JP4248058B2 - Abrasion resistant metal tube and method of manufacturing the same - Google Patents

Abrasion resistant metal tube and method of manufacturing the same Download PDF

Info

Publication number
JP4248058B2
JP4248058B2 JP29768398A JP29768398A JP4248058B2 JP 4248058 B2 JP4248058 B2 JP 4248058B2 JP 29768398 A JP29768398 A JP 29768398A JP 29768398 A JP29768398 A JP 29768398A JP 4248058 B2 JP4248058 B2 JP 4248058B2
Authority
JP
Japan
Prior art keywords
tube
wear
thickness
thick
resistant metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29768398A
Other languages
Japanese (ja)
Other versions
JP2000120939A (en
Inventor
洋一 松原
義信 曽地
正継 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP29768398A priority Critical patent/JP4248058B2/en
Publication of JP2000120939A publication Critical patent/JP2000120939A/en
Application granted granted Critical
Publication of JP4248058B2 publication Critical patent/JP4248058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐摩耗性に優れた金属管及びその製造方法に関する。
【0002】
【従来の技術】
鋼管には、その用途によって内面や外面に優れた耐摩耗性を要求されることがあり、従来より耐摩耗性を向上させるために、焼入れを行うとか、溶射や回転ライニングにより金属系耐摩耗性被覆を形成するといった冶金的処理が採られていた。
【0003】
【発明が解決しようとする課題】
しかしながら、鋼管に焼入れを施すと、耐摩耗性は向上するものの、溶接接合時に割れる恐れが生じ、このため、管端にフランジを溶接接合するとか、配管時に管端同志を突き合わせて溶接接合するという作業を行うことが困難になるといった問題があった。また、自溶合金などの金属系耐摩耗性被覆を形成した場合においても、溶接接合時に耐摩耗性被覆が割れる恐れがあり、やはり溶接作業が困難になるという問題があった。
【0004】
なお、フランジ付鋼管を製造する場合には、あらかじめ鋼管にフランジを溶接接合し、そのフランジ付鋼管に対して、焼入れを施すとか、耐摩耗性被覆を形成することで、耐摩耗性に優れたフランジ付鋼管を製造することは可能である。しかしながら、フランジ付鋼管に対する焼入れ操作や、耐摩耗性被覆の形成操作は高能率化が図りにくく、コスト高となるという問題がある。
【0005】
本発明はかかる問題点に鑑みてなされたもので、管端に対して溶接を施すことの可能な且つ管内面又は外面若しくは管の内外面に必要な耐摩耗性を備えた耐摩耗性金属管及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の耐摩耗性金属管は、管端における溶接接合を可能とするため、金属系耐摩耗性被覆の形成といった耐摩耗性を向上させる冶金的処理を、管端の溶接時の熱影響を大きく受ける領域を除いた管体中央部分に施し、管端を含む小区間には管体中央部分よりも肉厚を大きくした厚肉部を設けることによって、摩耗による肉厚減少を補償する構成としたものである。
【0007】
【発明の実施の形態】
本発明の耐摩耗性金属管は、金属の管体の両端部分の、管端を含む小区間に、前記管体に増肉加工を施すことによって、前記小区間に挟まれた管体中央部分よりも肉厚を大きくした厚肉部を前記管体中央部分と一体構造に設けるとともに、管端の溶接時の熱影響を大きく受ける領域を除いた領域で且つ少なくとも前記管体中央部分を含む領域の管内面又は管外面若しくは管の内外面に、耐摩耗性被覆処理を施したことを特徴とするものである。ここで、管体の両端部分に設ける厚肉部は、管内外に出っ張る形状のものでもよいし、管内外の一方にのみ出っ張る形状のものでもよい。耐摩耗性金属管に使用する管体は、通常は鋼管であるが、それ以外の溶接接合可能な金属管を用いても良い。管体の形態は、円筒状、角筒状等任意であり、且つ直管、曲がり管のいずれでもよい。以下、図面を参照して本発明の実施の形態を詳細に説明する。
【0008】
図1は、スラリー等の管体内面を摩耗させやすい流体輸送に供される、本発明の一実施形態による耐摩耗性金属管(以下金属管と略称する)1を示す概略断面図、図2はその金属管1の管端近傍を拡大して示す概略断面図である。金属管1は鋼管からなる管体2を有しており、その管体2は一定肉厚の管体中央部分2aを備えると共に、管体2の両端部分の、管端を含む小区間(長さLで示す小区間)に、該小区間に挟まれた管体中央部分2aよりも肉厚を大きくした厚肉部2bを設けている。管体2の管体中央部分2aの内面には、耐摩耗性を向上させる冶金的処理として金属系の耐摩耗性被覆5を施している。なお、金属管1の用途によっては、外面に耐摩耗性を要求される場合(例えば、金属管を砂漠等に敷設し、砂嵐等に外面がさらされて摩耗しやすい場合、金属管が熱交換器等に設けられ、外面側を高速で燃焼ガスなどが流れて摩耗しやすい場合等)があり、その場合には耐摩耗性被覆を管体中央部分2aの外面に設ける。また、金属管の内外面に耐摩耗性を要求される場合には、当然耐摩耗性被覆は管体中央部分2aの内外両面に設ける。
【0009】
管体2の管端に設ける厚肉部2bは、図3に示すように、フランジ7を溶接金属8によって溶接接合するとか、図4に示すように管端同志を突き合わせ、溶接金属9によって溶接接合するために使用されるものであり、溶接時に割れ等のトラブルを生じることのないよう、焼入等の硬化処理は行っていない。このため、この厚肉部2bは摩耗しやすいが、その肉厚を大きくすることで、必要な耐用年数を確保している。換言すれば、図2において厚肉部2bの肉厚tは、金属管1をあらかじめ設定した耐用年数(例えば、3年)に渡って使用し、管体内面が内部を流れる流体で摩耗しても、必要な強度を確保しうる肉厚(通常、管体中央部分2aの肉厚t0 に等しい)を確保できるように定めている。この肉厚tは、設定する耐用年数によっても異なるが、一般的には、寿命増メリットと増肉加工のコストとの兼合から、管体中央部分2aの肉厚t0 の1.2〜3倍程度に設定することが好ましい。厚肉部2bの区間長さLは、管端に対する溶接作業時の熱影響が耐摩耗性被覆5に大きく及んでその耐摩耗性被覆5に割れ等のトラブルを生じることがないように定めるものであり、25〜150mm程度に選定することが好ましい。
【0010】
耐摩耗性被覆5は管体2の耐摩耗性を向上させるために設けたものであり、当然管体2よりも耐摩耗性の大きい材料が選定される。具体的には、耐摩耗性被覆5としては、Ni基又はCo基等の自溶合金被覆、或いはその自溶合金にタングステンカーバイド等のセラミックを混合した被覆等を挙げることができる。耐摩耗性被覆5の形成位置は少なくとも肉厚の薄い管体中央部分2aとするが、必要に応じて厚肉部2bに、管端の溶接接合の影響を受けて亀裂等が生じない区間ないしは厚さの範囲で形成してもよい。耐摩耗性被覆5の肉厚t1 は、金属管1の所望の耐用年数を確保しうるように(例えば、所望の年数の使用により耐摩耗性被覆5が摩耗しきって管体中央部分2aの管体の摩耗が始まらないよう、予想摩耗量よりも若干大き目に)、定めるものであり、具体的には管体2の内径、肉厚等によっても異なるが、耐用年数と施工適性との兼合から0.5〜5mm程度に定めることが好ましく、また、管体の耐摩耗性との関係では管体中央部分2aの肉厚に対する比率を0.1〜0.5程度に選定することが好ましい。
【0011】
前記したように、厚肉部2bの肉厚tも耐摩耗性被覆5の肉厚t1 も共に金属管1に設定する耐用年数を考慮して定めるものであるので、両者の肉厚はそれぞれの摩耗速度から次のように定めることもできる。すなわち、自溶合金からなる耐摩耗性被覆5の摩耗速度は、厚肉部2bを普通鋼で焼入を行わないとした場合の摩耗速度の約1/4であるものとして、厚肉部2bの肉厚増加分(=t−t0 )は、耐摩耗性被覆5の肉厚t1 の約4倍程度とすればよい。例えば、管体中央部分2aの肉厚t0 を4mm、耐摩耗性被覆5の肉厚t1 を1mmとした場合には、厚肉部2bの肉厚増加分は耐摩耗性被覆5の肉厚t1 の4倍即ち4mm程度とすればよく、従って、厚肉部2bの肉厚tは8mm(元の肉厚の2倍)としておけばよい。更に一般的には、耐摩耗性被覆5の摩耗速度を、厚肉部2bの摩耗速度の1/nとすると、厚肉部2bの肉厚tは耐摩耗性被覆5の肉厚t1 に対して次式を目安として定めればよい。
t=t0 +nt1 ・・・(1)
【0012】
図2において、管体2の管端に形成した厚肉部2bは、管内外に出っ張る形状としているが、本発明はこれに限らず、管内外の一方にのみ出っ張る形状としてもよい。厚肉部2bを耐摩耗性被覆5を形成した側に出っ張らせる場合には、厚肉化に伴う管体の出っ張り高さを、前記被覆を施した側の面に関して耐摩耗性被覆5の膜厚以上、厚肉部2bの肉厚増加分以下とすることが好ましい。この構成とすると、使用開始時における厚肉部2b内面の出っ張り高さが極端に大きくなるとか、長期間の使用後における摩耗による厚肉部2bの内面の凹みが極端に大きくなるということを防止でき、管内の流れに対する悪影響が避けられるという利点が得られる。また、厚肉部2bの管体中央部分2aに接する側に、肉厚が管体中央部分側を起点として漸増するテーパー部2cを設けることが好ましい。このようなテーパー部2cを設けると、管内の流れが乱されにくくなり、また、管体の強度、剛性が急激に変化する領域がなく、管体の応力集中を防止できる利点が得られる。
【0013】
次に、上記構成の金属管1の製造方法を説明する。まず、一定肉厚t0 の鋼管を用意し、その両端に増肉加工を施して厚肉部2bを形成する。この増肉加工は熱間、冷間のいずれで行っても良いが、熱間据込み増肉加工を採用することが、加工のための圧縮力を小さくでき、従って圧縮装置を小型化でき且つ残留応力を少なくできるので好ましい。ここで、熱間据込み増肉加工とは、加工すべき領域を塑性変形容易な温度(通常、赤熱温度以上、例えば、鋼管に対しては、900〜1300°C程度が好ましい)に加熱し、管軸方向の圧縮力を加えて増肉させる方法である。この熱間据込み増肉加工の具体的方法としては、次の3つの方法を挙げることができ、いずれを採用してもよい。
【0014】
(1)連続式熱間据込み増肉加工方法
この方法は、図5に示すように、増肉加工すべき鋼管である管体2の一端を支持部材10で支え、反対端から押圧装置(図示せず)で管体2に矢印Fで示す管軸方向の圧縮力を加えた状態で、管体2の狭い幅の区間11を誘導コイル12によって塑性変形容易な温度に加熱して増肉させると共にその誘導コイル12を管体2に対して矢印A方向に連続的に相対移動させ且つ後ろ側の増肉直後の部分に冷却媒体13を吹き付けて冷却固化させることで、管体2を連続的に増肉させ、所望長さの厚肉部2bを形成する方法である。この連続式では、管体2の内外面を型具で規制しないフリーの状態でも安定した増肉加工が可能であり、内外面にほぼ同様に出っ張った厚肉部を形成できる。なお、管体の内外面への出っ張り量を規制したい場合には、内外面のいずれかを型具で規制すればよい。
【0015】
(2)逐次式熱間据込み増肉加工方法
この方法は、増肉加工すべき管体の加工すべき領域内の狭い幅の区間を塑性変形容易な温度に加熱し、管軸方向の圧縮力を加えて、その区間を増肉させて厚肉部を形成し、その厚肉部が冷却して固化した後、隣接した区間を塑性変形容易な温度に加熱し、その部分に圧縮力を作用させて増肉させるという動作を繰り返し、所望長さの厚肉部を形成する方法である。この逐次式でも、管体の内外面を型具で規制しないフリーの状態でも安定した増肉加工が可能であり、又、管体の内外面への出っ張り量を規制したい場合には、内外面のいずれかを型具で規制すればよい。
【0016】
(3)一発式熱間据込み増肉加工方法
この方法は、管体の加工すべき領域全体を塑性変形容易な温度に加熱し、管軸方向の圧縮力を加えて、全体を同時に増肉させて厚肉部を形成する方法である。一発式では、座屈等を生じることなく安定した増肉加工を行うため、通常管体の内外面の一方又は双方を規制する型具を使用する。
【0017】
上記したように管体2に対して増肉加工を施して両端に厚肉部2bを形成した後、厚肉部2bの端部近傍を切断して管端の整形を行う(なお、この動作は後述する被覆形成後に行っても良い)。次に、両端の厚肉部2bで挟まれた管体中央部分2aに耐摩耗性被覆5を形成する。耐摩耗性被覆5の形成は公知の技法を適宜使用可能であり、耐摩耗性被覆5を形成する材料に適した方法を採用すればよい。例えば、自溶合金或いはセラミックを含有した自溶合金からなる耐摩耗性被覆5を形成するには、溶射法、回転ライニング法等を挙げることができる。ここで回転ライニング法とは、管体2を回転させながら、その内周面に耐摩耗性被覆を形成するための粉末金属を供給し、管体2を加熱して粉末金属を管体内面に付着させ、被覆を形成する方法である。溶射法、回転ライニング法等によって形成した自溶合金による被覆に対しては、自溶合金を再度溶融させて気孔を無くし且つ母材に対する接合を確実とするよう再溶融処理を施すことが好ましい。回転ライニング法を採用する場合には、特公平5−471号公報、特公平5−33307号公報、特許第2727450号公報に記載されている方法を採用することが、粉末金属の焼結被覆の形成及びそれに続き再溶融処理を1工程で行い、気孔のない緻密な耐摩耗性被覆5を生産性よく形成できるので好ましい。
【0018】
以上のようにして図1に示す金属管1が製造される。この構成の金属管1は、図3に示すように、その端部にフランジ7を溶接接合し、フランジ付金属管として使用される。また、図4に示すように、管端同志を直接突き合わせ、溶接接合して使用することもできる。いずれの使用においても、焼入などの処理が施されていない管端の厚肉部2bを、割れ等を生じることなく支障なく溶接接合することができ、配管作業が容易となる。また、厚肉部2bを長くしておけば、配管施工現場において、管端の厚肉部2bの一部を切り落とし、金属管1の全長を所望の取付長さに応じて調整することもでき、作業性が一層よくなる。
【0019】
この金属管1の使用中において、内部を流れる流体によって金属管内面に摩耗が生じ、厚肉部2bでは耐摩耗性向上のための処理を施していないのでその摩耗量が大きくなるが、厚肉部2bは肉厚を大きくしているので、摩耗が多くても必要な肉厚を確保できる。このため、厚肉部2bも耐摩耗性被覆5を形成している管体中央部分2aと同様な耐用年数を確保でき、所望の年数に亘って支障なく使用できる。
【0022】
図6は本発明を曲げ管に適用した実施形態を示すものであり、金属管1Bは両端に直管部を残し、中央部分を曲げ部とした管体2を有している。この実施形態における管体2も、管端に溶接を施す際に過大な熱影響を受ける部分に厚肉部2bを形成し、両端の厚肉部2b、2b間の管体中央部分2aは肉厚の薄いままとしている。そして、その管体中央部分2aの内面に、耐摩耗性を向上させる冶金的処理として耐摩耗性被覆5を形成している。この構成の金属管1Bも図1〜図4に示す金属管1と同様に、端部にフランジを溶接接合してフランジ付金属管として使用するとか、管端同志を突き合わせ、溶接接合して使用される。
【0023】
次に、曲げ部を有する金属管1Bの製造方法を説明する。まず、直管状の金属管1の製造と同様に、一定肉厚の真っ直ぐな鋼管管体の両端に増肉加工を施して厚肉部2bを形成し、次いでその鋼管の内面に耐摩耗性被覆5を形成する。その後、その金属管に対して曲げ加工を行う。曲げ加工の方法としては、公知の方法を適宜用いればよいが、中でも、図7に示す誘導加熱を利用した連続熱間曲げ加工方法を採用することが好ましい。この連続熱間曲げ加工方法は、図7に示すように、曲げ加工すべき管体2の曲げ先端側を支点Oを中心として旋回可能な曲げアーム23で把持し、その管体2の長手方向の小領域24を誘導コイル25で塑性変形容易な温度(例えば赤熱温度)に誘導加熱し、その管体2を矢印B方向に連続的に押すことによって、曲げアーム23を旋回させ、加熱した小領域24に曲げモーメントを付与して曲げ変形させ、同時に曲げ変形した直後の部分に誘導コイル25から冷却水等の冷却媒体26を噴射して冷却、固化させる方法であり、直管の所望領域に所望曲げ角度の曲げ加工を容易に行うことができるという利点を有している。
【0024】
なお、連続熱間曲げ加工を行う際には管体を高温に加熱するので、加熱温度の設定によっては、管体内面に形成している自溶合金の耐摩耗性被覆5を再溶融処理することも可能である。従って、曲げ加工に供すべき、自溶合金の耐摩耗性被覆5を備えた金属管1Bを製造するに当たっては、直管状の管体の内面に自溶合金の耐摩耗性被覆5を形成する際、再溶融処理まで済ませておいてもよいが、溶融処理は行わず、単に溶射或いは回転ライニングによって焼結状態の被覆を形成し、その管体を連続熱間曲げ加工する際に曲げ加工と同時に被覆を再溶融処理して被覆中の気孔を無くし、緻密な耐摩耗性被覆5とする方法(特許第2607088号公報参照)を採用することもできる。この方法を採用すると、工程を簡略化してコストダウンを図ることができる。
【0026】
図6に示す実施の形態の金属管1Bでは、両端の厚肉部2bを直管部とし、管体中央部分2aを曲げ部としているが、厚肉部2bの一部も曲げ部とするように変更するとか、図8に示す金属管1Cのように厚肉部2bに続く管体中央部分2aの一部迄を直管部とするように変更してもよい。ただし、図8に示す構成の金属管1Cを製造するための曲げ加工として、図7に示す曲げ装置を用い、曲げ加工と同時に内面の被覆5の再溶融処理も行おうとすると、図7の装置では、管体中央部分2aのうち直管部となる部分の被覆5の再溶融処理を行うことができない。そこで、その場合には、図9(a)に示す方法を採用すればよい。
【0027】
すなわち、図9に示すように、誘導コイル25を管軸方向に移動可能としておき、まず、図9(a)に示すように、管体2を曲げアーム23にセットし静止させた状態で、誘導コイル25を厚肉部2bの内側の端部から矢印Cで示すように直管部を構成する管体中央部分2aに沿って移動させて、その部分の被覆5の再溶融処理を行い、誘導コイル25が曲げ基準線O−P上に到達した時点で、図9(b)に示すように誘導コイル25を停止させ、同時に管体2を矢印B方向に前進させて曲げ加工を開始し、曲げ加工と被覆の再溶融処理を行う。そして、図9(c)に示すように、管体2の所定の範囲の曲げ加工が終了した時点で、管体2の移動を停止し、誘導コイル25を矢印Cで示すように直管部を構成する管体中央部分2aに沿って移動させて、その部分の被覆5の再溶融処理を行う。以上の動作により、曲げ部及びその両側の直管部に延びる管体中央部分2aの全長の被覆5を再溶融処理することができる。
【0028】
【発明の効果】
以上のように、本発明の耐摩耗性金属管は、金属系耐摩耗性被覆の形成といった耐摩耗性を向上させる冶金的処理を、管端の溶接時の熱影響を大きく受ける領域を除いた管体中央部分の管内面又は管外面若しくは管の内外面に施し、管端を含む小区間には管体中央部分よりも肉厚を大きくした厚肉部を設けるという構成としたことにより、管端に対して溶接接合を支障なく行うことができ、フランジを溶接接合してフランジ付金属管として使用するとか、管端同志を突き合わせて溶接接合するという使用方法を採用することができ、施工が容易となり、使用時には厚肉部が摩耗しても肉厚が大きいため耐摩耗処理を施している管体中央部分と同等の期間に亘って必要な肉厚を確保でき、耐用年数を長くすることができるという効果を有している。管体内面側に耐摩耗処理を施した金属管は、内部を流れる流体に対する耐摩耗性に優れるため、固形粒子を含むスラリー(例えば、コンクリート、水砕粉、コークス、セラミック等を含むスラリー)の輸送に好適である。
【0029】
本発明の製造方法は、一定肉厚の鋼管等の管体の両端に熱間据込み増肉加工を施して肉厚部を形成しているので、低コストで両端に厚肉部を有する管体を製造でき、且つその厚肉部とそれに挟まれた管体中央部分とは継ぎ目のない完全に一体な構造であるので、継ぎ目による強度低下、品質むら等が発生せず、強度、品質の安定した管体を製造でき、結局、強度、品質の安定した耐摩耗性金属管を低コストで製造できるという効果を有している。
【図面の簡単な説明】
【図1】 本発明の1実施の形態による耐摩耗性金属管の概略断面図
【図2】 図1の金属管の管端近傍を拡大して示す概略断面図
【図3】 図1の金属管の端部にフランジを接合した状態を示す概略断面図
【図4】 図1の金属管の端部を突き合わせて溶接接合した状態を示す概略断面図
【図5】 管体に増肉加工を施す状態を示す概略断面図
【図6】 本発明の他の実施の形態による耐摩耗性金属管を示す概略断面図
【図7】 管体に連続熱間曲げ加工を施す状態を示す概略断面図
【図8】 本発明の更に他の実施の形態による耐摩耗性金属管を示す概略断面図
【図9】 (a)、(b)、(c)は、図8に示す金属管を製造する際の連続熱間曲げ加工を説明する概略断面図
【符号の説明】
1、1B、1C 耐摩耗性金属管(金属管)
2 管体
2a 管体中央部分
2b 厚肉部
5 耐摩耗性被覆
7 フランジ
8、9 溶接金属
10 支持部材
12 誘導コイル
13 冷却媒体
23 曲げアーム
25 誘導コイル
26 冷却媒体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal tube excellent in wear resistance and a method for manufacturing the metal tube.
[0002]
[Prior art]
Steel pipes may require excellent wear resistance on the inner and outer surfaces depending on the application. To improve wear resistance, conventional steel pipes are hardened, thermally sprayed, or rotationally lined to provide metal-based wear resistance. Metallurgical processes such as forming a coating have been adopted.
[0003]
[Problems to be solved by the invention]
However, if the steel pipe is hardened, the wear resistance is improved, but there is a risk of cracking during welding joining. For this reason, a flange is welded to the pipe end, or the pipe ends are joined together by welding. There was a problem that it was difficult to work. In addition, even when a metal wear-resistant coating such as a self-fluxing alloy is formed, there is a possibility that the wear-resistant coating may break during welding joining, and there is a problem that welding work becomes difficult.
[0004]
In addition, when manufacturing a steel pipe with a flange, the flange is welded and joined to the steel pipe in advance, and the steel pipe with the flange is hardened or formed with a wear-resistant coating, thereby providing excellent wear resistance. It is possible to produce a flanged steel pipe. However, the quenching operation for the flanged steel pipe and the operation for forming the wear-resistant coating are difficult to achieve high efficiency, resulting in high costs.
[0005]
The present invention has been made in view of such problems, and is a wear-resistant metal tube that can be welded to the pipe end and has the necessary wear resistance on the inner surface of the tube or the outer surface or the inner and outer surfaces of the tube. And it aims at providing the manufacturing method.
[0006]
[Means for Solving the Problems]
Wear-resistant metal tube of the present invention is to allow the weld joint at the pipe end, the metallurgical process for improving the wear resistance, such as the formation of metallic-based wear-resistant coating, thermal effects of welding of the tube end This is applied to the central part of the tube, excluding the area where it receives a large amount, and a thin section with a larger wall thickness than the central part of the tube is provided in the small section including the pipe end to compensate for the thickness reduction due to wear. It is what.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The wear-resistant metal tube according to the present invention is a tube center portion sandwiched between the small sections by subjecting the pipe body to a thickening process in the small sections including the pipe ends of both ends of the metal tube. A region excluding a region that is provided with a thickened portion having a larger thickness than the central portion of the tubular body and having a large thermal effect during welding at the end of the tube, and includes at least the tubular central portion The inner surface of the tube or the outer surface of the tube or the inner and outer surfaces of the tube are subjected to a wear-resistant coating treatment . Here, the thick portions provided at both end portions of the tube may have a shape that protrudes inside or outside the tube, or may have a shape that protrudes only on one of the inside and outside of the tube. The pipe used for the wear-resistant metal pipe is usually a steel pipe, but other metal pipes that can be welded may be used. The form of the tube is arbitrary, such as a cylindrical shape or a rectangular tube shape, and may be either a straight tube or a bent tube. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
FIG. 1 is a schematic cross-sectional view showing a wear-resistant metal tube (hereinafter abbreviated as a metal tube) 1 according to an embodiment of the present invention, which is used for fluid transportation that easily wears the inner surface of a tube body such as slurry. FIG. 2 is an enlarged schematic sectional view showing the vicinity of the pipe end of the metal pipe 1. The metal pipe 1 has a pipe body 2 made of a steel pipe. The pipe body 2 includes a pipe center portion 2a having a constant thickness, and a small section (long) including pipe ends at both end portions of the pipe body 2. A thick section 2b having a thickness larger than that of the tube central portion 2a sandwiched between the small sections is provided in the small section indicated by the length L. A metal-based wear resistant coating 5 is applied to the inner surface of the tube center portion 2a of the tube body 2 as a metallurgical treatment for improving wear resistance. Depending on the use of the metal pipe 1, when the outer surface is required to have wear resistance (for example, when the metal pipe is laid in a desert or the like and the outer surface is exposed to sandstorms or the like and is easily worn, the metal pipe is subjected to heat exchange. In such a case, a wear-resistant coating is provided on the outer surface of the tube central portion 2a. When the inner and outer surfaces of the metal tube are required to have wear resistance, the wear resistant coating is naturally provided on both the inner and outer surfaces of the tube central portion 2a.
[0009]
As shown in FIG. 3, the thick portion 2 b provided at the pipe end of the pipe body 2 is welded to the flange 7 with the weld metal 8, or the pipe ends are abutted with each other as shown in FIG. 4 and welded with the weld metal 9. It is used for joining, and hardening treatment such as quenching is not performed so as not to cause troubles such as cracks during welding. For this reason, although this thick part 2b is easy to wear, the required service life is ensured by enlarging the thickness. In other words, the thickness t of the thick portion 2b in FIG. 2 is that the metal tube 1 is used over a preset service life (for example, 3 years), and the inner surface of the tube is worn by the fluid flowing inside. In addition, the thickness is set such that a necessary strength can be secured (usually equal to the thickness t 0 of the tube central portion 2a). Although this wall thickness t varies depending on the set service life, in general, from the balance between the life extension merit and the cost of the wall thickness increasing process, the wall thickness t 0 of the tube body central portion 2a is 1.2 to It is preferable to set to about 3 times. The section length L of the thick-walled portion 2b is determined so that the heat effect during the welding operation on the pipe end does not greatly affect the wear-resistant coating 5 and the wear-resistant coating 5 does not cause troubles such as cracks. It is preferable to select about 25 to 150 mm.
[0010]
The wear-resistant coating 5 is provided in order to improve the wear resistance of the tube body 2, and naturally, a material having higher wear resistance than the tube body 2 is selected. Specifically, examples of the wear-resistant coating 5 include a self-fluxing alloy coating such as a Ni base or a Co base, or a coating obtained by mixing the self-fluxing alloy with a ceramic such as tungsten carbide. The formation position of the wear-resistant coating 5 is at least a thin tube central portion 2a. However, if necessary, the thick portion 2b is not subjected to a crack or the like under the influence of the welded joint of the tube end. You may form in the range of thickness. The thickness t 1 of the wear-resistant coating 5 is such that the desired service life of the metal tube 1 can be ensured (for example, the wear-resistant coating 5 is worn out by use of the desired number of years and the tube central portion 2a It is determined to be slightly larger than the expected wear amount so that the wear of the pipe body does not start. Specifically, although it depends on the inner diameter, thickness, etc. of the pipe body 2, both the service life and workability are combined. It is preferable to set it to about 0.5 to 5 mm from the beginning, and in relation to the wear resistance of the tube, the ratio to the wall thickness of the tube center portion 2a should be selected to be about 0.1 to 0.5. preferable.
[0011]
As described above, since those determined in consideration of the service life even thickness t of the thick portion 2b is set to the thickness t 1 is also both a metal tube 1 of wear-resistant coating 5, the thickness of both respectively It can also be determined from the wear rate of the following. That is, the wear rate of the wear-resistant coating 5 made of a self-fluxing alloy is assumed to be about 1/4 of the wear rate when the thick portion 2b is not quenched with normal steel. The increase in thickness (= t−t 0 ) may be about four times the thickness t 1 of the wear-resistant coating 5. For example, when the thickness t 0 of the tube central portion 2a is 4 mm and the thickness t 1 of the wear resistant coating 5 is 1 mm, the increase in thickness of the thick portion 2b is the thickness of the wear resistant coating 5. The thickness t 1 may be four times, that is, about 4 mm. Therefore, the thickness t of the thick portion 2b may be 8 mm (twice the original thickness). More generally, assuming that the wear rate of the wear resistant coating 5 is 1 / n of the wear rate of the thick portion 2b, the thickness t of the thick portion 2b is equal to the thickness t 1 of the wear resistant coating 5. On the other hand, the following equation may be determined as a guide.
t = t 0 + nt 1 (1)
[0012]
In FIG. 2, the thick portion 2b formed at the tube end of the tube body 2 has a shape that protrudes into and out of the tube, but the present invention is not limited to this, and may have a shape that protrudes only to one inside or outside the tube. In the case where the thick part 2b is projected on the side where the wear-resistant coating 5 is formed, the protruding height of the tubular body accompanying the increase in thickness is set to the film of the wear-resistant coating 5 with respect to the surface on which the coating is applied. It is preferable that the thickness be greater than or equal to the thickness increase of the thick portion 2b. With this configuration, the protruding height of the inner surface of the thick part 2b at the start of use is prevented from becoming extremely large, or the dent on the inner surface of the thick part 2b due to wear after long-term use is prevented from becoming extremely large. And has the advantage that adverse effects on the flow in the tube are avoided. Moreover, it is preferable to provide the taper part 2c which thickness increases gradually from the tube center part side at the side which touches the tube center part 2a of the thick part 2b. Providing such a tapered portion 2c makes it difficult for the flow in the tube to be disturbed, and there is no region in which the strength and rigidity of the tube changes suddenly, thereby providing the advantage of preventing stress concentration in the tube.
[0013]
Next, a method for manufacturing the metal tube 1 having the above configuration will be described. First, a steel pipe having a constant thickness t 0 is prepared, and thickening processing is performed on both ends thereof to form the thick portion 2b. This thickening process may be performed either hot or cold, but adopting a hot upset thickening process can reduce the compression force for the process, and thus the size of the compression device can be reduced. This is preferable because the residual stress can be reduced. Here, the hot upsetting process is to heat the region to be processed to a temperature at which plastic deformation is easy (usually above the red hot temperature, for example, about 900 to 1300 ° C. is preferable for a steel pipe). This is a method of increasing the thickness by applying a compressive force in the tube axis direction. As specific methods of this hot upsetting process, the following three methods can be mentioned, and any of them may be adopted.
[0014]
(1) Continuous hot upsetting process method As shown in FIG. 5, this method supports one end of a tubular body 2, which is a steel pipe to be increased in thickness, with a support member 10, and presses a pressing device ( In a state in which a compressive force in the tube axis direction indicated by arrow F is applied to the tube body 2 by the induction coil 12, the narrow width section 11 of the tube body 2 is heated by the induction coil 12 to a temperature at which plastic deformation is easy. The induction coil 12 is continuously moved relative to the tube body 2 in the direction of the arrow A, and the cooling medium 13 is sprayed on the portion immediately after the rear wall thickness increase to cool and solidify the tube body 2 continuously. In this method, the thickness is increased to form a thick portion 2b having a desired length. In this continuous type, stable wall-thickening processing is possible even in a free state where the inner and outer surfaces of the tube body 2 are not restricted by a mold tool, and a thick portion protruding substantially in the same manner can be formed on the inner and outer surfaces. In addition, what is necessary is just to regulate either the inner or outer surface with a tool, when it is desired to regulate the protruding amount to the inner and outer surfaces of the tubular body.
[0015]
(2) Sequential hot upsetting thickening method This method heats a narrow-width section in the region to be processed of the tube to be thickened to a temperature at which plastic deformation is easy, and compresses in the tube axis direction. Applying force to increase the thickness of the section to form a thick section, and after the thick section cools and solidifies, the adjacent section is heated to a temperature at which plastic deformation is easy and compressive force is applied to the section. This is a method of forming a thick part having a desired length by repeating the action of increasing the thickness by acting. Even with this sequential type, stable wall-thickening processing is possible even in a free state where the inner and outer surfaces of the tube are not regulated by a mold, and when it is desired to regulate the amount of protrusion to the inner and outer surfaces of the tube, the inner and outer surfaces Any of these may be regulated by a tool.
[0016]
(3) One-shot hot upset processing method This method heats the entire region of the tube to be processed to a temperature where plastic deformation is easy, and applies a compressive force in the direction of the tube axis to increase the whole at the same time. It is a method of forming a thick part by making it thick. In the one-shot type, in order to perform stable wall-thickening processing without causing buckling or the like, a mold that normally regulates one or both of the inner and outer surfaces of the tube is used.
[0017]
As described above, the tube body 2 is thickened to form the thick portions 2b at both ends, and then the vicinity of the end of the thick portion 2b is cut to shape the tube end (this operation) May be performed after the coating formation described later). Next, the wear-resistant coating 5 is formed on the tube center portion 2a sandwiched between the thick portions 2b at both ends. A known technique can be used as appropriate for forming the wear-resistant coating 5, and a method suitable for the material forming the wear-resistant coating 5 may be employed. For example, in order to form the wear-resistant coating 5 made of a self-fluxing alloy or a self-fluxing alloy containing ceramic, a thermal spraying method, a rotational lining method, or the like can be used. Here, the rotational lining method refers to supplying powder metal for forming an abrasion-resistant coating on the inner peripheral surface of the tube body 2 while rotating the tube body 2 and heating the tube body 2 so that the powder metal is applied to the inner surface of the tube body. It is a method of attaching and forming a coating. For the coating with a self-fluxing alloy formed by a thermal spraying method, a rotational lining method, or the like, it is preferable to remelt the self-fluxing alloy so as to eliminate the pores and to ensure the bonding to the base material. In the case of adopting the rotational lining method, adopting the methods described in Japanese Patent Publication No. 5-471, Japanese Patent Publication No. 5-33307, and Japanese Patent No. 2727450 Formation and subsequent remelting treatment are preferably performed in one step, and a dense wear-resistant coating 5 without pores can be formed with good productivity.
[0018]
The metal tube 1 shown in FIG. 1 is manufactured as described above. As shown in FIG. 3, the metal tube 1 having this configuration is used as a flanged metal tube with a flange 7 welded to the end thereof. Further, as shown in FIG. 4, the pipe ends can be directly butted and welded together. In any use, it is possible to weld and join the thick-walled portion 2b at the end of the pipe that has not been subjected to the quenching or the like without causing any trouble, and the piping work is facilitated. Moreover, if the thick part 2b is lengthened, a part of the thick part 2b at the pipe end can be cut off at the piping construction site, and the total length of the metal pipe 1 can be adjusted according to a desired mounting length. Workability is further improved.
[0019]
During the use of the metal tube 1, wear occurs on the inner surface of the metal tube due to the fluid flowing inside, and since the treatment for improving the wear resistance is not performed in the thick portion 2 b, the wear amount increases. Since the thickness of the portion 2b is increased, the necessary thickness can be ensured even if the wear is large. For this reason, the thick part 2b can also ensure the service life similar to the tube center part 2a which forms the abrasion-resistant coating | cover 5, and can be used without trouble over the desired years.
[0022]
FIG. 6 shows an embodiment in which the present invention is applied to a bending tube, and the metal tube 1B has a tubular body 2 having a straight tube portion at both ends and a bent portion at the central portion. The tubular body 2 in this embodiment is also formed with a thick portion 2b in a portion that is excessively affected by heat when welding the pipe end, and the tubular central portion 2a between the thick portions 2b and 2b at both ends is a wall portion. The thickness remains thin. Then, the inner surface of the tube the central portion 2a, that form a wear-resistant coating 5 as metallurgical process for improving the wear resistance. Also metal tube 1B of this configuration in the same manner as the metal tube 1 shown in FIGS. 1 to 4, Toka used as a metal tube flanged by welding the flange to the end portion, abutting the tube end comrades, and welding used.
[0023]
Next, a method for manufacturing the metal tube 1B having a bent portion will be described. First, in the same manner as the production of the straight tubular metal tube 1, the thickened portion 2 b is formed by increasing the thickness at both ends of a straight steel tube having a constant thickness, and then the inner surface of the steel tube is coated with wear resistance. 5 is formed. Thereafter, the metal tube is bent. As a bending method, a known method may be used as appropriate, but among them, it is preferable to employ a continuous hot bending method using induction heating shown in FIG . In this continuous hot bending method, as shown in FIG. 7 , the bending tip side of the tube body 2 to be bent is gripped by a bending arm 23 that can pivot about a fulcrum O, and the longitudinal direction of the tube body 2 The small region 24 is induction-heated to an easily plastically deformable temperature (for example, red hot temperature) by the induction coil 25, and the tube 2 is continuously pushed in the direction of arrow B, thereby turning the bending arm 23 and heating the small region 24. This is a method in which a bending moment is applied to the region 24 to cause bending deformation, and at the same time, a cooling medium 26 such as cooling water is sprayed from the induction coil 25 to a portion immediately after the bending deformation to cool and solidify. There is an advantage that bending of a desired bending angle can be easily performed.
[0024]
Since the tube is heated to a high temperature during the continuous hot bending process, depending on the setting of the heating temperature, the wear resistant coating 5 of the self-fluxing alloy formed on the inner surface of the tube is remelted. It is also possible. Therefore, when manufacturing the metal tube 1B having the self-fluxing alloy wear-resistant coating 5 to be subjected to bending, the self-fluxing alloy wear-resistant coating 5 is formed on the inner surface of the straight tubular body. However, the remelting process may be completed, but the melting process is not performed, the coating in the sintered state is formed simply by thermal spraying or rotary lining, and the tube body is subjected to the continuous hot bending process simultaneously with the bending process. A method of remelting the coating to eliminate pores in the coating to obtain a dense wear-resistant coating 5 (see Japanese Patent No. 2607078) can also be employed. If this method is adopted, the process can be simplified and the cost can be reduced.
[0026]
In the metal tube 1B of the embodiment shown in FIG. 6 , the thick portions 2b at both ends are straight tube portions and the tube center portion 2a is a bent portion, but a part of the thick portion 2b is also a bent portion. Toka change in the up part of the subsequent thick portion 2b tube central portion 2a may be modified to a straight pipe portion such as a metal tube 1C shown in FIG. However, if the bending apparatus shown in FIG. 7 is used as a bending process for manufacturing the metal tube 1C having the configuration shown in FIG. 8 , and the remelting process of the inner coating 5 is performed simultaneously with the bending process, the apparatus shown in FIG. Then, it is not possible to perform the remelting process of the coating 5 on the portion that becomes the straight tube portion in the tube central portion 2a. Therefore, in this case, it may be employed a method shown in Figure 9 (a).
[0027]
That is, as shown in FIG. 9 , the induction coil 25 is made movable in the tube axis direction . First, as shown in FIG. 9A , the tubular body 2 is set on the bending arm 23 and is stationary. The induction coil 25 is moved from the inner end portion of the thick portion 2b along the tube center portion 2a constituting the straight tube portion as indicated by an arrow C, and re-melting treatment of the covering 5 of the portion is performed, When the induction coil 25 reaches the bending reference line OP, the induction coil 25 is stopped as shown in FIG. 9B, and at the same time, the tube body 2 is advanced in the direction of arrow B to start bending. Bending and remelting the coating. Then, as shown in FIG. 9 (c), when the bending of the predetermined range of the tube body 2 is completed, the movement of the tube body 2 is stopped, and the induction coil 25 is connected to the straight tube portion as indicated by an arrow C. Is moved along the tube central portion 2a, and the coating 5 of the portion is remelted. By the above operation, the coating 5 over the entire length of the central portion 2a of the tubular body extending to the bent portion and the straight pipe portions on both sides thereof can be remelted.
[0028]
【The invention's effect】
As described above, the wear-resistant metal tube of the present invention, the metallurgical process for improving the wear resistance, such as the formation of metallic-based wear-resistant coating, excluding the larger receiving area influence of heat during welding of the pipe end By applying to the inner surface of the tube or the outer surface of the tube or the inner and outer surfaces of the tube at the center portion of the tube body, a small section including the tube end is provided with a thick portion that is thicker than the tube center portion. Can be welded to the pipe end without hindrance, and can be used as a flanged metal pipe by welding the flange or by joining the pipe ends together and welding. Even when the thick wall is worn during use, the wall thickness is large, so the necessary wall thickness can be secured over the same period as the central part of the pipe subjected to wear resistance treatment, and the service life is extended. Has the effect of being able to . Metal pipes that have been subjected to wear resistance treatment on the inner surface side of the pipe body are excellent in wear resistance against fluid flowing inside, so that a slurry containing solid particles (for example, a slurry containing concrete, water granulated powder, coke, ceramic, etc.) Suitable for transportation.
[0029]
In the manufacturing method of the present invention, a thick wall portion is formed by performing hot upsetting and thickening processing at both ends of a pipe body such as a steel tube having a constant thickness, so that a pipe having thick wall portions at both ends at low cost. Since the body can be manufactured and the thick wall part and the central part of the tube sandwiched between the parts are completely integrated, there is no reduction in strength due to the seam, uneven quality, etc. A stable tubular body can be manufactured, and eventually, there is an effect that a wear-resistant metal tube having stable strength and quality can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a wear-resistant metal tube according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view showing an enlarged vicinity of a tube end of the metal tube of FIG. FIG. 4 is a schematic cross-sectional view showing a state in which a flange is joined to the end of a pipe. FIG. 4 is a schematic cross-sectional view showing a state in which the end of the metal pipe in FIG. FIG. 6 is a schematic cross-sectional view showing a wear-resistant metal tube according to another embodiment of the present invention. FIG. 7 is a schematic cross-sectional view showing a state in which continuous hot bending is applied to the pipe body . 8 is a schematic cross-sectional view showing a wear-resistant metal tube according to still another embodiment of the present invention . FIG. 9 (a), (b), and (c) manufacture the metal tube shown in FIG. Schematic cross-sectional view explaining the continuous hot bending process [Description of symbols]
1, 1B, 1C Abrasion resistant metal tube (metal tube)
2 Tubing 2a Tubing central part 2b Thick part 5 Wear-resistant coating 7 Flange 8, 9 Weld metal 10 Support member 12 Induction coil 13 Cooling medium 23 Bending arm 25 Induction coil 26 Cooling medium

Claims (6)

金属の管体の両端部分の、管端を含む小区間に、前記管体に増肉加工を施すことによって、前記小区間に挟まれた管体中央部分よりも肉厚を大きくした厚肉部を前記管体中央部分と一体構造に設けるとともに、管端の溶接時の熱影響を大きく受ける領域を除いた領域で且つ少なくとも前記管体中央部分を含む領域の管内面又は管外面若しくは管の内外面に、耐摩耗性被覆処理を施したことを特徴とする耐摩耗性金属管。Thick parts that are thicker than the central part of the tubular body sandwiched between the small sections by subjecting the tubular body to thickening processing in the small sections including the pipe ends of both ends of the metal tubular body Is provided in an integral structure with the tube center portion, and is a region excluding a region that is greatly affected by heat at the time of welding of the tube end and at least the region including the tube center portion, the tube inner surface, the tube outer surface, or the inner tube A wear-resistant metal tube characterized in that the outer surface is subjected to a wear-resistant coating treatment . 前記厚肉部の肉厚を前記管体中央部分の肉厚の1.2〜3倍とした請求項1記載の耐摩耗性金属管。  The wear-resistant metal tube according to claim 1, wherein the thickness of the thick portion is 1.2 to 3 times the thickness of the central portion of the tubular body. 前記厚肉部の区間長さを25〜150mmとした、請求項1又は2記載の耐摩耗性金属管。  The wear-resistant metal tube according to claim 1 or 2, wherein a section length of the thick part is 25 to 150 mm. 記厚肉部の、厚肉化に伴う管体の出っ張り高さを、前記被覆を施した側の面に関して該被覆の膜厚以上、厚肉部の肉厚増加分以下とした、請求項1から3のいずれか1項記載の耐摩耗性金属管。 Previous KiAtsu meat portion, the protruding height of the thickening in the accompanying tube, said coating alms side than the thickness of the coating with respect to the surface, and the less the thickness increase of the thick portion, claim The wear-resistant metal tube according to any one of 1 to 3. 前記厚肉部の前記管体中央部分に接する側に、肉厚が管体中央部分側を起点として漸増するテーパー部を設けた、請求項1から4のいずれか1項記載の耐摩耗性金属管。  The wear-resistant metal according to any one of claims 1 to 4, wherein a taper portion in which the wall thickness gradually increases from the tube central portion side is provided on a side of the thick portion that contacts the tube central portion. tube. 前記厚肉部を熱間据込み増肉加工によって形成する、請求項1〜5のいずれか1項記載の耐摩耗性金属管の製造方法。  The method for manufacturing a wear-resistant metal tube according to any one of claims 1 to 5, wherein the thick part is formed by hot upsetting and thickening.
JP29768398A 1998-10-20 1998-10-20 Abrasion resistant metal tube and method of manufacturing the same Expired - Fee Related JP4248058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29768398A JP4248058B2 (en) 1998-10-20 1998-10-20 Abrasion resistant metal tube and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29768398A JP4248058B2 (en) 1998-10-20 1998-10-20 Abrasion resistant metal tube and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2000120939A JP2000120939A (en) 2000-04-28
JP4248058B2 true JP4248058B2 (en) 2009-04-02

Family

ID=17849804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29768398A Expired - Fee Related JP4248058B2 (en) 1998-10-20 1998-10-20 Abrasion resistant metal tube and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP4248058B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002174368A (en) * 2000-12-08 2002-06-21 Futaba Industrial Co Ltd Differentially thickened passage split pipe and automotive exhaust system double pipe
EP1716937A1 (en) * 2005-04-25 2006-11-02 Hans Berg GmbH & Co. KG Connection piece for a heating or cooling radiator
DE102007034895A1 (en) * 2007-07-24 2009-01-29 V&M Deutschland Gmbh Method of producing hot-finished seamless tubes with optimized fatigue properties in the welded state
JP5118981B2 (en) * 2008-01-23 2013-01-16 日本管洗工業株式会社 Flange joint and metal pipe connection structure
JP5648950B2 (en) * 2009-12-03 2015-01-07 日本ヒューム株式会社 Steel pipe concrete composite pipe

Also Published As

Publication number Publication date
JP2000120939A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
US7807273B2 (en) Alloy-coated boiler part and method of welding self-fluxing alloy-coated boiler part
JPH11285842A (en) Joined metal member and joining method of its member
KR20150013204A (en) Method for producing rolling roll, rolling roll, and device for producing rolling roll
EP1029627A1 (en) Friction agitation jointing method of metal workpieces
JP2005288499A (en) Friction stir welding method and reforming method thereby
JP3681095B2 (en) Bending tube for heat exchange with internal protrusion
JP2019521859A (en) Double pipe manufacturing method
CN100569426C (en) A kind of welding method of stainless steel composite pipe
JP2004528990A (en) Anvil for friction stir welding of high temperature materials
JP4248058B2 (en) Abrasion resistant metal tube and method of manufacturing the same
JP2001153509A (en) Method of manufacturing auger
WO2006062241A1 (en) Welding method and weld shaping device
JP2010502859A (en) Roller body manufacturing method and roller body
JP2004082144A (en) Tool and method for friction stir welding
JP2001501134A (en) Joining method and joining apparatus for joining flat products so as to overlap and be connected to each other
JP5686582B2 (en) Axle case manufacturing method
JP2704452B2 (en) Butt joining method of coated composite material, method of manufacturing long composite pipe by the joining method, and pipe for transporting metal scouring substance
JPS58387A (en) Production of composite roll
JP3539612B2 (en) Apparatus and method for smoothing steel seam
JP3375486B2 (en) Squeeze roll stand
JPH1190620A (en) Method and device for connecting metal member
WO1996023625A1 (en) Composite furnace roll rings and method
JPS6156792A (en) Manufacture of extreme thin wall welded tube
JPH11333537A (en) Slurry transporting steel tube and its manufacture
JPH10296493A (en) Smoothing device for steel tube seam part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150123

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees