sensor 1.
[0024]
Furthermore, the shapes of the heat sensitive body 3 and the protector 4 can be changed as required, such as the mounting position of the diamond thermocouple temperature sensor 1 and the type of the object to be measured.
[0025]
Next, the operation of the present embodiment having the above-described configuration will be described.
[0026]
The diamond thermocouple temperature sensor 1 according to the present embodiment includes a protective body 4 by screwing a screw portion 10 of an attachment body 5 into a screw hole for fixing a mixer liner of a mixer of an asphalt production plant (not shown) from the inside of the mixer. And the head 11 of the attachment 5 is attached so that it may be located in the inside of a mixer, and installation is complete | finished. The diamond thermocouple temperature sensor 1 is attached when the asphalt manufacturing plant is in an operation stop state.
[0027]
When the asphalt production plant is operated, an asphalt mixture (not shown) as a measurement object kneaded inside the mixer comes into contact with the heat sensitive body 3 through the small diameter portion 13 of the protective body 4, and the asphalt The temperature of the composite material is transmitted to the temperature measuring unit 7 located at the tip of the thermocouple 2 through the heat sensitive body 3, and the temperature is measured.
[0028]
At this time, the heat sensitive body 3 formed of the diamond sintered body has a thermal conductivity of 540 Wm −1 K −1 , which is almost equal to the heat conductivity of the heat sensitive body formed of the conventional single crystal diamond. Since the thermal conductivity is high and the response speed is fast, accurate temperature measurement can be performed.
[0029]
FIG. 2 shows the thermal responsiveness of the diamond thermocouple temperature sensor 1 using the heat sensitive body 3 formed of the diamond sintered body of the present invention. In FIG. 2, the temperature inside the mixer at the time of asphalt production is measured with a thermometer installed inside the mixer, the product temperature of the present invention measured with the diamond thermocouple temperature sensor 1 of the present invention, and the conventional temperature. The temperature of a conventional product measured by a thermocouple temperature sensor using tungsten carbide as a heat sensitive body is shown with time.
[0030]
As can be seen from FIG. 2, the thermocouple temperature sensor of the conventional product has a very poor followability to the actual temperature. However, the diamond thermocouple temperature sensor 1 of the present invention substantially follows the actual temperature and adjusts the temperature. It can be detected, has extremely high thermal responsiveness, and can perform temperature measurement with high accuracy.
[0031]
The thermal conductivity of tungsten carbide is 100Wm -1 K -1, heat conductivity of single crystal diamond is 500~2000Wm -1 K -1.
[0032]
Furthermore, the heat sensitive body 3 formed by the diamond sintered body, and the protection formed by the diamond sintered body in which at least a fine particle of diamond and a fine powder of tungsten carbide are mixed at a volume ratio of 1: 1. Since both bodies 4 can be easily and accurately formed by sintering, the manufacturing cost can be reduced, and the cost of the material itself composed of diamond fine particles can be reduced even if the amount used is large. It is cheaper than the cost of crystalline diamond.
[0033]
Therefore, the thermosensitive body 3 formed by the diamond sintered body of the diamond thermocouple temperature sensor 1 of the present embodiment has a high thermal conductivity and a high response speed, so that accurate temperature measurement can be performed and Since it is formed, it can be processed easily, and as a result, an inexpensive product excellent in wear resistance and responsiveness can be easily obtained.
[0034]
Further, according to the protector 4 of the diamond thermocouple temperature sensor 1 of the present embodiment, the protector 4 itself is excellent in wear resistance and excellent in thermal conductivity, so that the object to be measured is the thermocouple 2. Even when the temperature measuring unit 7 of the thermocouple 2 is easily worn, the temperature measuring unit 7 of the thermocouple 2 can be prevented from coming into direct contact with the object to be measured. Wear can be reliably prevented over a long period of time. Therefore, even when the object to be measured is likely to wear the temperature measuring part 7 of the thermocouple 2, the service life of the diamond thermocouple temperature sensor 1 can be easily extended. As a result, the diamond thermocouple temperature Since the replacement frequency of the sensor 1 can be reduced, the time and cost required for replacement can be reduced.
[0037]
Furthermore, the diamond thermocouple temperature sensor 1 according to the present embodiment can be used for temperature measurement in various parts such as a hot bottle part, a hot chute part, and a composite silo part in addition to a mixer part in an asphalt manufacturing plant. .
[0038]
Furthermore, the diamond thermocouple temperature sensor 1 of the present embodiment is not limited to an asphalt manufacturing plant, for example, measuring the road surface temperature immediately after paving the road surface with an asphalt finisher, measuring the internal temperature in a thin film manufacturing apparatus, etc. It can be used for a wide variety of temperature measurements.
[0039]
In addition, this invention is not limited to the said embodiment, A various change can be made as needed.
[0040]
【The invention's effect】
As described above, according to the diamond thermocouple temperature sensor of the first aspect of the present invention, the thermosensitive body formed of the diamond sintered body has a high thermal conductivity and a high response speed, so that an accurate temperature measurement can be performed. And can be easily processed because it is formed by sintering. As a result, it is possible to easily obtain an inexpensive product with excellent wear resistance and responsiveness. Play. Furthermore, since the protective body is excellent in wear resistance, the thermocouple temperature measuring part is in direct contact with the object to be measured even when the object to be measured easily wears the temperature measuring part of the thermocouple. Therefore, it is possible to prevent the wear of the temperature measuring portion of the thermocouple reliably over a long period of time.
[Brief description of the drawings]
FIG. 1 is an enlarged longitudinal sectional view showing the main part of an embodiment of a diamond thermocouple temperature sensor according to the present invention. FIG. 2 shows the actual temperature and the product temperature measured by the diamond thermocouple temperature sensor of the present invention. A diagram showing the temperature of a conventional product measured with a thermocouple temperature sensor using conventional tungsten carbide as a heat sensitive element over time.
DESCRIPTION OF SYMBOLS 1 Diamond thermocouple temperature sensor 2 Thermocouple 3 Heat sensitive body 4 Protective body 5 Attachment body 7 Temperature measuring part

Claims (1)

熱電対の先端部に位置する測温部先端をダイヤモンド焼結体により形成された感熱体を介して被測定体に接するように形成し、さらに前記熱電対の測温部の周囲に、少なくともダイヤモンドの微粒とタングステンカーバイドの微粉末とが容量比で1対1の割合で配合されてなるダイヤモンド焼結体により形成された保護体を設けたことを特徴とするダイヤ熱電対温度センサ。The tip of the temperature measuring part located at the tip of the thermocouple is formed so as to be in contact with the measured object via a thermosensitive body formed of a diamond sintered body , and at least a diamond around the temperature measuring part of the thermocouple A diamond thermocouple temperature sensor provided with a protective body formed of a diamond sintered body in which fine particles of tungsten and fine powder of tungsten carbide are mixed at a volume ratio of 1: 1 .
JP04163999A 1999-02-19 1999-02-19 Diamond thermocouple temperature sensor Expired - Fee Related JP4250730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04163999A JP4250730B2 (en) 1999-02-19 1999-02-19 Diamond thermocouple temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04163999A JP4250730B2 (en) 1999-02-19 1999-02-19 Diamond thermocouple temperature sensor

Publications (2)

Publication Number Publication Date
JP2000241253A JP2000241253A (en) 2000-09-08
JP4250730B2 true JP4250730B2 (en) 2009-04-08

Family

ID=12613909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04163999A Expired - Fee Related JP4250730B2 (en) 1999-02-19 1999-02-19 Diamond thermocouple temperature sensor

Country Status (1)

Country Link
JP (1) JP4250730B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200480B (en) * 2011-03-23 2012-07-04 吉林大学 In-situ temperature measuring thermocouple on diamond anvil cell and preparation method thereof
JP6060403B1 (en) * 2015-11-11 2017-01-18 並木精密宝石株式会社 Sapphire member manufacturing apparatus and sapphire member manufacturing method
GB202215707D0 (en) * 2022-10-24 2022-12-07 Proxisense Ltd Temperature sensor apparatus, method of measuring a temperature

Also Published As

Publication number Publication date
JP2000241253A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
US10656036B2 (en) Self-heated pressure sensor assemblies
EP0754296B1 (en) Molten metal immersion probe
EP0818671A2 (en) A ceramic sheath type thermocouple
US5139345A (en) Temperature sensor for mixing and kneading machines
RU2008104773A (en) CYLINDER HOUSING AND ENGINE
JP4250730B2 (en) Diamond thermocouple temperature sensor
EP3321653B1 (en) Semiconductor device, mechanical quantity measuring device and semiconductor device fabricating method
US2757220A (en) Thermocouple
US5197805A (en) Temperature sensor protection tube
CN107300425A (en) A kind of temperature sensor and thermometry
US6112581A (en) Vibratory viscometer
JP3571951B2 (en) Thermocouple device
JP3179368U (en) Diamond thermal protection tube
CA1194340A (en) Method of an apparatus for measuring surface temperature of moving objects particularly measuring the temperature of fibrous products particularly of wires during production
JP3306426B2 (en) Thermocouple for measuring molten metal temperature
JPH05164626A (en) Temperature measuring method using thermocouple
JP2003227761A (en) Sensor for measuring temperature in pressure vessel
JP3645439B2 (en) Thermocouple device
JP2020535434A (en) Pressure sensor on ceramic substrate
JP3077556B2 (en) Temperature sensor and temperature measurement structure
CN109682501A (en) A kind of heat flow transducer
JPH069319Y2 (en) Ceramic electromagnetic flowmeter
JP3398105B2 (en) thermocouple
JPH11311574A (en) Ceramic thermocouple for molten copper
JP3077531B2 (en) Temperature sensor and temperature measurement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees