JP4248731B2 - AOD furnace tuyere cooling method - Google Patents

AOD furnace tuyere cooling method Download PDF

Info

Publication number
JP4248731B2
JP4248731B2 JP2000176620A JP2000176620A JP4248731B2 JP 4248731 B2 JP4248731 B2 JP 4248731B2 JP 2000176620 A JP2000176620 A JP 2000176620A JP 2000176620 A JP2000176620 A JP 2000176620A JP 4248731 B2 JP4248731 B2 JP 4248731B2
Authority
JP
Japan
Prior art keywords
gas
flow rate
tuyere
gas flow
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000176620A
Other languages
Japanese (ja)
Other versions
JP2001355019A (en
Inventor
強 山崎
信也 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2000176620A priority Critical patent/JP4248731B2/en
Publication of JP2001355019A publication Critical patent/JP2001355019A/en
Application granted granted Critical
Publication of JP4248731B2 publication Critical patent/JP4248731B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明はAOD炉を用いたステンレス鋼などの精錬において羽口冷却条件を適正化することで、羽口溶損速度を低減させることを可能とする方法に関する。
【0002】
【従来の技術】
二重管羽口の内管から酸素と不活性ガスを供給するAODプロセスはステンレス鋼精錬などにおいて広く用いられている(例えば、日本鉄鋼協会編「第3版 鉄鋼便覧 第II巻 製銑・製鋼」、昭和54年発行、第718ページ以降)。この方法は、脱炭の進行に応じて、次第に内管の酸素を不活性へ置換することで、クロムの酸化を抑制しつつ脱炭させるものであるが、内管のガス種や流量が精錬中に大きく変わるため、羽口の冷却バランスが不安定となり羽口寿命が短いという問題があった。他方、外管ガスとしては窒素やArなどが用いられるが、内管のガス種や流量が変わっても、外管ガスについては一定で操業することが一般的であった。
【0003】
これに対して、例えば、特開昭58−77519号公報では、二重管羽口内管から酸素のみを吹き込む時期を設けることを特徴とする方法が開示されているが、この場合でも外管ガスの制御については記載されていない。すなわち、以上のような従来技術では、吹錬の条件に応じて羽口を適正な冷却条件に制御するという思想がなかった。
【0004】
【発明が解決しようとする課題】
上記のように、従来の吹錬方法では、羽口寿命が極めて短いという問題点があった。本発明は、従来技術における、羽口寿命が極めて短いという問題を解決し、羽口寿命を向上させることを可能とする方法を提供するものである。
【0005】
【課題を解決するための手段】
本発明者らは、上記のような従来技術では、吹錬の条件に応じて羽口を適正な冷却条件に制御するという思想が無いことが、羽口寿命を極めて短くしてしまう一因となっているという見地から鋭意研究を進め、底吹き羽口の冷却能を一定に保つ事により、大きさをできるだけ変化させず安定したマッシュルームを生成させ、羽口の寿命を向上させることができることを見出し、本発明を完成させた。本発明の要旨は以下の各方法にある。
▲1▼ 内管と外管とを備えた二重管羽口を通じて溶融金属容器内の溶融金属へガスを吹き込み、前記溶融金属を攪拌して吹錬する際に、前記内管のガス流量及び/又はガス組成に応じて、前記外管のガス流量及び/又はガス組成を制御することを特徴とするAOD炉の羽口冷却方法。
▲2▼ 前記溶融金属が溶鉄であり、溶鉄の組成と温度に応じて、前記外管のガス流量及び/又はガス組成を制御することを特徴とする、前記▲1▼に記載のAOD炉の羽口冷却方法。
▲3▼ 前記内管の酸素ガス流量QO2(Nm3/Hr/本)、不活性ガス流量Q(Nm3/Hr/本)に対して、外管の不活性ガス流量F(Nm3/Hr/本)を(1)式のαが20〜80になるように制御することを特徴とする、前記▲1▼に記載のAOD炉の羽口冷却方法。
【0006】
α=(F+0.3×Q)/(Q+2×QO2)0.25 ・・・(1)
▲4▼ 吹錬中のαの変化を±10%以下に制御することを特徴とする、前記▲3▼に記載のAOD炉の羽口冷却方法。
▲5▼ 前記溶鉄の炭素濃度C(%)と温度T(℃)に応じて、外管の不活性ガス流量F(Nm3/Hr/本)を調整して(2)式で計算されるβを100〜400に制御することを特徴とする、前記▲2▼に記載のAOD炉の羽口冷却方法。
【0007】
β=(Ts−200)×(F+0.3×Q)/{(T−Ts)×(Q+2×QO2)0.25} ・・・(2)
Ts=1468.6−81.18×C+15.1×C2 ・・・(3)
▲6▼ 吹錬中のβの変化を±10%以下に制御することを特徴とする、前記▲5▼に記載のAOD炉の羽口冷却方法。
【0008】
【発明の実施の形態】
本発明はAOD炉の羽口における冷却バランスを適正に制御するためには、内管と外管とを備えた二重管羽口において、内管ガス流量や内管ガス組成に応じて外管冷却能を制御する必要があるという新しい知見に基づくものである。
【0009】
つまり、本発明者らは、羽口寿命に対しては、羽口前面に生成するマッシュルームと呼ばれる凝固鉄のサイズ変化が重要であり、吹錬中にサイズが大きく変化した場合に、激しい溶損が引き起こされるという新しい知見を見出した。
【0010】
請求項1に記載の発明ように、内管のガス流量及び/又はガス組成に応じて、外管のガス流量及び/又はガス組成を制御することでマッシュルーム形状を制御すれば、羽口溶損速度の低下を図ることができる。ここで、内管のガスとしては例えば、酸素、Ar、窒素、CO、CO2などが挙げられ、外管のガスとしてはAr、窒素、酸素、LPG、CO、CO2などが挙げられる。
【0011】
さらに、マッシュルームサイズは溶鉄の炭素濃度や温度にも影響を受けるため、請求項3に記載の発明のように、内管のガス流量及び/又はガス組成と、溶鋼の組成と温度に応じて、外管のガス流量及び/又はガス組成を制御することでマッシュルーム形状を制御し、一層の羽口溶損速度の低減効果が得られる。
【0012】
ここで、炭素濃度は装入溶鉄の炭素濃度を基準に、送酸量と経験的に知られる脱炭酸素効率から計算する方法や、排ガス分析や溶鉄の直接サンプリングから推定する方法のいずれか、又は、それらの組み合わせで推定できる。また、温度も直接的な連続、又は、半連続の測温で知る方法や、装入溶鉄の温度を基準に、経験的に知られる昇熱効率から計算する方法のいずれか、又は、それらの組み合わせで推定できる。
【0013】
また、請求項1では、各ガスについて制御するための具体的な制御パラメータを示している
【0014】
つまり、内管の酸素ガス流量(QO2;Nm3/Hr/本)、内管の不活性ガス流量(Q;Nm3/Hr/本)に対して、外管の不活性ガス流量(F;Nm3/Hr/本)を調整して(1)式で計算されるαを20〜80に制御するものである。
【0015】
α=(F+0.3×Q)/(Q+2×QO2)0.25 ・・・(1)
この(1)式で表されるαは、マッシュルームサイズ即ち羽口冷却能を示す指標であり、本発明者らが詳細なる実験により求めたものである。本式は内管ガスを酸素ガス、不活性ガスとし、外管を不活性ガスとした場合の計算式であるが、不活性ガスの種類に応じて、また、他のガスを単独あるいは混合させて使用する場合、以下に示すように各ガスの影響を考慮すれば(1)式を用いてマッシュルームサイズを制御できる。
【0016】
1)(1)式の分母は、攪拌による実効ガス流量であるため、反応性のある酸素ガスの場合は2倍とし、反応性のないArガス(内管Arガス流量QAr;Nm3/Hr/本)や窒素ガス(内管窒素ガス流量QN2;Nm3/Hr/本)の場合は1倍とする。即ち、Q=QAr+QN2であり、実効ガス流量=QAr+QN2+2×QO2である。
【0017】
2)外管、内管の不活性ガスをArガスとする場合、又は、Arガスを混合する場合、(1)式の分子において、F=FAr、Q=QArとする(内管Arガス流量QAr;Nm3/Hr/本、外管Arガス流量FAr;Nm3/Hr/本)。
【0018】
3)外管、内管の不活性ガスを窒素ガスとする場合、又は、窒素ガスを混合する場合、ガス顕熱量を考慮するため、ArとN2との比熱の比を換算係数とし、(1)式の分子において、F=1.4×FN2、Q=1.4×QN2とする(外管窒素ガス流量FN2;Nm3/Hr/本)。
【0019】
4)外管、内管を酸素ガスとする場合、又は、酸素ガスを混合する場合、酸素ガスの顕熱量と酸化発熱量を考慮し、外管ガスの場合、Arガスの−15倍、内管ガスの場合、顕熱量と発熱量が相殺するため、ゼロとする。即ち、(1)式の分子において、F=−15×FO2、Q=0×QO2として換算する(外管酸素ガス流量FO2;Nm3/Hr/本)。
【0020】
5)外管をLPGガスとする場合、又は、LPGガスを混合する場合、LPGガスの顕熱量と分解吸熱量を考慮し、Arガスの9倍とし、(1)式の分子において、F=9×FLPGとして換算する(外管LPGガス流量FLPG;Nm3/Hr/本)。
【0021】
これらの係数は本発明者らの実験により初めて明らかとなったものである。この指標αを20〜80に制御した場合、図1に示すように羽口寿命は向上し、羽口冷却能の向上が図られている。αが20よりも小さい場合にはマッシュルームが小さすぎるため羽口に対する熱負荷が大きく羽口寿命が短い。αが80よりも大きい場合にはマッシュルームが大きすぎるため羽口閉塞が起こりやすく、設定のガス流量が出なくなるという問題が生じる。
【0022】
請求項2に記載の発明は前記請求項1の発明において、最も良い制御方法を示したものであり、吹錬中にαの変化を±10%以下になるように各ガスの条件を制御するというものである。つまり、αが20〜80にあっても、AODの場合は吹錬中に内管ガス流量や組成が大きく変化することによりマッシュルームサイズが吹錬中に大きく変化した場合には、羽口周囲の耐火物に熱負荷や機械的損耗を与える。したがって、内管ガスの組成や流量に応じて、外管ガスの組成や流量を制御し、図2のようにαの変化を±10%以下とすることで耐火物寿命を最も向上させることができる。αの変化が±10%よりも大きい場合には羽口周囲の耐火物に熱負荷や機械的損耗を与えるため寿命が低下する。通常、内管ガスの流量/組成は吹錬の段階に応じて設定されているため、αを±10%以下に制御するには、吹錬中の外管ガスの流量/組成制御して行うが、吹錬制御装置に各内管ガス条件に応じた外管ガス条件を設定しておき、自動制御することもできる。
【0023】
また、請求項3に記載の発明では、溶鉄組成や温度に対応させるための具体的な制御パラメータを示している。
【0024】
つまり、溶鋼の炭素濃度C(%)と温度T(℃)に応じて、外管の不活性ガス流量F(Nm3/Hr/本)を調整して(2)式で計算されるβを100〜400に制御することにある。
【0025】
β=(Ts−200)×(F+0.3×Q)/{(T−Ts)×(Q+2×QO2)0.25} ・・・(2)
Ts=1468.6−81.18×C+15.1×C2 ・・・(3)
この(2)式は、マッシュルームサイズ即ち羽口冷却能を示し、マッシュルームサイズを溶鉄組成、温度の変化に応じて計算する式であり、本発明者らが詳細なる実験により求めたものである。本式も(1)式と同様に内管ガスを酸素ガス、不活性ガスとし、外管ガスを不活性ガスとした場合の計算式であるが、不活性ガスの種類に応じて、また、他のガスを単独あるいは混合させて使用する場合、以下に示すように(1)の場合と同様に各ガスの影響を考慮すれば(2)式を用いてマッシュルームサイズを制御できる。
【0026】
1)(2)式の分母は、攪拌による実効ガス流量であるため、反応性のある酸素ガスの場合は2倍とし、反応性のないArガス(内管Arガス流量QAr;Nm3/Hr/本)や窒素ガス(内管窒素ガス流量QN2;Nm3/Hr/本)の場合は1倍とする。即ち、Q=QAr+QN2であり、実効ガス流量=QAr+QN2+2×QO2である。
【0027】
2)外管、内管の不活性ガスをArガスとする場合、又は、Arガスを混合する場合、(1)式の分子において、F=FAr、Q=QArとする(内管Arガス流量QAr;Nm3/Hr/本、外管Arガス流量FAr;Nm3/Hr/本)。
【0028】
3)外管、内管の不活性ガスを窒素ガスとする場合、又は、窒素ガスを混合する場合、ガス顕熱量を考慮するため、比熱の比を換算係数とし、(2)式の分子において、F=1.4×FN2、Q=1.4×QN2とする(外管窒素ガス流量FN2;Nm3/Hr/本)。
【0029】
4)外管、内管を酸素ガスとする場合、又は、酸素ガスを混合する場合、酸素ガスの顕熱量と酸化発熱量を考慮し、外管ガスの場合、Arガスの−15倍、内管ガスの場合、顕熱量と発熱量が相殺するため、ゼロとする。即ち、(2)式の分子において、F=−15×FO2、Q=0×QO2として換算する(外管酸素ガス流量FO2;Nm3/Hr/本)。
【0030】
5)外管をLPGガスとする場合、又は、LPGガスを混合する場合、LPGガスの顕熱量と分解吸熱量を考慮し、Arガスの9倍とし、(2)式の分子において、F=9×FLPGとして換算する(外管LPGガス流量FLPG;Nm3/Hr/本)。
【0031】
これらの係数は本発明者らの実験により始めて明らかとなったものである。この指標βを100〜400に制御した場合に、図3に示すように羽口寿命としてはさらに良い値となる。βが100よりも小さい場合にはマッシュルームが小さすぎるため羽口に対する熱負荷が大きく羽口寿命が短い。βが400よりも大きい場合にはマッシュルームが大きすぎるため羽口閉塞が起こりやすくなる。
【0032】
請求項4に記載の発明は請求項3の発明において、最も良い制御方法を示したものであり、吹錬中にβの変化が±10%以下になるように外管の不活性ガスFを調整するというものである。つまり、βが100〜400にあっても、AODの場合は吹錬中に内管ガス流量や組成だけでなく、溶鉄中炭素濃度や温度が極めて大きく変化することによりマッシュルームサイズが吹錬中に大きく変化した場合には、羽口周囲の耐火物に熱負荷や機械的損耗を与える。したがって、溶鋼の組成や温度、内管ガスの組成や流量条件に応じて、外管ガスの組成や流量を制御し、図4のようにβの変化を±10%以下とすることで耐火物寿命を最も向上させることができる。βの変化が±10%よりも大きい場合には羽口周囲の耐火物に熱負荷や機械的損耗を与えるため寿命が低下する。通常、内管ガスの流量/組成は吹錬の段階に応じて設定されているため、βの変化を±10%以下に制御するには、吹錬中の外管ガスの流量/組成制御で行うが、先に述べた計算/直接測定によって得られる炭素濃度/温度条件に応じて、外管ガス条件を吹錬制御装置で自動制御することもできる。
【0033】
【実施例】
実施例は60トン規模のAODを用いて実施した。羽口は内管直径が13.5mm、内管と外管の間隙が1mmのものを5本用いた。炭素濃度が1.5〜1.7%、クロム濃度が16〜18%、ニッケル濃度が6〜8%の溶鉄を電気炉で溶製し、AODに装入した。吹酸開始時の溶鉄温度は1370〜1470℃であった。AODの吹錬は0〜IV期に分け、各期間での内管ガスパターンと上吹き酸素を表1のように変化させた。尚、IV期は真空精錬である。各期間において、適宜、生石灰、スクラップを投入し、温度を制御した。
【0034】
【表1】

Figure 0004248731
【0035】
(実施例−1)
実施例1は表2に示す条件で、各期間でαの値が40〜50の範囲にあり、またαの値の変化が±10%以下となるように外管窒素流量を制御した。その結果、羽口寿命は300chであった。
【0036】
【表2】
Figure 0004248731
【0037】
(比較例1)
比較例1は表3に示すように、各期間で外管窒素流量は一定とした場合であるが、αが20以下の時期があり、変化も±10%を超えており、その結果、羽口寿命は200chでしかなかった。
【0038】
【表3】
Figure 0004248731
【0039】
(実施例−2)
実施例2は表4に示す条件で、各期間内でも炭素濃度と温度に応じてβの値が200〜300の範囲になるように外管窒素流量を制御した。その結果、羽口寿命は360chであった。
【0040】
【表4】
Figure 0004248731
【0041】
(実施例−3)
実施例3は表5に示す条件で、各期間内でも炭素濃度と温度に応じてβの値の変化が±10%以下となるように外管ガス種類と流量を制御した。その結果、羽口寿命は400chであった。
【0042】
【表5】
Figure 0004248731
【0043】
【発明の効果】
本発明により、底吹き羽口の冷却能を一定に保つ事により、安定したマッシュルームが生成し、AODの羽口寿命を向上させることが可能となった。
【図面の簡単な説明】
【図1】パラメータαと羽口寿命の関係を示す実験結果。
【図2】パラメータαの吹錬中の変動量と羽口寿命の関係を示す実験結果。
【図3】パラメータβと羽口寿命の関係を示す実験結果。
【図4】パラメータβの吹錬中の変動量と羽口寿命の関係を示す実験結果。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method capable of reducing a tuyere melting rate by optimizing tuyere cooling conditions in refining stainless steel or the like using an AOD furnace.
[0002]
[Prior art]
The AOD process for supplying oxygen and inert gas from the inner pipe of a double pipe tuyere is widely used in stainless steel refining etc. (for example, the Japan Iron and Steel Institute edition, 3rd edition, Steel Handbook, Volume II, Steelmaking and Steelmaking) "Published in 1979, page 718 and later). This method gradually decarburizes while suppressing oxidation of chromium by gradually replacing the oxygen in the inner pipe with inert gas as the decarburization progresses, but the gas type and flow rate in the inner pipe are refined. Because of the large change in the inside, there was a problem that the cooling balance of the tuyere became unstable and the tuyere life was short. On the other hand, nitrogen, Ar, or the like is used as the outer tube gas. However, even if the gas type or flow rate of the inner tube is changed, the outer tube gas is generally operated at a constant rate.
[0003]
On the other hand, for example, Japanese Patent Application Laid-Open No. 58-77519 discloses a method characterized by providing a time when only oxygen is blown from a double pipe tuyere inner pipe. There is no description of the control. That is, in the conventional technology as described above, there is no idea of controlling the tuyere to an appropriate cooling condition according to the blowing conditions.
[0004]
[Problems to be solved by the invention]
As described above, the conventional blowing method has a problem that the tuyere life is extremely short. The present invention solves the problem that the tuyere life is extremely short in the prior art, and provides a method capable of improving the tuyere life.
[0005]
[Means for Solving the Problems]
In the conventional technology as described above, the lack of the idea of controlling the tuyere to an appropriate cooling condition in accordance with the blowing conditions is a cause of extremely shortening the tuyere life. From the point of view that it has become, by keeping the cooling capacity of the bottom blowing tuyere constant, it is possible to generate a stable mushroom without changing the size as much as possible, and to improve the life of the tuyere The headline and the present invention were completed. The gist of the present invention resides in the following methods.
(1) When a gas is blown into a molten metal in a molten metal container through a double tube tuyere having an inner tube and an outer tube, and the molten metal is stirred and blown, the gas flow rate of the inner tube and A tuyere cooling method for an AOD furnace, wherein the gas flow rate and / or gas composition of the outer tube is controlled according to the gas composition.
(2) The molten metal is molten iron, and the gas flow rate and / or gas composition of the outer tube is controlled in accordance with the composition and temperature of the molten iron. The AOD furnace according to (1), The tuyere cooling method.
( 3 ) The inner pipe oxygen gas flow rate Q O2 (Nm 3 / Hr / line) and the inert gas flow rate Q (Nm 3 / Hr / line) and the outer pipe inert gas flow rate F (Nm 3 / line) The method of cooling down tuyere of AOD furnace as described in (1) above, wherein α in (1) is controlled so as to be 20-80.
[0006]
α = (F + 0.3 × Q) / (Q + 2 × Q O2 ) 0.25 (1)
(4) The tuyere cooling method for an AOD furnace as described in (3) above, wherein the change in α during blowing is controlled to ± 10% or less.
(5) The inert gas flow rate F (Nm 3 / Hr / line) of the outer pipe is adjusted according to the carbon concentration C (%) and temperature T (° C.) of the molten iron, and is calculated by the equation (2). The tuyere cooling method for an AOD furnace as described in (2) above, wherein β is controlled to 100 to 400.
[0007]
β = (Ts−200) × (F + 0.3 × Q) / {(T−Ts) × (Q + 2 × Q O2 ) 0.25 } (2)
Ts = 1468.6−81.18 × C + 15.1 × C 2 (3)
(6) The tuyere cooling method for an AOD furnace as described in (5) above, wherein the change in β during blowing is controlled to ± 10% or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In order to properly control the cooling balance at the tuyere of the AOD furnace, the present invention provides a double pipe tuyere having an inner pipe and an outer pipe, and the outer pipe according to the inner pipe gas flow rate and the inner pipe gas composition. This is based on a new finding that the cooling capacity needs to be controlled.
[0009]
That is, for the tuyere life, the present inventors are important to change the size of the solidified iron called mushrooms formed on the front surface of the tuyere, and if the size changes greatly during blowing, Discovered a new finding that
[0010]
If the mushroom shape is controlled by controlling the gas flow rate and / or gas composition of the outer tube according to the gas flow rate and / or gas composition of the inner tube, The speed can be reduced. Here, examples of the gas in the inner pipe include oxygen, Ar, nitrogen, CO, and CO 2, and examples of the gas in the outer pipe include Ar, nitrogen, oxygen, LPG, CO, and CO 2 .
[0011]
Furthermore, since the mushroom size is also affected by the carbon concentration and temperature of the molten iron, as in the invention according to claim 3, according to the gas flow rate and / or gas composition of the inner tube, and the composition and temperature of the molten steel, The mushroom shape is controlled by controlling the gas flow rate and / or gas composition of the outer tube, and a further effect of reducing the tuyere melting rate can be obtained.
[0012]
Here, the carbon concentration is based on the carbon concentration of the charged molten iron, either from the method of calculating from the amount of acid delivered and empirically known decarbonation efficiency, or from the exhaust gas analysis or from the direct sampling of molten iron, Or it can estimate by those combination. In addition, either the method of knowing the temperature by direct continuous or semi-continuous temperature measurement, the method of calculating from the temperature increase efficiency empirically known based on the temperature of the charged molten iron, or a combination thereof Can be estimated.
[0013]
Moreover, in Claim 1, the specific control parameter for controlling about each gas is shown .
[0014]
That is, the flow rate of the inert gas in the outer tube (F; Fm) for the oxygen gas flow rate in the inner tube (Q O2 ; Nm 3 / Hr / line) and the inert gas flow rate in the inner tube (Q; Nm 3 / Hr / line) Nm 3 / Hr / line) is adjusted to control α calculated by the equation (1) to 20-80.
[0015]
α = (F + 0.3 × Q) / (Q + 2 × Q O2 ) 0.25 (1)
Α represented by the equation (1) is an index indicating the mushroom size, that is, the tuyere cooling ability, and is determined by the present inventors through detailed experiments. This equation is a calculation formula when the inner tube gas is oxygen gas, inert gas, and the outer tube is inert gas. Depending on the type of inert gas, other gases may be used alone or in combination. If the effect of each gas is taken into consideration as shown below, the mushroom size can be controlled using equation (1).
[0016]
1) Since the denominator of the equation (1) is an effective gas flow rate by stirring, it is doubled in the case of reactive oxygen gas, and non-reactive Ar gas (inner Ar gas flow rate Q Ar ; Nm 3 / Hr / line) and nitrogen gas (inner pipe nitrogen gas flow rate Q N2 ; Nm 3 / Hr / line), it should be 1 time. That is, Q = Q Ar + Q N2 and effective gas flow rate = Q Ar + Q N2 + 2 × Q O2 .
[0017]
2) When the inert gas of the outer tube and the inner tube is Ar gas, or when Ar gas is mixed, in the numerator of (1), F = F Ar and Q = Q Ar (inner tube Ar Gas flow rate Q Ar ; Nm 3 / Hr / line, outer pipe Ar gas flow rate F Ar ; Nm 3 / Hr / line).
[0018]
3) When the inert gas of the outer tube and the inner tube is nitrogen gas, or when nitrogen gas is mixed, in order to consider the amount of sensible heat of gas, the ratio of the specific heat of Ar and N 2 is used as a conversion factor, 1) In the numerator of the formula, F = 1.4 × F N2 and Q = 1.4 × Q N2 (outer tube nitrogen gas flow rate F N2 ; Nm 3 / Hr / line).
[0019]
4) When the outer tube and the inner tube are made of oxygen gas, or when oxygen gas is mixed, the amount of sensible heat and oxidation calorific value of the oxygen gas is taken into consideration, and in the case of the outer tube gas, the inner gas is -15 times larger than the inner gas. In the case of tube gas, the sensible heat amount and the calorific value cancel each other, so it is set to zero. That is, in the numerator of the formula (1), F = −15 × F O2 and Q = 0 × Q O2 are converted (outer tube oxygen gas flow rate F O2 ; Nm 3 / Hr / line).
[0020]
5) When the outer tube is made of LPG gas, or when LPG gas is mixed, considering the sensible heat amount and decomposition endothermic amount of LPG gas, it is set to 9 times that of Ar gas. In the molecule of formula (1), F = Converted as 9 × F LPG (outer tube LPG gas flow rate F LPG ; Nm 3 / Hr / tube).
[0021]
These coefficients have been clarified for the first time by experiments by the present inventors. When the index α is controlled to 20 to 80, the tuyere life is improved and the tuyere cooling ability is improved as shown in FIG. When α is smaller than 20, the mushroom is too small and the heat load on the tuyere is large and the tuyere life is short. When α is larger than 80, the mushroom is too large and the tuyere is likely to be blocked, resulting in a problem that the set gas flow rate cannot be obtained.
[0022]
The invention of claim 2 shows the best control method in the invention of claim 1 and controls the conditions of each gas so that the change of α is ± 10% or less during blowing. That's it. That is, even if α is 20 to 80, in the case of AOD, if the mushroom size changes greatly during blowing due to large changes in the flow rate and composition of the inner pipe during blowing, Gives refractory a heat load and mechanical wear. Therefore, by controlling the composition and flow rate of the outer tube gas in accordance with the composition and flow rate of the inner tube gas, the change in α can be made ± 10% or less as shown in FIG. it can. When the change of α is larger than ± 10%, the refractory around the tuyere is subjected to a heat load and mechanical wear, resulting in a decrease in life. Usually, since the flow rate / composition of the inner pipe gas is set according to the stage of blowing, the flow rate / composition of the outer pipe gas during blowing is controlled in order to control α to ± 10% or less. However, the outer pipe gas conditions corresponding to the inner pipe gas conditions are set in the blowing control device, and automatic control can be performed.
[0023]
Further, in the invention described in claim 3 , specific control parameters for corresponding to the molten iron composition and temperature are shown.
[0024]
In other words, according to the carbon concentration C (%) and temperature T (° C) of the molten steel, the inert gas flow rate F (Nm 3 / Hr / bar) of the outer pipe is adjusted to calculate β calculated by the equation (2). There is to control to 100-400.
[0025]
β = (Ts−200) × (F + 0.3 × Q) / {(T−Ts) × (Q + 2 × Q O2 ) 0.25 } (2)
Ts = 1468.6−81.18 × C + 15.1 × C 2 (3)
This equation (2) indicates the mushroom size, that is, tuyere cooling ability, is an equation for calculating the mushroom size according to the change in the molten iron composition and temperature, and is obtained by the present inventors through detailed experiments. This equation is also a calculation formula when the inner tube gas is oxygen gas and inert gas and the outer tube gas is inert gas as in the equation (1), but depending on the type of the inert gas, When other gases are used alone or in combination, the mushroom size can be controlled using equation (2) if the influence of each gas is taken into consideration as in the case of (1) as shown below.
[0026]
1) Since the denominator of the equation (2) is an effective gas flow rate by stirring, it is doubled in the case of reactive oxygen gas, and there is an unreactive Ar gas (inner tube Ar gas flow rate Q Ar ; Nm 3 / Hr / line) and nitrogen gas (inner pipe nitrogen gas flow rate Q N2 ; Nm 3 / Hr / line), it should be 1 time. That is, Q = Q Ar + Q N2 and effective gas flow rate = Q Ar + Q N2 + 2 × Q O2 .
[0027]
2) When the inert gas of the outer tube and the inner tube is Ar gas, or when Ar gas is mixed, in the numerator of (1), F = F Ar and Q = Q Ar (inner tube Ar Gas flow rate Q Ar ; Nm 3 / Hr / line, outer pipe Ar gas flow rate F Ar ; Nm 3 / Hr / line).
[0028]
3) When the inert gas of the outer tube and inner tube is nitrogen gas, or when nitrogen gas is mixed, in order to consider the amount of sensible heat of gas, the ratio of specific heat is used as a conversion factor, and in the numerator of equation (2) F = 1.4 × F N2 and Q = 1.4 × Q N2 (outer tube nitrogen gas flow rate F N2 ; Nm 3 / Hr / line).
[0029]
4) When the outer tube and the inner tube are made of oxygen gas, or when oxygen gas is mixed, the amount of sensible heat and oxidation calorific value of the oxygen gas is taken into consideration, and in the case of the outer tube gas, the inner gas is -15 times larger than the inner gas. In the case of tube gas, the sensible heat amount and the calorific value cancel each other, so it is set to zero. That is, in the numerator of the formula (2), F = −15 × F O2 and Q = 0 × Q O2 are converted (outer tube oxygen gas flow rate F O2 ; Nm 3 / Hr / line).
[0030]
5) When the outer tube is made of LPG gas, or when LPG gas is mixed, considering the sensible heat amount and decomposition endothermic amount of LPG gas, it is set to 9 times that of Ar gas, and in the molecule of formula (2), F = Converted as 9 × F LPG (outer tube LPG gas flow rate F LPG ; Nm 3 / Hr / tube).
[0031]
These coefficients have been clarified for the first time by the inventors' experiments. When this index β is controlled to 100 to 400, the tuyere life is further improved as shown in FIG. When β is smaller than 100, the mushroom is too small and the heat load on the tuyere is large and the tuyere life is short. When β is larger than 400, the mushroom is too large, and the tuyere is likely to be blocked.
[0032]
The invention according to claim 4 shows the best control method in the invention of claim 3 , and the inert gas F in the outer tube is set so that the change of β becomes ± 10% or less during blowing. It is to adjust. In other words, even when β is 100 to 400, in the case of AOD, not only the inner pipe gas flow rate and composition but also the mushroom size during blowing is changed due to extremely large changes in carbon concentration and temperature in molten iron. In the case of large changes, heat load and mechanical wear are given to the refractory around the tuyere. Therefore, the composition and flow rate of the outer tube gas is controlled according to the composition and temperature of the molten steel, the composition and flow rate condition of the inner tube gas, and the change in β is made ± 10% or less as shown in FIG. The longest life can be improved. When the change in β is larger than ± 10%, the life of the refractory around the tuyere is reduced due to heat load and mechanical wear. Normally, the flow rate / composition of the inner pipe gas is set according to the stage of blowing, so to control the change in β to ± 10% or less, control the flow rate / composition of the outer pipe gas during blowing. However, depending on the carbon concentration / temperature condition obtained by the calculation / direct measurement described above, the outer tube gas condition can be automatically controlled by the blowing control device.
[0033]
【Example】
The examples were performed using a 60-ton scale AOD. The tuyere used 5 tubes with an inner tube diameter of 13.5 mm and a gap between the inner tube and the outer tube of 1 mm. Molten iron having a carbon concentration of 1.5 to 1.7%, a chromium concentration of 16 to 18%, and a nickel concentration of 6 to 8% was melted in an electric furnace and charged into the AOD. The molten iron temperature at the start of the blowing acid was 1370 to 1470 ° C. The AOD blowing was divided into 0 to IV periods, and the inner tube gas pattern and top blowing oxygen in each period were changed as shown in Table 1. The IV stage is vacuum refining. In each period, quick lime and scrap were appropriately added to control the temperature.
[0034]
[Table 1]
Figure 0004248731
[0035]
(Example-1)
In Example 1, the outer tube nitrogen flow rate was controlled so that the value of α was in the range of 40 to 50 in each period and the change in the value of α was ± 10% or less under the conditions shown in Table 2. As a result, the tuyere life was 300 ch.
[0036]
[Table 2]
Figure 0004248731
[0037]
(Comparative Example 1)
As shown in Table 3, Comparative Example 1 is a case where the outer tube nitrogen flow rate is constant in each period. However, there is a period when α is 20 or less, and the change exceeds ± 10%. Mouth life was only 200 ch.
[0038]
[Table 3]
Figure 0004248731
[0039]
(Example-2)
In Example 2, under the conditions shown in Table 4, the outer tube nitrogen flow rate was controlled so that the value of β was in the range of 200 to 300 depending on the carbon concentration and temperature even within each period. As a result, the tuyere life was 360 ch.
[0040]
[Table 4]
Figure 0004248731
[0041]
(Example-3)
In Example 3, under the conditions shown in Table 5, the type and flow rate of the outer tube gas were controlled so that the change in the value of β was ± 10% or less depending on the carbon concentration and temperature even within each period. As a result, the tuyere life was 400 ch.
[0042]
[Table 5]
Figure 0004248731
[0043]
【The invention's effect】
According to the present invention, by keeping the cooling ability of the bottom blown tuyere constant, a stable mushroom can be generated and the tuyere life of AOD can be improved.
[Brief description of the drawings]
FIG. 1 shows experimental results showing the relationship between parameter α and tuyere life.
FIG. 2 is an experimental result showing the relationship between the amount of fluctuation during blowing of the parameter α and the tuyere life.
FIG. 3 is an experimental result showing a relationship between a parameter β and a tuyere lifetime.
FIG. 4 is an experimental result showing a relationship between a fluctuation amount of the parameter β during blowing and a tuyere lifetime.

Claims (4)

内管と外管とを備えた二重管羽口を通じて溶融金属容器内の溶融金属へガスを吹き込み、前記溶融金属を攪拌して吹錬する際に、前記内管のガス流量及び/又はガス組成に応じて、前記外管のガス流量及び/又はガス組成を制御するAOD炉の羽口冷却方法であって、
前記内管の酸素ガス流量Q O2 Nm 3 /Hr/ 本)、不活性ガス流量Q( Nm 3 /Hr/ 本)に対して、外管の不活性ガス流量F( Nm 3 /Hr/ 本)を(1)式のαが20〜80になるように制御することを特徴とするAOD炉の羽口冷却方法。
α= ( F+ 0.3 ×Q ) ( Q+ 2 ×Q O2 ) 0.25 ・・・(1)
When a gas is blown into a molten metal in a molten metal container through a double tube tuyere having an inner tube and an outer tube, and the molten metal is stirred and blown, the gas flow rate and / or gas of the inner tube An AOD furnace tuyere cooling method for controlling the gas flow rate and / or gas composition of the outer tube according to the composition ,
The inner pipe oxygen gas flow rate Q O2 ( Nm 3 / Hr / line) and the inert gas flow rate Q ( Nm 3 / Hr / line), the outer tube inert gas flow rate F ( Nm 3 / Hr / line) ) Is controlled so that α in the equation (1) is 20 to 80. A tuyere cooling method for an AOD furnace.
α = ( F + 0.3 × Q ) / ( Q + 2 × QO2 ) 0.25 ... (1)
吹錬中のαの変化を±10%以下に制御することを特徴とする、請求項1に記載のAOD炉の羽口冷却方法。2. The tuyere cooling method for an AOD furnace according to claim 1 , wherein a change in α during blowing is controlled to be ± 10% or less. 内管と外管とを備えた二重管羽口を通じて溶融金属容器内の溶融金属へガスを吹き込み、前記溶融金属を攪拌して吹錬する際に、前記内管のガス流量及び/又はガス組成に応じて、前記外管のガス流量及び/又はガス組成を制御するAOD炉の羽口冷却方法であって、When a gas is blown into a molten metal in a molten metal container through a double tube tuyere having an inner tube and an outer tube, and the molten metal is stirred and blown, the gas flow rate and / or gas of the inner tube An AOD furnace tuyere cooling method for controlling the gas flow rate and / or gas composition of the outer tube according to the composition,
前記溶融金属が溶鉄であり、The molten metal is molten iron;
前記溶鉄の炭素濃度C(%)と温度T(℃)に応じて、外管の不活性ガス流量F(Depending on the carbon concentration C (%) of the molten iron and the temperature T (° C.), the inert gas flow rate F ( NmNm 3Three /Hr// Hr / 本)を調整して(2)式で計算されるβを100〜400に制御することを特徴とするAOD炉の羽口冷却方法。The AOD furnace tuyere cooling method is characterized in that β calculated by the equation (2) is adjusted to 100 to 400 by adjusting (the present).
β=β = (( T ss 200)200) ×× (( F+F + 0.30.3 ×Q× Q )) /{/ { (( T−TTT s)s) ×× (( Q+Q + 22 ×Q× Q O2O2 )) 0.250.25 } ・・・... (( 2 )  )
T ss = 1468.61468.6 81.1881.18 ×C+× C + 15.115.1 ×C× C 22 ・・・(3)... (3)
吹錬中のβの変化を±10%以下に制御することを特徴とする、請求項3に記載のAOD炉の羽口冷却方法。4. The tuyere cooling method for an AOD furnace according to claim 3 , wherein the change in β during blowing is controlled to ± 10% or less.
JP2000176620A 2000-06-13 2000-06-13 AOD furnace tuyere cooling method Expired - Lifetime JP4248731B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000176620A JP4248731B2 (en) 2000-06-13 2000-06-13 AOD furnace tuyere cooling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000176620A JP4248731B2 (en) 2000-06-13 2000-06-13 AOD furnace tuyere cooling method

Publications (2)

Publication Number Publication Date
JP2001355019A JP2001355019A (en) 2001-12-25
JP4248731B2 true JP4248731B2 (en) 2009-04-02

Family

ID=18678328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000176620A Expired - Lifetime JP4248731B2 (en) 2000-06-13 2000-06-13 AOD furnace tuyere cooling method

Country Status (1)

Country Link
JP (1) JP4248731B2 (en)

Also Published As

Publication number Publication date
JP2001355019A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JPWO2014112432A1 (en) Converter steelmaking
CN102206730A (en) Method for controlling oxygen and reducing nitrogen in molten steel
FI103584B (en) A converter and a method for blowing up a metal from above
CN113981167A (en) Multi-mode smelting method based on molten iron grading system
JPS6150122B2 (en)
JP4248731B2 (en) AOD furnace tuyere cooling method
EP0160374A2 (en) Method for producing steel in a top-blown vessel
JP2006009146A (en) Method for refining molten iron
SU1484297A3 (en) Method of producing steels with low carbon content
EP0688877A1 (en) Process for producing low-carbon chromium-containing steel
US4023962A (en) Process for regenerating or producing steel from steel scrap or reduced iron
JP4114346B2 (en) Manufacturing method of high Cr molten steel
RU2118376C1 (en) Method of producing vanadium slag and naturally vanadium-alloyed steel
JP3788392B2 (en) Method for producing high Cr molten steel
JP4421314B2 (en) Determination of slag amount in hot metal refining
CN115044740B (en) Endpoint carbon control method for low-carbon annealing-free steel converter
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
JP4084527B2 (en) Converter blowing method
JP3560637B2 (en) Converter furnace blowing method for stainless steel
JP2001032009A (en) Method for refining molten steel containing chromium
RU2588926C2 (en) Method for production of vanadium-bearing slag suitable for producing directly commercial ferrovanadium therefrom
JP3902446B2 (en) Converter blowing method
JPH06172839A (en) Operation of converter type smelting reduction furnace
JPH0633133A (en) Production of ultralow carbon steel
CN116460260A (en) Control method for improving stability of high-carbon alloy steel refining and casting process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4248731

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term