JP4248294B2 - Beamforming with microphone using indefinite term - Google Patents
Beamforming with microphone using indefinite term Download PDFInfo
- Publication number
- JP4248294B2 JP4248294B2 JP2003114976A JP2003114976A JP4248294B2 JP 4248294 B2 JP4248294 B2 JP 4248294B2 JP 2003114976 A JP2003114976 A JP 2003114976A JP 2003114976 A JP2003114976 A JP 2003114976A JP 4248294 B2 JP4248294 B2 JP 4248294B2
- Authority
- JP
- Japan
- Prior art keywords
- equation
- target direction
- filter
- gain
- microphone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Circuit For Audible Band Transducer (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は任意の空間上に複数のマイクロホンを配設し、該複数のマイクロホンの出力信号を通して合成することで指向特性を形成するフィルタを設計する方法に関するものである。
【0002】
【従来技術】
従来、複数の音センサであるマイクロホンを広い範囲に備えて音を収録する方法(特許文献1参照)や、球面アレイ送受信器を用いた探査装置(特許文献2参照)は開示されており、又、複数のマイクロホン信号にフィルタを通して合成することで指向特性を形成する方法が既に提案されている。
【0003】
そして、これを球バッフル上のマイクロホンで実現した収録系(以後SBM)は、マイクロホンやその支持部を球の内側に埋込む事で、それらによる反射や回折を低減できるという利点があり、SBMで目的の指向特性を形成する方法は提案されているが、ここで用いているフィルタ設計法は適応処理を用いるためにステップサイズなどのパラメータ値と得られる指向特性との関係が明白でないものである。
【0004】
従来、複数のマイクロホンによる指向特性の制御は、図1に図示する如く、N個のマイクロホン信号Xn(ω),n=1,2,...,Nに対し伝達特性Gn(ω)のフィルタを通して合成し、指向特性を持つ収録信号Y(ω)を得るように処理されるものであり、距離r、方位角θ、仰角φの音源X(ω)からマイクロホンnまでの伝達関数をHr,θ,φ,n,(ω)とすれば、この処理での距離方向を含む指向特性D(r,θ,φ)は次式[18]と成るものである。
【0005】
【数18】
【0006】
次に、方向を対象範囲で離散したものを添字m(m=1,2,...M)で表せば次式[19]と成るものである。
【0007】
【数19】
d=Hg
【0008】
この場合、dは指向特性ベクトル、Hは伝達関数行列、gはフィルタベクトルであり、Tは転置行列を表すと次式[20]と成るものである。
【0009】
【数20】
【0010】
そして、適応処理を含まない従来のフィルタ設計法については、遅延和ビームフォーミング(以後BF)があり、目的方向kのフィルタgkを下記の[21]の式で設計すると、伝達の位相遅れを打ち消す位相回転をもつフィルタと成るものであり、*は複素共役を表すものである。
【0011】
【数21】
【0012】
次に、重み付き遅延和BFの目的方向kのフィルタgkを、+は擬似逆行列、Hはエルミート演算子(複素共役転置)として、下記の[22]の式で設計すると、遅延和BFに各マイクロホンへの伝達率に比例した重みを付けたフィルタと成り、方向kでの利得が1となるフィルタの中でノルム|gk|2が最小となり、|hm|が方向により一定なら|Dm|<1(m≠k)となりピークが方向kになり、一般に変動にロバストだがサイドロープの広い指向特性と成るものである。
【0013】
【数22】
【0014】
次いで、NULL制御付きBFの目的方向kでの利得を1とし、N−1以下の非目的方向に対してNULL(利得0)を形成するフィルタを設計するもので、非目的方向の数をL,その方向をul(l=1,2,...,L)とすれば、gkuを次式[23]で設計するものである。
【0015】
【数23】
【0016】
そして、L(>N−1)の場合は前記[23]の式の疑似逆行列は逆行列で計算できるもので、非目的方向を適当に選択すれば、特に低い周波数で遅延和BFよりサイドロープが押さえられた方向特性を形成できるものである。
【0017】
更には、LSE制御BFでは、目的方向kで利得をもち、L=N−1の非目的方向に対して利得を低く押さえるフィルタを設計するもので、設計方法は前記[23]の式で表現され、目的方向で1、非目的方向で0とは成らないが、二乗誤差最小(LSE)のフィルタが設計され、一般にLを大きくすると目的方向の利得は減少するもので、この場合、目的方向に重みw>1を付けて、次式次式[24]として設計することで緩和でき、非目的方向を適当に選択すれば、NULL制御BFに比べてサイドロープが低く押さえられるものである。
【0018】
【数24】
【0019】
【特許文献1】
特開2002−48867号公報
【特許文献2】
特開2000−162308号公報
【0020】
【発明が解決しようとする課題】
従来行われていたフィルタの設計法(BF)の遅延和BFでは、位相のみで簡単に処理が可能なものであるが、ビームが広く、球や不等間隔アレイの時はピーク方向が保証されないもので、サイドローブが大きくなるものであり、又、重み付き遅延和BFでは、伝達関数の変動には強いものの、ビームが広く、サイドローブが大きくなるものであり、更に、NULL制御付きBFでは、サイドローブを何方向かは0にできるものの、マイクロホンの個数−1の点しか0にできず、0にした場所の間でサイドローブが大きくなるものであり、更には、LSE制御BFでは、複数方向のサイドローブは小さくできるものの、メインビームの高さが落ちてしまい目的方向の利得が保証されなく、加えて、ピーク位置も保証されないものであり、従って、本発明の不定項を用いたマイクロホンによるビームフォーミングの請求項1に記載の不定項制御BFでは、LSE制御BFと同様に複数方向のサイドローブを小さくすると共に、目的方向の利得は保証されるものであり、更に、請求項2に記載のピーク固定付き不定項制御BFでは、ピーク位置が保証されて、メインローブのピークが目的方向から外れることを解決するものであり、又、平面上に配設されたマイクロホンの指向性の処理は安易であるが、空間上に配設されたマイクロホンの指向性の処理は困難を極めていた。
【0021】
【課題を解決するための手段】
任意の空間上に複数のマイクロホンを配設し、該複数のマイクロホンの出力信号を通して合成することで指向特性を形成するフィルタを設計する方法であって、不定項LSE制御ビームフォーミングとピーク固定付き不定項LSE制御ビームフォーミングとを用いて、パラメータの調整が不要であると同時に、サイドロープが二乗誤差の意味で最適なフィルタを設計するものである。
【0022】
【発明の作用】
本発明は、任意の空間上に複数のマイクロホンを配設し、該複数のマイクロホンの出力信号を通して合成することで指向特性を形成するフィルタを設計するもので、疑似逆行列を用いてフィルタの設計をするために、パラメータの調整が不要であると同時に、サイドロープが二乗誤差の意味で最適なフィルタの設計を可能とするものである。
【0023】
【発明の実施の形態】
以下、本発明の不定項を用いたマイクロホンによるビームフォーミングの実施の形態の図面によって具体的に説明する。
【0024】
図1は本発明の不定項を用いたマイクロホンによるビームフォーミングの実施の形態の複数のマイクロホンによる指向特性処理系を表す説明図てあり、図2は本発明の不定項を用いたマイクロホンによるビームフォーミングの実施の形態のマイクロホンの配置状態を表す説明図てあり、図3は500Hzにおける(a)重み付き遅延和BFと(b)ピーク固定付き不定項LSE制御BFとのフィルタ特性を表す説明図であり、図4は2000Hzにおける(a)重み付き遅延和BFと(b)ピーク固定付き不定項LSE制御BFとのフィルタ特性を表す説明図である。
【0025】
本発明の請求項1に記載の不定項を用いたマイクロホンによるビームフォーミングは、任意の空間上に複数のマイクロホンを配設し、該複数のマイクロホンの出力信号を通して合成することで指向特性を形成するフィルタを設計する方法であって、実施の形態では、球バッフルの表面に埋設した複数のマイクロホンによるBFを、不定項と擬似逆行列とを用いて、パラメータの調整が不要であると同時に、サイドロープが二乗誤差の意味で最小となるものである。
【0026】
即ち、不定項LSE制御BFでは、目的方向kでの利得を1に保ったままL(>N−1)の非目的方向に対して利得を低減するフィルタの設計法を提案するもので、目的方向kでの利得が1となるフィルタの一般解gkは、前記[22]の式で得られる解を特解g k (「〜」の上付き)として、後述する[25]の式で表現できるもので、yは任意のベクトルで、Zは後述する[26]の式であり、Zlは[hk]のゼロ空間を張る独立なベクトルで後述する[27]の式を満たすものであり、Zlは[hk]の特異値分解で求められ、後述する[25]の式のyは任意なので、非目的方向の利得が最小となるように調整でき、gkによる非目的方向の応答は、後述する[28]の式と成るものである。
【0027】
【数25】
【0028】
【数26】
Z=[Z1Z2...ZN−1]
【0029】
【数27】
hkzl=0 (l=1,2,...,N−1)
【0030】
【数28】
【0031】
次に、前記[28]の式でuは非目的方向の指向特性ベクトル、U非目的方向の伝達関数行列で後述する[29]の式であり、非目的方向の利得uを二乗誤差の意味で最小とするyは後述する[30]の式で求められるものである。
【0032】
【数29】
【0033】
【数30】
【0034】
そして、yを前記[25]の式に代入して得られるgkが本発明の不定項を用いたマイクロホンによるビームフォーミングであり、解の自由度Nのうち1つだけを目的方向に用いて制御し、残りN−1の自由度をサイドローブの低減に割り当てるものである。
【0035】
更には、請求項2に記載の不定項を用いたマイクロホンによるビームフォーミングは、請求項1に記載の不定項を用いたマイクロホンによるビームフォーミング、つまり、不定項LSE制御BFでは、目的方向以外の利得が1未満であることが保証されておらず、メインローブのピークが目的方向からずれことがあり、このずれを防止するもので、メインローブのピークを目的方向に固定するものである。
【0036】
つまり、目的方向kでの利得が1で目的方向の近傍での角方向の微分値が0(ピーク)に成るとフィルタgkは、次式[31]の式の解として与えられるものである。
【0037】
【数31】
【0038】
ここでのdrhk,dθhk,dφhk,は夫々Hr,θ,φ,n,(ω)での微分値を要素とするベクトルであり、この解は前記[31]の式で求められ、次式[32]の式は3次元的な指向特性を実現する場合のもので、N>4の必要があるものである。
【0039】
【数32】
【0040】
そして、N>4の場合、前記[31]の式を満たす一般式gkは前述と同様に下記の[33]の式で表現でき、ここでyの次元およびZの列数はN−4であり、前述と同様に非目的方向の伝達関数行列Uを用いて非目的方向の利得を最小とするyを下記の[34]の式で求め、下記の[33]の式に代入してgk得るものである。
【0041】
【数33】
【0042】
【数34】
【0043】
即ち、本発明の不定項を用いたマイクロホンによるビームフォーミングは、解の自由度Nのうち4つを目的方向の利得とピークの固定に用いて、残りN−4の自由度をサイドローブの低減に割り当てるものである。
【0044】
次いで、SBMを用いて2次元的な指向特性を制御するフィルタを従来の重み付き遅延BFと本発明のピーク固定付き不定項LSE制御BFとについてのフィルタ特性の検討したもので、SBMに関する条件は図2に図示する如く、マイクロホンの数は17個で図2(a)はZ軸の正方向からの配置図であり、図2(b)はZ軸の負方向からの配置であり、、半径84mmとし、また、伝達関数Hr,θ,φ,n(ω)Hに関してはr=1000mmの場合の値を用いて、方位角θ、仰角φとしたときのX軸正方向に相当の500Hzと2000Hzにおける夫々のフィルタ特性を求めたものである。
【0045】
その結果、図3(a)(b)及び図4(a)(b)に図示の如く、方位角θ、仰角φとし(θ,φ)=(0,0)のときのX軸正方向に相当する500Hzと2000Hzにおける夫々のフィルタ特性を示し、ピーク固定付き不定項LSE制御BFでは重み付き遅延BFに比べて、低域ではメインローブの幅はかなり狭い特性(500Hzではピークから−6dBまでの幅は約±30度)、高域ではサイドローブが抑えられた指向特性のフィルタが設計できるものである。
【0046】
【発明の効果】
本発明の不定項を用いたマイクロホンによるビームフォーミングは、球バッフルの表面に複数のマイクロホンを埋没状態で配設し、該複数のマイクロホンの出力信号を通して合成することで指向特性を形成するフィルタを設計するもので、反射や回折の影響を無視することを可能とすると共に、不定項と疑似逆行列を用いてフィルタの設計をするために、パラメータの調整が不要であると同時に、サイドロープが二乗誤差の意味で最適なフィルタの設計を可能とする画期的なものである。
【図面の簡単な説明】
【図1】図1は本発明の不定項を用いたマイクロホンによるビームフォーミングの実施の形態の複数のマイクロホンによる指向特性処理系を表す説明図てある。
【図2】図2は本発明の不定項を用いたマイクロホンによるビームフォーミングの実施の形態のマイクロホンの配置状態を表す説明図てある。
【図3】図3は500Hzにおける(a)重み付き遅延和BFと(b)ピーク固定付き不定項LSE制御BFとのフィルタ特性を表す説明図である。
【図4】図4は2000Hzにおける(a)重み付き遅延和BFと(b)ピーク固定付き不定項LSE制御BFとのフィルタ特性を表す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for designing a filter that forms a directional characteristic by arranging a plurality of microphones in an arbitrary space and synthesizing them through output signals of the plurality of microphones.
[0002]
[Prior art]
Conventionally, a method for recording sound with a plurality of microphones as sound sensors (see Patent Document 1) and an exploration device using a spherical array transceiver (see Patent Document 2) have been disclosed. A method of forming directional characteristics by combining a plurality of microphone signals through a filter has already been proposed.
[0003]
And the recording system (hereafter SBM) which realized this with the microphone on the sphere baffle has the advantage that reflection and diffraction by them can be reduced by embedding the microphone and its supporting part inside the sphere. Although a method for forming the desired directional pattern has been proposed, the filter design method used here does not clearly show the relationship between parameter values such as step size and the obtained directional pattern in order to use adaptive processing. .
[0004]
Conventionally, the directivity control by a plurality of microphones is performed by using N microphone signals Xn (ω), n = 1, 2,. . . , N through a filter having a transfer characteristic G n (ω) and processed so as to obtain a recorded signal Y (ω) having directivity characteristics, and a sound source X having a distance r, an azimuth angle θ, and an elevation angle φ. Assuming that the transfer function from (ω) to the microphone n is Hr, θ, φ, n, (ω), the directivity characteristic D (r, θ, φ) including the distance direction in this processing is expressed by the following equation [18]. It will be.
[0005]
[Formula 18]
[0006]
Next, if the direction is discrete in the target range is represented by the subscript m (m = 1, 2,... M), the following equation [19] is obtained.
[0007]
[Equation 19]
d = Hg
[0008]
In this case, d is a directivity vector, H is a transfer function matrix, g is a filter vector, and T is a transposed matrix, which is expressed by the following equation [20].
[0009]
[Expression 20]
[0010]
And, for the conventional filter design method that does not include adaptive processing, there is a delay sum beamforming (hereinafter BF), when designing a filter g k in the intended direction k in equation [21] below, a phase delay of the transfer The filter has a phase rotation that cancels out, and * represents a complex conjugate.
[0011]
[Expression 21]
[0012]
Next, when the filter g k in the target direction k of the weighted delay sum BF is designed with the following equation [22], where + is a pseudo inverse matrix and H is a Hermitian operator (complex conjugate transpose), the delay sum BF If the filter is weighted in proportion to the transmission rate to each microphone, the norm | g k | 2 is the smallest among the filters having a gain of 1 in the direction k, and | h m | is constant depending on the direction. | D m | <1 (m ≠ k), and the peak is in the direction k, which is generally robust to fluctuations, but has a wide directivity characteristic of the side rope.
[0013]
[Expression 22]
[0014]
Next, a filter that forms NULL (gain 0) for a non-target direction equal to or less than N−1 is designed by setting the gain in the target direction k of the BF with NULL control to 1, and the number of non-target directions is L If the direction is u l (l = 1, 2,..., L), g ku is designed by the following equation [23].
[0015]
[Expression 23]
[0016]
In the case of L (> N−1), the pseudo inverse matrix of the equation [23] can be calculated as an inverse matrix. If the non-target direction is appropriately selected, the side of the delay sum BF is reduced at a particularly low frequency. A direction characteristic in which the rope is pressed can be formed.
[0017]
Furthermore, in the LSE control BF, a filter is designed that has a gain in the target direction k and suppresses the gain low in the non-target direction of L = N−1. The design method is expressed by the equation [23]. In this case, a filter with a least square error (LSE) is designed, and generally the gain in the target direction decreases when L is increased. In this case, the target direction is reduced. Can be relaxed by adding the weight w> 1 to the following equation [24], and if the non-target direction is appropriately selected, the side rope can be suppressed lower than the NULL control BF.
[0018]
[Expression 24]
[0019]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-48867 [Patent Document 2]
JP 2000-162308 A
[Problems to be solved by the invention]
The conventional delay sum BF of the filter design method (BF) can be easily processed with only the phase, but the beam direction is wide, and the peak direction is not guaranteed when the array is a sphere or an unequally spaced array. However, the weighted delay sum BF is resistant to fluctuations in the transfer function, but the beam is wide and the side lobe is large. Further, in the BF with NULL control, Although the direction of the side lobe can be zero, only the number of microphones minus one can be zero, and the side lobe becomes large between the places where the side lobe is zero. Furthermore, in the LSE control BF, Although the side lobes in multiple directions can be made small, the height of the main beam falls and the gain in the target direction is not guaranteed, and in addition, the peak position is not guaranteed. In the indeterminate term control BF according to
[0021]
[Means for Solving the Problems]
A method of designing a filter that forms a directional characteristic by arranging a plurality of microphones in an arbitrary space and synthesizing them through output signals of the plurality of microphones, and includes an indefinite term LSE control beamforming and indefinite with peak fixing. By using the term LSE control beam forming, it is not necessary to adjust parameters, and at the same time, the side rope designs an optimum filter in terms of a square error.
[0022]
[Effects of the Invention]
The present invention designs a filter that forms a directional characteristic by arranging a plurality of microphones in an arbitrary space and combining them through output signals of the plurality of microphones. Therefore, it is not necessary to adjust the parameters, and at the same time, the side rope makes it possible to design an optimum filter in terms of a square error.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of beamforming by a microphone using the indefinite term of the present invention will be specifically described with reference to the drawings.
[0024]
FIG. 1 is an explanatory view showing a directivity processing system using a plurality of microphones according to an embodiment of beam forming using a microphone using an indefinite term of the present invention, and FIG. 2 is a beam forming using a microphone using the indefinite term of the present invention. FIG. 3 is an explanatory diagram showing the filter characteristics of (a) a weighted delay sum BF and (b) an indeterminate LSE control BF with a fixed peak at 500 Hz. FIG. 4 is an explanatory diagram showing filter characteristics of (a) weighted delay sum BF and (b) indeterminate LSE control BF with peak fixing at 2000 Hz.
[0025]
In the beam forming by the microphone using the indefinite term according to the first aspect of the present invention, a plurality of microphones are arranged in an arbitrary space and synthesized through output signals of the plurality of microphones to form directivity characteristics. In the embodiment, in the embodiment, the BF formed by a plurality of microphones embedded in the surface of the sphere baffle is not required to adjust parameters by using an indefinite term and a pseudo inverse matrix, and at the same time, The rope is the smallest in terms of square error.
[0026]
That is, the indefinite term LSE control BF proposes a filter design method for reducing the gain in the non-target direction of L (> N−1) while keeping the gain in the target direction k at 1. The general solution g k of the filter having a gain of 1 in the direction k is expressed by the equation [25] described later with the solution obtained by the equation [22] as a special solution g k (superscript “˜”). Y is an arbitrary vector , Z is an expression of [26] described later, and Z 1 is an independent vector extending a zero space of [h k ] that satisfies the expression of [27] described later. Z l is obtained by singular value decomposition of [h k ], and y in the expression of [25] to be described later is arbitrary, so that it can be adjusted so that the gain in the non-target direction is minimized, and non-purpose by g k The direction response is the equation [28] described later.
[0027]
[Expression 25]
[0028]
[Equation 26]
Z = [Z 1 Z 2 . . . Z N-1 ]
[0029]
[Expression 27]
h k z l = 0 (l = 1, 2, ..., N-1)
[0030]
[Expression 28]
[0031]
Next, in the equation [28], u is a directivity characteristic vector in the non-target direction and a transfer function matrix in the U non-target direction, which is described later in [29], and the gain u in the non-target direction is the meaning of the square error. The minimum y is obtained by the equation [30] described later.
[0032]
[Expression 29]
[0033]
[30]
[0034]
Then, g k obtained by substituting y into the equation [25] is beam forming by the microphone using the indefinite term of the present invention, and only one of the degrees of freedom N of the solution is used in the target direction. Control and assign the remaining N-1 degrees of freedom to sidelobe reduction.
[0035]
Further, the beam forming by the microphone using the indefinite term according to
[0036]
That is, when the gain in the target direction k is 1 and the differential value in the angular direction in the vicinity of the target direction is 0 (peak), the filter g k is given as a solution of the following equation [31]. .
[0037]
[31]
[0038]
Here, drh k , dθh k , and dφh k are vectors each having a differential value at Hr, θ, φ, n, (ω) as an element, and this solution is obtained by the equation [31], The following equation [32] is for realizing a three-dimensional directivity, and N> 4 is necessary.
[0039]
[Expression 32]
[0040]
When N> 4, the general formula g k satisfying the formula [31] can be expressed by the following formula [33] as described above, where the dimension of y and the number of columns of Z are N-4. In the same manner as described above, y that minimizes the gain in the non-target direction is obtained by the following formula [34] using the transfer function matrix U in the non-target direction, and is substituted into the following formula [33]. g k .
[0041]
[Expression 33]
[0042]
[Expression 34]
[0043]
That is, in the beam forming by the microphone using the indeterminate term of the present invention, four of the degrees of freedom N of the solution are used to fix the gain and the peak in the target direction, and the degree of freedom of the remaining N-4 is reduced to the side lobe. To be assigned.
[0044]
Next, the filter characteristics of the conventional weighted delay BF and the peak-fixed indeterminate LSE control BF according to the present invention were examined using a SBM to control the two-dimensional directivity characteristics. As shown in FIG. 2, the number of microphones is 17, FIG. 2 (a) is a layout view from the positive direction of the Z axis, FIG. 2 (b) is a layout view from the negative direction of the Z axis, The radius is 84 mm, and the transfer function Hr, θ, φ, n (ω) H is 500 Hz corresponding to the positive direction of the X axis when the azimuth angle θ and the elevation angle φ are set using values in the case of r = 1000 mm. And the respective filter characteristics at 2000 Hz.
[0045]
As a result, as shown in FIGS. 3A and 3B and FIGS. 4A and 4B, the azimuth angle θ and the elevation angle φ are set to the positive direction of the X-axis when (θ, φ) = (0, 0). Each of the filter characteristics at 500 Hz and 2000 Hz corresponding to is shown, and in the indeterminate LSE control BF with fixed peak, the width of the main lobe is considerably narrower in the low frequency range than the weighted delay BF (from 500 dB to the peak at −6 dB) Can be designed to have a directional characteristic filter with suppressed side lobes at high frequencies.
[0046]
【The invention's effect】
The beam forming by the microphone using the indeterminate term of the present invention is designed by arranging a plurality of microphones in a buried state on the surface of the spherical baffle and synthesizing them through output signals of the plurality of microphones to form a directional characteristic filter. Therefore, it is possible to ignore the influence of reflection and diffraction, and the filter is designed using indefinite terms and pseudo inverse matrix. This is an epoch-making thing that enables the design of an optimum filter in terms of errors.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a directional characteristic processing system using a plurality of microphones according to an embodiment of beam forming using a microphone using an indefinite term of the present invention.
FIG. 2 is an explanatory diagram showing the arrangement state of microphones according to an embodiment of beamforming by a microphone using an indefinite term of the present invention.
FIG. 3 is an explanatory diagram showing filter characteristics of (a) a weighted delay sum BF and (b) an indeterminate term LSE control BF with peak fixing at 500 Hz.
FIG. 4 is an explanatory diagram showing filter characteristics of (a) weighted delay sum BF and (b) indefinite term LSE control BF with peak fixing at 2000 Hz.
Claims (2)
(数1)
となり、方向を対象範囲で離散したものを添字m(m=1,2,...M)とし、指向特性ベクトルd、伝達関数行列H、フィルタベクトルgとし、
(数2)
d=Hg
(数3)
であり、Tは転置行列を表し、目的方向kのフィルタgkを
(数4)
で設計し、*を複素共役を表し、目的方向kのフィルタgkを
(数5)
で設計し、+は擬似逆行列、Hはエルミート演算子とし、目的方向kでの利得を1とし、N−1以下の非目的方向に対して利得0を形成するフィルタを設計し、非目的方向の数をL、その方向をul(l=1,2,...,L)として、gkuを
(数6)
で設計し、目的方向に重みw>1を付けて、
(数7)
で設計する遅延和ビームフォーミングと重み付き遅延和ビームフォーミングとNULL制御付きビームフォーミングとLSE制御ビームフォーミングとにおいて、目的方向kでの利得を1に保ったままL(>N−1)の非目的方向に対して利得を低減するフィルタの設計法であり、目的方向kでの利得が1となるフィルタの一般解gkを、前記数5で得た解を特解g k (「〜」の上付き)として、
(数8)
で表し、yを任意のベクトルとし、Zは
(数9)
Z=[Z1Z2...ZN−1]
であり、Z1は[hk]のゼロ空間を張る独立なベクトルで、
(数10)
hkz1=0 (l=1,2,...,N−1)
を満たし、Z1を[hk]の特異値分解で求め、非目的方向の利得が最小となるように調整し、gkによる非目的方向の応答は
(数11)
とし、uは非目的方向の指向特性ベクトルであり、Uは非目的方向の伝達関数行列で、
(数12)
であり、非目的方向の利得uを二乗誤差の意味で最小とするyは数11のu=0とした場合のLSE解であり、yは
(数13)
で求め、求められたyを前記数8に代入してgkを求めることを特徴とする不定項を用いたマイクロホンによるビームフォーミングを用いた方法。A method of designing a filter that forms a directional characteristic by arranging a plurality of microphones in an arbitrary space and synthesizing them through output signals of the plurality of microphones, the signals Xn (ω) from N microphones , N = 1, 2,. . . , N through a filter having a transfer characteristic G n (ω) and processing so as to obtain a recorded signal Y (ω) having directivity characteristics, and from a sound source X (ω) having a distance r, an azimuth angle θ, and an elevation angle φ. The directivity D (r, θ, φ) including the distance direction with the transfer function to the microphone n as Hr, θ, φ, n (ω) is
(Equation 1)
Where the direction is discrete in the target range is the subscript m (m = 1, 2,... M), the directivity vector d, the transfer function matrix H, and the filter vector g.
(Equation 2)
d = Hg
(Equation 3)
T represents a transposed matrix, and a filter g k in the target direction k is expressed by (Expression 4)
* Represents the complex conjugate, and the filter g k in the target direction k is
, + Is a pseudo inverse matrix, H is a Hermitian operator, a gain is set to 1 in a target direction k, and a filter that forms a gain 0 in a non-target direction equal to or less than N−1 is designed. The number of directions is L, the direction is u l (l = 1, 2,..., L), and g ku is expressed by ( Expression 6).
Design with the weight w> 1 in the target direction,
(Equation 7)
In the delay sum beamforming, weighted delay sum beamforming, beam control with NULL control, and LSE control beamforming designed in the above, the non-purpose of L (> N-1) while keeping the gain in the target direction k at 1 a design method of a filter to reduce the gain to the direction, the general solution g k of the filter gain in target direction k is 1, particular solutions the solution obtained in several 5 g k (the "-" As a superscript)
(Equation 8)
Where y is an arbitrary vector and Z is (Equation 9)
Z = [Z 1 Z 2 . . . Z N-1 ]
Z 1 is an independent vector spanning the null space of [h k ],
(Equation 10)
h k z 1 = 0 (l = 1, 2,..., N−1)
And Z 1 is obtained by singular value decomposition of [h k ], adjusted so that the gain in the non-target direction is minimized, and the response in the non-target direction by g k is expressed by
And u is a directivity vector in the non-target direction, U is a transfer function matrix in the non-target direction,
(Equation 12)
Y that minimizes the gain u in the non-target direction in terms of the square error is an LSE solution when u = 0 in Equation 11, and y is (Equation 13).
A method using beam forming with a microphone using an indefinite term, wherein g k is obtained by substituting the obtained y into the equation ( 8).
(数14)
の解として与え、drhk,dθhk,dφhk,は夫々Hr,θ,φ,n,(ω)での微分値を要素とするベクトルであり、この解を
(数15)
で求めると共に、前記数14は3次元的な指向特性を実現するもので、N>4を必要とし、N>4の前記数14を満たす一般式gkを
(数16)
で、yの次元およびZの列数はN−4とし、非目的方向の伝達関数行列Uを用いて非目的方向の利得を最小とするyを
(数17)
で求め、前記数16に代入してgk得ることを特徴とする請求項1に記載の不定項を用いたマイクロホンによるビームフォーミングを用いた方法。When the gain in the target direction k is 1 and the angular differential value in the vicinity of the target direction becomes 0, the filter g k is expressed by (Expression 14).
Where drh k , dθh k , and dφh k are vectors having differential values at Hr, θ, φ, n, and (ω) as elements, and this solution is expressed as
The above equation 14 realizes a three-dimensional directivity characteristic, and N> 4 is required, and the general formula g k satisfying the above equation 14 with N> 4 is expressed by (Equation 16).
The dimension of y and the number of columns of Z are N-4, and y that minimizes the gain in the non-target direction using the transfer function matrix U in the non-target direction is given by (Expression 17)
The method using beam forming with a microphone using an indefinite term according to claim 1, wherein g k is obtained by substituting into Equation (16) to obtain g k .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003114976A JP4248294B2 (en) | 2003-03-17 | 2003-03-17 | Beamforming with microphone using indefinite term |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003114976A JP4248294B2 (en) | 2003-03-17 | 2003-03-17 | Beamforming with microphone using indefinite term |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004279390A JP2004279390A (en) | 2004-10-07 |
JP4248294B2 true JP4248294B2 (en) | 2009-04-02 |
Family
ID=33296167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003114976A Expired - Lifetime JP4248294B2 (en) | 2003-03-17 | 2003-03-17 | Beamforming with microphone using indefinite term |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4248294B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150045648A (en) * | 2013-10-21 | 2015-04-29 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving a signal in a wireless communication system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006210986A (en) * | 2005-01-25 | 2006-08-10 | Sony Corp | Sound field design method and sound field composite apparatus |
JPWO2007007414A1 (en) * | 2005-07-14 | 2009-01-29 | リオン株式会社 | Delay and sum sensor array device |
JP2012037429A (en) * | 2010-08-09 | 2012-02-23 | Nissan Motor Co Ltd | Method for creating filter for beam-forming device and apparatus for creating filter for beam-forming device |
EP2448289A1 (en) * | 2010-10-28 | 2012-05-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Apparatus and method for deriving a directional information and computer program product |
US9774960B2 (en) * | 2014-12-22 | 2017-09-26 | Gn Hearing A/S | Diffuse noise listening |
JP6909988B2 (en) * | 2015-08-31 | 2021-07-28 | パナソニックIpマネジメント株式会社 | Sound source exploration device |
-
2003
- 2003-03-17 JP JP2003114976A patent/JP4248294B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150045648A (en) * | 2013-10-21 | 2015-04-29 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving a signal in a wireless communication system |
KR102114837B1 (en) | 2013-10-21 | 2020-05-25 | 삼성전자주식회사 | Method and apparatus for transmitting and receiving a signal in a wireless communication system |
Also Published As
Publication number | Publication date |
---|---|
JP2004279390A (en) | 2004-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9445198B2 (en) | Polyhedral audio system based on at least second-order eigenbeams | |
EP0807990B1 (en) | Circularly symmetric, zero redundancy, planar array antenna | |
EP2168396B1 (en) | Augmented elliptical microphone array | |
US8204247B2 (en) | Position-independent microphone system | |
US6041127A (en) | Steerable and variable first-order differential microphone array | |
US7587054B2 (en) | Audio system based on at least second-order eigenbeams | |
EP1429581B1 (en) | Method of broadband constant directivity beamforming for non linear and non axi-symmetric sensor arrays embedded in a obstacle | |
CN104041073A (en) | Near-field null and beamforming | |
US5838284A (en) | Spiral-shaped array for broadband imaging | |
EP3320691B1 (en) | Audio signal processing apparatus | |
CN114467312A (en) | Two-dimensional microphone array with improved directivity | |
Butler et al. | A tri-modal directional transducer | |
JP4248294B2 (en) | Beamforming with microphone using indefinite term | |
Butler et al. | Multimode directional telesonar transducer | |
JP2006270903A (en) | Nonlinear beam forming by microphone array of arbitrary arrangement | |
CN117223295A (en) | microphone array | |
Kuznetsov et al. | Equations for Calculating the Amplitude–Frequency and Phase–Frequency Responses of a Tripole-Type Vector–Scalar Receiver with a Time Delay of a Monopole Signal | |
Elko et al. | Beam dithering: Acoustic feedback control using a modulated-directivity loudspeaker array | |
CN112995841B (en) | Linear differential microphone array based on geometric optimization | |
US12089017B2 (en) | Method for designing a line array loudspeaker arrangement | |
US20230268977A1 (en) | Wideband Beamforming with Main Lobe Steering and Interference Cancellation at Multiple Independent Frequencies and Spatial Locations | |
Chan et al. | Theory and design of uniform concentric spherical arrays with frequency invariant characteristics | |
CN115470447A (en) | Arbitrary-order super-gain beam forming method suitable for arbitrary array | |
JP2005265466A (en) | Beam forming device based on minimax discipline, and its beam forming method | |
CN114339540A (en) | Loudspeaker and array thereof, driving method and related equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20030317 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060317 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060710 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080610 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080807 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4248294 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120123 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130123 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140123 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |