JP4247800B2 - Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method - Google Patents

Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method Download PDF

Info

Publication number
JP4247800B2
JP4247800B2 JP2008528272A JP2008528272A JP4247800B2 JP 4247800 B2 JP4247800 B2 JP 4247800B2 JP 2008528272 A JP2008528272 A JP 2008528272A JP 2008528272 A JP2008528272 A JP 2008528272A JP 4247800 B2 JP4247800 B2 JP 4247800B2
Authority
JP
Japan
Prior art keywords
sinterable
particle composition
metal
silver
sinterable metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008528272A
Other languages
Japanese (ja)
Other versions
JPWO2008065728A1 (en
Inventor
勝利 峯
君男 山川
英知 浅見
信弘 高橋
ゆう子 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Handa Co Ltd
Original Assignee
Nihon Handa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Handa Co Ltd filed Critical Nihon Handa Co Ltd
Application granted granted Critical
Publication of JP4247800B2 publication Critical patent/JP4247800B2/en
Publication of JPWO2008065728A1 publication Critical patent/JPWO2008065728A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1021Removal of binder or filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy

Description

本発明は、常温または加熱下で可塑性を有する焼結性金属粒子組成物、その製造方法、それからなるシート状接合剤、および、上記金属粒子組成物を複数の金属製部材間に介在させ,加熱等により焼結性金属粒子同士を焼結させる金属製部材の接合方法に関する。 The present invention relates to a sinterable metal particle composition having plasticity at room temperature or under heating, a production method thereof, a sheet-like bonding agent comprising the same, and the metal particle composition interposed between a plurality of metal members, and heating. The present invention relates to a method for joining metal members in which sinterable metal particles are sintered together.

銀,銅,ニッケルなどの金属の微細な粒子を硬化性樹脂組成物中に分散させて調製された導電性ペーストや熱伝導性ペーストは、加熱により硬化して導電性被膜や熱伝導性被膜を形成するので、プリント回路基板上の導電性回路の形成、抵抗器やコンデンサ等の各種電子部品及び各種表示素子の電極の形成、電磁波シールド用導電性被膜の形成、コンデンサ,抵抗,ダイオード,メモリ、演算素子(CPU)等のチップ部品の基板への接合や接着、太陽電池の電極の形成、特にアモルファスシリコン半導体を用いた高温処理のできない太陽電池の電極の形成、積層セラミックコンデンサ、積層セラミックインダクタ、積層セラミックアクチュエータ等のチップ型セラミック電子部品の外部電極の形成等への適用が知られている(例えば、特開2003−55701)。
しかし、ペースト状であるため、上記形成作業時や接合作業時に、所定の形状や大きさや厚さにすることは容易でない。また、導電性被膜や熱伝導性被膜は、金属粒子と硬化した樹脂とからなり、硬化した樹脂は電気絶縁性であり熱伝導性が小さいので、導電性や熱伝導性の大きさに限界がある。
近年、チップ部品の高性能化により,チップ部品からの発熱量が増え、電気伝導性はもとより,熱伝導性の向上が要求されるが、対応に限界がある。
Conductive paste and heat conductive paste prepared by dispersing fine particles of metal such as silver, copper and nickel in a curable resin composition are cured by heating to form a conductive film or heat conductive film. Since it is formed, the formation of conductive circuits on printed circuit boards, the formation of electrodes for various electronic components such as resistors and capacitors and various display elements, the formation of conductive films for electromagnetic wave shielding, capacitors, resistors, diodes, memories, Bonding and bonding of chip components such as arithmetic elements (CPU) to substrates, formation of solar cell electrodes, especially formation of solar cell electrodes that cannot be processed at high temperature using amorphous silicon semiconductors, multilayer ceramic capacitors, multilayer ceramic inductors, Application to the formation of external electrodes of chip-type ceramic electronic components such as multilayer ceramic actuators is known (for example, JP 003-55701).
However, since it is in the form of paste, it is not easy to obtain a predetermined shape, size, or thickness during the forming operation or the joining operation. Conductive coatings and thermal conductive coatings are composed of metal particles and a cured resin, and the cured resin is electrically insulating and has low thermal conductivity, so there is a limit to the magnitude of electrical conductivity and thermal conductivity. is there.
In recent years, due to higher performance of chip parts, the amount of heat generated from the chip parts has increased, and improvement in thermal conductivity as well as electrical conductivity is required, but there is a limit to the response.

一方、硬化性樹脂を含有しない導電性・熱伝導性ペーストとして、貴金属(例えば銀)フレークと有機溶剤とからなり,加熱により焼結する貴金属ペースト、および、該貴金属ペーストを電子デバイスと基板間で加熱焼結することにより、電子デバイスを基板に固定する方法が、特公平7−111981に開示されている。また、平均粒径が0.005μm〜1.0μmである金(Au)粉,銀 (Ag)粉またはパラジウム(Pd)粉から選択される一種以上の金属粉と有機溶剤とからなる金属ペースト、および、該金属ペーストを半導体ウェハー上で加熱焼結してバンプを形成する方法が、特開2005−216508に開示されている。 On the other hand, as a conductive / thermal conductive paste containing no curable resin, a noble metal paste composed of noble metal (for example, silver) flakes and an organic solvent and sintered by heating, and the noble metal paste between the electronic device and the substrate Japanese Patent Publication No. 7-111981 discloses a method of fixing an electronic device to a substrate by heating and sintering. A metal paste comprising an organic solvent and at least one metal powder selected from gold (Au) powder, silver (Ag) powder or palladium (Pd) powder having an average particle diameter of 0.005 μm to 1.0 μm; And the method of heat-sintering this metal paste on a semiconductor wafer and forming a bump is disclosed by Unexamined-Japanese-Patent No. 2005-216508.

しかしながら、上記のペースト状の金属粒子組成物は、比重の大きい金属粒子と比重の小さい揮発性分散媒の混合物であり、両者の比重の差により両者が分離しやすいという問題がある。また、ペースト状であるため、適用時に所定の形状や大きさや厚さにすることは容易でなく、しかも、形状や大きさや厚さが経時的に変化しやすいという問題がある。 However, the above-described paste-like metal particle composition is a mixture of metal particles having a large specific gravity and a volatile dispersion medium having a small specific gravity, and there is a problem that they are easily separated due to the difference in specific gravity between them. Further, since it is in the form of a paste, there is a problem that it is not easy to obtain a predetermined shape, size and thickness at the time of application, and the shape, size and thickness are likely to change over time.

特開2003−55701JP 2003-55701 A 特公平7−1119817-111981 特開2005−216508JP 2005-216508 A

本発明者らは、上記問題のない焼結性金属粒子組成物を開発すべく鋭意研究した結果、焼結性金属粒子と,常温で固体状であり加熱すると溶融し揮発する分散媒を,加熱下混合してペースト状とし、常温に冷却して得られる、可塑性を有する焼結性金属粒子組成物であれば、焼結性金属粒子と揮発性分散媒が分離せず、所定の形状や大きさ,厚さを取りやすく、しかも、形状保持性が優れていることを見出し、本発明を完成するに至った。
本発明の目的は、焼結性金属粒子と揮発性分散媒が分離せず、所定の形状や大きさ,厚さを取りやすく、しかも、形状保持性に優れた焼結性金属粒子組成物、その製造方法、シート状接合剤、および、これを使用して金属製部材を強固に接合する方法を提供することにある。
As a result of diligent research to develop a sinterable metal particle composition free from the above problems, the present inventors have heated a sinterable metal particle and a dispersion medium that is solid at room temperature and melts and volatilizes when heated. In the case of a sinterable metal particle composition having plasticity obtained by mixing under a paste to cool to room temperature, the sinterable metal particles and the volatile dispersion medium are not separated and have a predetermined shape and size. The present inventors have found that the thickness can be easily taken and the shape retainability is excellent, and the present invention has been completed.
The object of the present invention is that the sinterable metal particles and the volatile dispersion medium are not separated, can easily take a predetermined shape, size, and thickness, and is excellent in shape retainability, An object of the present invention is to provide a manufacturing method thereof, a sheet-like bonding agent, and a method of strongly bonding a metal member using the same.

この目的は、
[1](A) 平均粒径が0.001〜50μmである焼結性金属粒子100重量部と、(B)常温で固体状であり,金属粒子(A)の焼結温度以下の温度で溶融し揮発する分散媒3〜100重量部とからなり、常温または加熱下で可塑性を有することを特徴とする、焼結性金属粒子組成物。
[1−1]焼結性金属粒子が銀粒子であることを特徴とする、[1]記載の焼結性金属粒子組成物。
[1−2]分散媒(B)が、アルコール類,炭化水素類,ケトン類または脂肪酸類であることを特徴とする、[1]または[1−1]記載の焼結性金属粒子組成物。
[2](A) 平均粒径が0.001〜50μmである焼結性金属粒子100重量部と、(B)常温で固体状であり,金属粒子(A)の焼結温度以下の温度で溶融し揮発する分散媒3〜100重量部とを、分散媒(B)の融点以上の温度で混合してペースト状とし、常温に冷却することを特徴とする、請求項1記載の焼結性金属粒子組成物の製造方法。
[2−1]焼結性金属粒子が銀粒子であることを特徴とする、[2]記載の焼結性金属粒子組成物の製造方法。
[2−2]分散媒(B)が、アルコール類,炭化水素類,ケトン類または脂肪酸類であることを特徴とする、[2]または[2−1]記載の焼結性金属粒子組成物の製造方法。
[3][1]記載の焼結性金属粒子組成物からなり,シート状であることを特徴とする、金属製部材の接合剤。
[3−1]焼結性金属粒子が銀粒子であることを特徴とする、[3]記載の金属製部材の接合剤。
[3−2]分散媒(B)が、アルコール類,炭化水素類,ケトン類または脂肪酸類であることを特徴とする、[3]または[3−1]記載の金属製部材の接合剤。
[4][1]記載の焼結性金属粒子組成物または[3]記載の接合剤を,複数の金属製部材間に介在させ、分散媒(B)の融点以上の温度に加熱して分散媒(B)を揮散させ、加熱により,加圧しつつ加熱により,加圧しつつ超音波振動印加により,または,加圧,加熱しつつ超音波振動印加により、金属粒子(A)同士を焼結させて複数の金属製部材同士を接合することを特徴とする、金属製部材の接合方法。
[4−1]分散媒(B)の融点が100℃以下である場合に、100℃〜400℃で金属粒子(A)同士を焼結させることを特徴とする、[4]記載の金属製部材の接合方法。
[4−2]焼結性金属粒子が銀粒子であることを特徴とする、[4]または[4−1]記載の金属製部材の接合方法。
[4−3]分散媒(B)が、アルコール類,炭化水素類,ケトン類または脂肪酸類であることを特徴とする、[4],[4−1]または[4−2]記載の金属製部材の接合方法。
;により達成される。
This purpose is
[1] (A) 100 parts by weight of sinterable metal particles having an average particle diameter of 0.001 to 50 μm, and (B) a solid state at room temperature and a temperature not higher than the sintering temperature of the metal particles (A). A sinterable metal particle composition comprising 3 to 100 parts by weight of a dispersion medium that melts and volatilizes, and has plasticity at room temperature or under heating.
[1-1] The sinterable metal particle composition according to [1], wherein the sinterable metal particles are silver particles.
[1-2] The sinterable metal particle composition according to [1] or [1-1], wherein the dispersion medium (B) is an alcohol, a hydrocarbon, a ketone or a fatty acid. .
[2] (A) 100 parts by weight of sinterable metal particles having an average particle diameter of 0.001 to 50 μm, (B) a solid state at room temperature, and a temperature below the sintering temperature of metal particles (A) The sinterability according to claim 1, wherein 3 to 100 parts by weight of the dispersion medium which is melted and volatilized is mixed at a temperature equal to or higher than the melting point of the dispersion medium (B) to form a paste and cooled to room temperature. A method for producing a metal particle composition.
[2-1] The method for producing a sinterable metal particle composition according to [2], wherein the sinterable metal particles are silver particles.
[2-2] The sinterable metal particle composition according to [2] or [2-1], wherein the dispersion medium (B) is an alcohol, a hydrocarbon, a ketone or a fatty acid. Manufacturing method.
[3] A metal member bonding agent comprising the sinterable metal particle composition according to [1] and having a sheet shape.
[3-1] The metal member bonding agent according to [3], wherein the sinterable metal particles are silver particles.
[3-2] The bonding agent for metal members according to [3] or [3-1], wherein the dispersion medium (B) is an alcohol, a hydrocarbon, a ketone or a fatty acid.
[4] The sinterable metal particle composition according to [1] or the bonding agent according to [3] is interposed between a plurality of metal members and dispersed by heating to a temperature equal to or higher than the melting point of the dispersion medium (B). The medium (B) is volatilized and the metal particles (A) are sintered together by heating, applying pressure while heating, applying pressure while applying ultrasonic vibration, or applying pressure and heating while applying ultrasonic vibration. And joining a plurality of metal members to each other.
[4-1] When the melting point of the dispersion medium (B) is 100 ° C. or lower, the metal particles (A) are sintered at 100 ° C. to 400 ° C. Member joining method.
[4-2] The method for joining metal members according to [4] or [4-1], wherein the sinterable metal particles are silver particles.
[4-3] The metal according to [4], [4-1] or [4-2], wherein the dispersion medium (B) is an alcohol, a hydrocarbon, a ketone or a fatty acid. A method for joining manufactured members.
Achieved by;

本発明の焼結性金属粒子組成物は、常温または加熱下で可塑性を有するため、比重の大きい金属粒子と比重の小さい揮発性分散媒とが分離することがなく、所定の形状を取りやすく、しかも、形状保持性に優れている。
本発明のシート状接合剤は、常温または加熱下で可塑性を有するため、比重の大きい金属粒子と比重の小さい揮発性分散媒とが分離することがなく、取り扱い性に優れている。
本発明の焼結性金属粒子組成物の製造方法は、常温または加熱下で可塑性を有する焼結性金属粒子組成物を、効率よく簡易に製造することができる。
本発明の金属製部材の接合方法は、常温または加熱下で可塑性を有する焼結性金属粒子組成物を使用するので、複数の金属製部材同士を精度よく強固に接合させることができる。
Since the sinterable metal particle composition of the present invention has plasticity at room temperature or under heating, the metal particles having a large specific gravity and the volatile dispersion medium having a small specific gravity are not separated, and can easily take a predetermined shape, Moreover, it has excellent shape retention.
Since the sheet-like bonding agent of the present invention has plasticity at normal temperature or under heating, the metal particles having a large specific gravity and the volatile dispersion medium having a small specific gravity are not separated, and is excellent in handleability.
The method for producing a sinterable metal particle composition of the present invention can efficiently and easily produce a sinterable metal particle composition having plasticity at room temperature or under heating.
Since the metal member joining method of the present invention uses a sinterable metal particle composition having plasticity at room temperature or under heating, a plurality of metal members can be joined together with high accuracy and strength.

実施例における焼結性金属粒子組成物の形状保持性の測定における平面図である。It is a top view in the measurement of the shape retention property of the sinterable metal particle composition in an Example.

符号の説明Explanation of symbols

1 銀メッキした銅板
2 焼結性金属粒子組成物
1 Silver-plated copper plate 2 Sinterable metal particle composition

本発明の焼結性金属粒子組成物は、(A) 平均粒径が0.001〜50μmである焼結性金属粒子100重量部と、(B)常温で固体状であり、金属粒子(A)の焼結温度以下の温度で溶融し揮発する分散媒3〜100重量部とからなり、常温で固体状であり、常温または加熱下で可塑性を有することを特徴とする。 The sinterable metal particle composition of the present invention comprises (A) 100 parts by weight of sinterable metal particles having an average particle diameter of 0.001 to 50 μm, (B) a solid at room temperature, and metal particles (A And 3 to 100 parts by weight of a dispersion medium that melts and volatilizes at a temperature equal to or lower than the sintering temperature, and is solid at room temperature and has plasticity at room temperature or under heating.

焼結性金属粒子(A)の材質は、常温で固体であり、加熱により,加圧しつつ加熱により,加圧と超音波振動印加により,または,加圧と加熱と超音波振動印加により焼結しやすければよく、金,銀,銅,パラジウム,ニッケル,スズ,アルミニウムおよびそれらの合金が例示される。これらのうちでは銀,銅,ニッケルが好ましく、加熱焼結性,熱伝導性および導電性の点で銀が特に好ましい。銀粒子は表面の一部または全部が酸化銀になっていてもよい。 The material of the sinterable metal particles (A) is solid at room temperature and sintered by heating, applying pressure while heating, applying pressure and ultrasonic vibration, or applying pressure, heating and ultrasonic vibration. Examples are gold, silver, copper, palladium, nickel, tin, aluminum, and alloys thereof. Among these, silver, copper, and nickel are preferable, and silver is particularly preferable from the viewpoints of heat sinterability, thermal conductivity, and conductivity. The silver particles may be partially or entirely silver oxide.

焼結性金属粒子(A)の表面状態は限定されず、その表面に有機物が付着していてもよい。焼結性を阻害しなければ、表面に付着している有機物の種類および量は限定されない。このような有機物は、焼結性金属粒子(A)を製造する際に使用される還元剤,分散剤,安定剤等が例示され、フレーク化する際に使用される潤滑剤が例示される。
潤滑剤として、高級脂肪酸,高級脂肪酸金属塩,高級脂肪酸アミドまたは高級脂肪酸エステルが好ましく、特には高級脂肪酸が好ましい。潤滑剤の付着量は、焼結性金属粒子(A)の粒径,比表面積,形状などにより変わるが、焼結性金属粒子(A)の3重量%以下が好ましく、1重量%以下がより好ましい。多すぎると加熱焼結性が低下するからである。
The surface state of the sinterable metal particles (A) is not limited, and an organic substance may be attached to the surface. If the sinterability is not hindered, the type and amount of the organic matter adhering to the surface is not limited. Examples of such organic substances include reducing agents, dispersants, stabilizers, and the like that are used when the sinterable metal particles (A) are produced, and lubricants that are used when flaked.
As the lubricant, higher fatty acids, higher fatty acid metal salts, higher fatty acid amides or higher fatty acid esters are preferable, and higher fatty acids are particularly preferable. The amount of lubricant attached varies depending on the particle size, specific surface area, shape, etc. of the sinterable metal particles (A), but is preferably 3% by weight or less of the sinterable metal particles (A), more preferably 1% by weight or less. preferable. It is because heat sinterability will fall when too much.

焼結性金属粒子(A)の平均粒径は、0.001〜50μmである。この平均粒径は、レーザー回折散乱式粒度分布測定法により得られる一次粒子の平均粒径である。平均粒径が50μmを越えると、焼結しにくくなる。そのため、平均粒子径は小さい方が好ましく、20μm以下であることが好ましい。いわゆるナノサイズとなる0.1μm未満の場合、表面活性が強すぎるため、ペースト状金属粒子組成物の保存安定性が低下する恐れがある。そのため、0.1μm以上であることが好ましく、0.1〜10μmがより好ましい。 The average particle diameter of the sinterable metal particles (A) is 0.001 to 50 μm. This average particle diameter is an average particle diameter of primary particles obtained by a laser diffraction / scattering particle size distribution measurement method. When the average particle size exceeds 50 μm, it becomes difficult to sinter. Therefore, the one where an average particle diameter is smaller is preferable and it is preferable that it is 20 micrometers or less. When the so-called nano-size is less than 0.1 μm, the surface activity is too strong, so that the storage stability of the paste-like metal particle composition may be lowered. Therefore, it is preferable that it is 0.1 micrometer or more, and 0.1-10 micrometers is more preferable.

焼結性金属粒子(A)の形状は、球状,略球状,略立方体状,フレーク状,不定形状などである。保存安定性の点で好ましくはフレーク状である。
特に好ましくは、還元法で作られた銀粒子をフレーク化したものである。なお、還元法の銀粒子の製造方法は多く提案されている。硝酸銀水溶液に水酸化ナトリウム水溶液を加えることにより酸化銀を調製し、これにホルマリンのような還元剤の水溶液を加えて還元することにより銀粒子を生成し、水洗、ろ過、乾燥等をおこなうという方法が一般的である。
The shape of the sinterable metal particles (A) includes a spherical shape, a substantially spherical shape, a substantially cubic shape, a flake shape, and an indefinite shape. From the viewpoint of storage stability, a flake shape is preferable.
Particularly preferably, the silver particles produced by the reduction method are made into flakes. Many methods for producing silver particles by reduction have been proposed. A method of preparing silver oxide by adding an aqueous solution of sodium hydroxide to an aqueous solution of silver nitrate, adding an aqueous solution of a reducing agent such as formalin to this to produce silver particles, washing, filtering, drying, etc. Is common.

潤滑剤が付着したフレーク状の焼結性金属粒子(A)は、球状のような粒状の焼結性金属粒子に潤滑剤を添加して、ボールミル等により粉砕をおこなうことにより製造することができる(特公昭40−6971、特開2003−55701の[0004]参照)。
粒状の焼結性金属粒子と、高級脂肪酸,高級脂肪酸金属塩,高級脂肪酸エステル,高級脂肪酸アミド等の潤滑剤とを、セラミック製のボールとともに、回転式ドラム装置(例えばボールミル)に投入し、ボールにより焼結性金属粒子を物理的にたたくことにより、容易にフレーク状(鱗片状)に加工できる。この際、潤滑性向上のための高級脂肪酸,高級脂肪酸金属塩,高級脂肪酸エステル,高級脂肪酸アミド等の親油性有機物がフレーク状の焼結性金属粒子に付着する。このような高級脂肪酸としては、ラウリン酸,ミリスチン酸,パルミチン酸,ステアリン酸,オレイン酸,リノール酸,リノレン酸が例示されるが、高級飽和脂肪酸であることが好ましい。このような高級飽和脂肪酸としてはラウリン酸,ミリスチン酸,パルミチン酸,ステアリン酸が例示される。
Flaked sinterable metal particles (A) with a lubricant attached can be produced by adding a lubricant to spherical sinterable metal particles and grinding them with a ball mill or the like. (See Japanese Patent Publication No. 40-6971, JP-A-2003-55701, [0004]).
A granular sinterable metal particle and a lubricant such as a higher fatty acid, a higher fatty acid metal salt, a higher fatty acid ester, a higher fatty acid amide, and the like are put into a rotary drum device (for example, a ball mill) together with a ceramic ball. By physically hitting the sinterable metal particles, it can be easily processed into flakes (scale-like). At this time, lipophilic organic substances such as higher fatty acids, higher fatty acid metal salts, higher fatty acid esters, and higher fatty acid amides for improving lubricity adhere to the flaky sinterable metal particles. Examples of such higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid, linoleic acid, and linolenic acid, and higher saturated fatty acids are preferred. Examples of such higher saturated fatty acids include lauric acid, myristic acid, palmitic acid, and stearic acid.

フレーク状の焼結性金属表面(A)は、このような高級脂肪酸等により半分以上ないし全部が被覆されていることが、好ましい。このように金属表面が潤滑剤により被覆された焼結性金属粒子(A)は、親油性を示し、分散剤(B)との親和性が向上するので、焼結性金属粒子組成物の保存安定性がより向上する。しかし、潤滑剤の付着量が多すぎると,焼結性が低下することがあるので、0.01〜3重量%が好ましく、0.1〜1重量%であることがより好ましい。潤滑剤の付着量は通常の方法で測定できる。例えば、窒素ガス中で潤滑剤の沸点以上に加熱して重量減少を測定する方法、焼結性金属粒子(A)を酸素気流中で加熱して,焼結性金属粒子(A)に付着していた潤滑剤中の炭素を炭酸ガスに変え,炭酸ガスを赤外線吸収スペクトル法により定量分析する方法等が例示される。
表面を潤滑剤で被覆した焼結性金属粒子(A)は、通常の方法でも製造することができる。例えば、潤滑剤の溶液中に金属粒子を浸漬し,金属粒子を取り出して乾燥することにより、製造することができる。
The flaky sinterable metal surface (A) is preferably covered more than half or all with such higher fatty acids. In this way, the sinterable metal particles (A) whose metal surface is coated with a lubricant exhibit lipophilicity and improved affinity with the dispersant (B), so that the storage of the sinterable metal particle composition Stability is further improved. However, if the adhesion amount of the lubricant is too large, the sinterability may be lowered, so that it is preferably 0.01 to 3% by weight, and more preferably 0.1 to 1% by weight. The adhesion amount of the lubricant can be measured by a usual method. For example, a method of measuring weight loss by heating above the boiling point of the lubricant in nitrogen gas, and heating the sinterable metal particles (A) in an oxygen stream to adhere to the sinterable metal particles (A). An example is a method in which carbon in the lubricant is changed to carbon dioxide, and the carbon dioxide is quantitatively analyzed by infrared absorption spectroscopy.
The sinterable metal particles (A) whose surfaces are coated with a lubricant can also be produced by a usual method. For example, it can be manufactured by immersing metal particles in a lubricant solution, taking out the metal particles and drying.

本発明の焼結性金属粒子組成物における、分散媒(B)は、常温で固体状であり、焼結性金属粒子(A)の焼結温度以下の温度で溶融し揮発することが必要である。揮発性分散媒が常温、例えば5℃〜38℃で固体状でないと、本発明の焼結性金属粒子組成物が常温で固体状にならないからである。常温で固体であるためには、融点が常温より高い必要がある。しかし、融点が常温に接近しすぎていると、気温の高い日や,室温が高い作業場では形状を保持できなくなるので、常温より4℃以上高いことが好ましい。具体的には、融点が40℃以上であることが好ましい。
もっとも、加熱焼結は一般に100〜300℃で行われるので、分散媒(B)の融点は、この温度範囲の焼結温度より低く、その沸点はこの温度範囲の焼結温度以下であることが好ましい。その沸点は、具体的には、60℃〜300℃であることが好ましい。沸点が60℃未満であると,焼結性金属粒子組成物を調製する作業中に溶媒が揮散しやすく、沸点が300℃より大であると,焼結後も分散媒(B)が残留しかねないからである。
In the sinterable metal particle composition of the present invention, the dispersion medium (B) is solid at room temperature, and needs to be melted and volatilized at a temperature equal to or lower than the sintering temperature of the sinterable metal particles (A). is there. This is because the sinterable metal particle composition of the present invention does not become solid at room temperature unless the volatile dispersion medium is solid at room temperature, for example, 5 ° C. to 38 ° C. In order to be solid at normal temperature, the melting point needs to be higher than normal temperature. However, if the melting point is too close to room temperature, the shape cannot be maintained on days with high temperatures or in workplaces with high temperatures, so it is preferable that the temperature be 4 ° C. or more higher than room temperature. Specifically, the melting point is preferably 40 ° C. or higher.
However, since heat sintering is generally performed at 100 to 300 ° C., the melting point of the dispersion medium (B) is lower than the sintering temperature in this temperature range, and the boiling point thereof is lower than the sintering temperature in this temperature range. preferable. Specifically, the boiling point is preferably 60 ° C to 300 ° C. If the boiling point is less than 60 ° C, the solvent tends to volatilize during the preparation of the sinterable metal particle composition. If the boiling point is greater than 300 ° C, the dispersion medium (B) remains after sintering. Because it might be.

そのような分散媒(B)として、ピロガロール,p−メチルベンジルアルコール,o−メチルベンジルアルコール,シル−3,3,5−トリメチルシクロヘキサノール,α−テルピネオール,1,4−シクロヘキサンジメタノール,1,4−シクロヘキサンジオール,ピナコールなどのアルコール類、ビフェニル,ナフタレン,デュレンなどの炭化水素類、ジベンゾイルメタン,カルコン,アセチルシクロヘキサンなどのケトン類、ラウリン酸,カプリン酸などの脂肪酸類が例示される。分散媒(B)は2種類以上を併用しても良いが、その混合物が常温において固体状であることが必要である。 Examples of such a dispersion medium (B) include pyrogallol, p-methylbenzyl alcohol, o-methylbenzyl alcohol, sil-3,3,5-trimethylcyclohexanol, α-terpineol, 1,4-cyclohexanedimethanol, 1, Examples include alcohols such as 4-cyclohexanediol and pinacol, hydrocarbons such as biphenyl, naphthalene and durene, ketones such as dibenzoylmethane, chalcone and acetylcyclohexane, and fatty acids such as lauric acid and capric acid. Two or more kinds of dispersion media (B) may be used in combination, but the mixture must be solid at room temperature.

分散媒(B)の配合量は、焼結性金属粒子(A)100重量部あたり3〜100重量部である。もっとも、焼結性金属粒子(A)の粒径、形状、比重などおよび分散媒(B)の性状によって適切な量が変わるので、焼結性金属粒子(A)との混合物が分散媒(B)の融点以上でペースト状になるのに十分な量であり、かつ、常温で半固体状または固体状になるのに十分な量である。本発明の焼結性金属粒子組成物は、本発明の目的に反しない限り、焼結性金属粒子(A)および分散媒(B)以外に、非金属系の粉体,金属化合物や金属錯体,チクソ剤,安定剤,着色剤等の添加物を少量ないし微量含有しても良い。 The amount of the dispersion medium (B) is 3 to 100 parts by weight per 100 parts by weight of the sinterable metal particles (A). However, since the appropriate amount varies depending on the particle size, shape, specific gravity, etc. of the sinterable metal particles (A) and the properties of the dispersion medium (B), the mixture with the sinterable metal particles (A) becomes a dispersion medium (B ) Above the melting point is sufficient to form a paste, and is sufficient to be semi-solid or solid at room temperature. The sinterable metal particle composition of the present invention is a non-metallic powder, metal compound or metal complex, in addition to the sinterable metal particles (A) and the dispersion medium (B), unless it is contrary to the object of the present invention. , Thixotropic agents, stabilizers, colorants, and other additives may be contained in small or trace amounts.

本発明の焼結性金属粒子組成物は、常温または加熱下で可塑性を有する。常温での可塑性は、適度に含水した粘土鉱物が示すような性質である。すなわち、可塑性は、常温で半固体状であり,応力を加えることにより容易に塑性変形する性質を、意味する。例えば、「立方体状の焼結性金属粒子組成物を平板上に載せて放置しても変形しない。しかし、立方体上に硬質板を載せ,該硬質板を下方に押圧すると、該立方体は厚みが薄くなり水平方向に拡がる。ところが、押圧を中止しても,厚みも面積も元に戻らない」という性質である。加熱下での可塑性は、熱可塑性プラスチックが示すような性質である。すなわち、「常温で固体状であり,応力を加えても変形しないが、ある温度以上になると,半固体状となり,応力を加えると容易に塑性変形する」という性質である。 The sinterable metal particle composition of the present invention has plasticity at room temperature or under heating. Plasticity at room temperature is a property that clay minerals with moderate water content exhibit. That is, the plasticity means a property that is semi-solid at normal temperature and easily plastically deforms when stress is applied. For example, “Cube-like sinterable metal particle composition does not deform even if it is left on a flat plate. However, when a hard plate is placed on the cube and the hard plate is pressed downward, the cube has a thickness of However, even if the pressing is stopped, the thickness and area are not restored. ” Plasticity under heating is a property exhibited by thermoplastics. That is, it has the property that it is solid at normal temperature and does not deform even when stress is applied, but becomes semi-solid when it exceeds a certain temperature and easily plastically deforms when stress is applied.

本発明の焼結性金属粒子組成物は、常温においてシート状(フィルム状を含む)であることが好ましい。シートの大きさは限定されず、また、シートの厚さも限定されないが、50μm〜1mmの均一な厚さであることが好ましい。
シート状であると、2枚の平坦な金属製部材間に介在させるのに便利である。シートの大きさ,形状は、接合しようとする金属製部材の大きさ,形状、あるいは、接合を必要とする大きさ,形状とするとことが好ましい。
シート状の焼結性金属粒子組成物は、シート状,フィルム状,線状などの金属(ただし、焼結性金属粒子(A)と同一の金属、または、異種の金属であっても焼結時に接着しやすい金属)片を内包していてもよい。
The sinterable metal particle composition of the present invention is preferably in the form of a sheet (including a film) at room temperature. The size of the sheet is not limited, and the thickness of the sheet is not limited, but a uniform thickness of 50 μm to 1 mm is preferable.
The sheet form is convenient for interposing between two flat metal members. The size and shape of the sheet are preferably the size and shape of the metal member to be joined, or the size and shape that require joining.
Sheet-like sinterable metal particle composition is made of sheet-like, film-like, wire-like metal (however, the same metal as sinterable metal particles (A) or a different kind of metal is sintered) (Metal that is sometimes easy to bond) may be included.

本発明の焼結性金属粒子組成物は、常温で半固体状または固体状であるが、加熱により,分散媒(B)の融点以上の温度になると、分散媒(B)が溶融してペースト状となり、揮散しだす。もっとも、分散媒(B)の種類によっては、さらに昇温すると揮散しだす。分散媒(B)が揮散中あるいは完全に揮散後に、焼結性金属粒子(A)の焼結温度以上になると、焼結性金属粒子(A)が焼結し、冷却すると固形状の金属となる。焼結性金属粒子(A)が,焼結途上で金属製部材に接触していると、該固形状の金属は該金属製部材に接着する。この際、焼結性金属粒子(A)と金属製部材は,同一の金属であることが好ましいが、異種の金属であっても,焼結時に接着しやすい金属であればよい。
焼結性金属粒子(A)の加熱焼結温度は、分散媒(B)の融点以上であり、かつ、分散媒(B)の揮散可能な温度以上の温度である必要がある。
The sinterable metal particle composition of the present invention is semi-solid or solid at room temperature, but when heated to a temperature equal to or higher than the melting point of the dispersion medium (B), the dispersion medium (B) melts and becomes a paste. It begins to evaporate. However, depending on the type of the dispersion medium (B), it starts to evaporate when the temperature is further increased. When the dispersion medium (B) is volatilized or completely volatilized, the sintering metal particles (A) sinter when the temperature exceeds the sintering temperature of the sinterable metal particles (A). Become. When the sinterable metal particles (A) are in contact with the metal member during sintering, the solid metal adheres to the metal member. At this time, the sinterable metal particles (A) and the metal member are preferably the same metal, but even if they are dissimilar metals, any metal can be used as long as it can be easily bonded during sintering.
The heating and sintering temperature of the sinterable metal particles (A) needs to be not less than the melting point of the dispersion medium (B) and not less than the temperature at which the dispersion medium (B) can be volatilized.

本発明の焼結性金属粒子組成物を、複数の金属製部材の接合に使用する場合は、金属製部材間に介在させ、分散媒(B)の融点以上、あるいは、分散媒(B)の融点以上,かつ,分散媒(B)の揮散可能な温度以上であり、焼結性金属粒子(A)の焼結可能な温度以上に加熱する。この温度は、具体的には、分散媒(B)の融点が100℃以下である場合に、100℃以上400℃以下の温度であることが好ましく、150℃以上300℃以下であることがより好ましい。
100℃未満で焼結する金属は稀であり、400℃を超えると分散媒(B)が突沸的に蒸発して,金属製部材の形状に悪影響が出る恐れがあるからである。
このとき焼結性金属粒子組成物に、圧力、または、圧力と超音波振動を加えても良い。圧力を加えると焼結性が向上し、圧力と超音波振動を加えると焼結性がさらに向上する。
When the sinterable metal particle composition of the present invention is used for joining a plurality of metal members, it is interposed between the metal members and has a melting point of the dispersion medium (B) or higher, or the dispersion medium (B). It is heated above the melting point and above the temperature at which the dispersion medium (B) can be volatilized, and above the temperature at which the sinterable metal particles (A) can be sintered. Specifically, when the melting point of the dispersion medium (B) is 100 ° C. or lower, this temperature is preferably 100 ° C. or higher and 400 ° C. or lower, more preferably 150 ° C. or higher and 300 ° C. or lower. preferable.
This is because metals that sinter at less than 100 ° C. are rare, and when the temperature exceeds 400 ° C., the dispersion medium (B) evaporates suddenly, which may adversely affect the shape of the metal member.
At this time, pressure, or pressure and ultrasonic vibration may be applied to the sinterable metal particle composition. When pressure is applied, the sinterability is improved, and when pressure and ultrasonic vibration are applied, the sinterability is further improved.

本発明の焼結性金属粒子組成物を加熱等して焼結性金属粒子(A)が焼結してできた固形状金属の形状は、シート状に限定されず、テープ状,線状,円盤状,ブロック状,スポット状,不定形状であっても良い。 The shape of the solid metal obtained by sintering the sinterable metal particle composition (A) by heating or the like of the sinterable metal particle composition of the present invention is not limited to a sheet shape, but a tape shape, a linear shape, It may be disc-shaped, block-shaped, spot-shaped, or indefinite.

本発明の焼結性金属粒子組成物は、加熱すると,加圧しつつ加熱すると,加圧しつつ超音波振動を印加すると,あるいは,加圧,加熱しつつ超音波振動を印加すると、分散媒(B)が溶融し揮散し,焼結性金属粒子(A)が焼結することにより、強度と電気伝導性と熱伝導性が優れた固形状金属となる。この固形状金属は、接触していた金属製部材、例えば、金メッキ基板,銀基板,銀メッキ金属基板,銅基板等の金属系基板,電気絶縁性基板上の電極等金属部分へ接着するので、金属系基板の接合、金属部分を有する電子部品,電子装置,電気部品,電気装置等の接合に有用である。特に焼結性金属粒子(A)が銀粒子の場合は、高い強度と極めて高い電気伝導性と熱伝導性を有する固形状銀になるため、好ましい。そのような接合として、コンデンサ,抵抗等のチップ部品と回路基板との接合、ダイオード,メモリ,CPU等の半導体チップとリードフレームもしくは回路基板との接合、高発熱のCPUチップと冷却板との接合が例示される。 When the sinterable metal particle composition of the present invention is heated, heated while applying pressure, applied ultrasonic vibration while applying pressure, or applied ultrasonic vibration while applying pressure and heated, the dispersion medium (B ) Is melted and volatilized, and the sinterable metal particles (A) are sintered, whereby a solid metal having excellent strength, electrical conductivity, and thermal conductivity is obtained. This solid metal adheres to metal parts that have been in contact, such as gold-plated substrates, silver substrates, silver-plated metal substrates, metal substrates such as copper substrates, and electrodes such as electrodes on electrically insulating substrates. It is useful for joining metal substrates, joining electronic parts having metal parts, electronic devices, electrical components, electrical devices, and the like. In particular, when the sinterable metal particles (A) are silver particles, solid silver having high strength, extremely high electric conductivity and heat conductivity is preferable. Such bonding includes bonding of chip components such as capacitors and resistors to circuit boards, bonding of semiconductor chips such as diodes, memories, and CPUs to lead frames or circuit boards, bonding of high heat generating CPU chips and cooling plates. Is exemplified.

超音波振動の周波数は、2kHz以上であり,10kHz以上であることが好ましい。その上限は特に制限されないが、超音波振動装置の能力上,500kHz位である。また、超音波振動の振幅は焼結性に影響するので、好ましくは0.1〜40μm、より好ましくは0.3〜20μm、さらに好ましくは0.5〜12μmである。なお、超音波振動が焼結性金属粒子組成物に確実に伝わるように、焼結性金属粒子組成物に,直接,超音波振動の発信部分を押し当てることが好ましい。あるいは、超音波振動を吸収しにくい素材からなるカバー材等を介して,焼結性金属粒子組成物に,超音波振動の発信部分を押し当てることが好ましい。 The frequency of the ultrasonic vibration is 2 kHz or more, and preferably 10 kHz or more. Although the upper limit in particular is not restrict | limited, From the capability of an ultrasonic vibration apparatus, it is about 500 kHz. Moreover, since the amplitude of ultrasonic vibration influences sinterability, it is preferably 0.1 to 40 μm, more preferably 0.3 to 20 μm, and still more preferably 0.5 to 12 μm. In addition, it is preferable to directly press the transmitting portion of the ultrasonic vibration against the sinterable metal particle composition so that the ultrasonic vibration is reliably transmitted to the sinterable metal particle composition. Alternatively, it is preferable to press the transmitting portion of the ultrasonic vibration against the sinterable metal particle composition through a cover material made of a material that hardly absorbs the ultrasonic vibration.

焼結性金属粒子組成物への押当て圧力は、好ましくは0.9kPa(0.09gf/mm)以上、より好ましくは9kPa(0.92gf/mm)以上、さらに好ましくは39kPa(3.98gf/mm)以上である。押当て圧力の上限は、接合する部材が破壊されない圧力の最大値である。The pressing pressure to the sinterable metal particle composition is preferably 0.9 kPa (0.09 gf / mm 2 ) or more, more preferably 9 kPa (0.92 gf / mm 2 ) or more, and further preferably 39 kPa (3. 98 gf / mm 2 ) or more. The upper limit of the pressing pressure is the maximum pressure at which the members to be joined are not destroyed.

加圧,加熱しつつ超音波振動を印加して焼結する場合の加熱温度は、常温より高く,分散媒(B)が揮散し,焼結性金属粒子(A)が焼結できる温度であればよい。しかし、400℃を越えると、分散媒(B)が突沸的に蒸発して,固形状金属の形状に悪影響が出る恐れがあるため、400℃以下,かつ,該焼結性金属粒子(A)の融点未満の温度であることが好ましく、300℃以下がより好ましい。 The heating temperature when sintering by applying ultrasonic vibration while applying pressure and heating should be higher than room temperature, the dispersion medium (B) can be volatilized, and the sinterable metal particles (A) can be sintered. That's fine. However, if the temperature exceeds 400 ° C., the dispersion medium (B) evaporates suddenly, which may adversely affect the shape of the solid metal. The temperature is preferably lower than the melting point of 300 ° C., more preferably 300 ° C. or less.

本発明の焼結性金属粒子組成物は、焼結性金属粒子(A)が焼結した後は分散媒が残存しないので、焼結物の洗浄は不要であるが、有機溶媒で洗浄してもよい。 In the sinterable metal particle composition of the present invention, since the dispersion medium does not remain after the sinterable metal particles (A) are sintered, it is not necessary to wash the sintered product. Also good.

本発明の焼結性金属粒子組成物がシート状である場合は、ガラス板,プラスチックフィルムなどの保護材の間に挟んで保存することが好ましい。また、保存安定性を向上する目的で、冷蔵保管をしても良く、保管温度として10℃以下が例示される。 When the sinterable metal particle composition of the present invention is in the form of a sheet, it is preferably stored by being sandwiched between protective materials such as glass plates and plastic films. Further, for the purpose of improving storage stability, refrigeration storage may be performed, and an example of storage temperature is 10 ° C. or less.

本発明の実施例と比較例を掲げる。実施例と比較例中、部は重量部を意味する。焼結性金属粒子組成物のシート状物の作製方法、焼結性金属粒子組成物の形状保持性、および、焼結性金属粒子組成物による固形状金属の接着強度は、下記の方法により測定した。なお、特に記載のない場合の温度は25℃である。 Examples and comparative examples of the present invention will be given. In Examples and Comparative Examples, “part” means “part by weight”. The method for producing a sheet-like material of the sinterable metal particle composition, the shape retention of the sinterable metal particle composition, and the adhesive strength of the solid metal by the sinterable metal particle composition are measured by the following methods. did. Note that the temperature is 25 ° C. unless otherwise specified.

[焼結性金属粒子組成物のシート状物の作製方法]
本発明における焼結性金属粒子組成物を,2枚のポリテトラフルオロエチレンシート間に挟み、分散媒(B)の融点+10℃に加温されたプレス機を用いて,焼結性金属粒子組成物の厚さが300μmとなるように圧力を加え、分散媒(B)の融点未満に冷却後に取り出し、所定の大きさに裁断してシート状にした。
[Method for producing sheet-like material of sinterable metal particle composition]
The sinterable metal particle composition according to the present invention is sandwiched between two polytetrafluoroethylene sheets and is heated to a melting point of the dispersion medium (B) + 10 ° C. Pressure was applied so that the thickness of the product was 300 μm, and the product was cooled to below the melting point of the dispersion medium (B), taken out, cut into a predetermined size, and formed into a sheet.

[焼結性金属粒子組成物の形状保持性]
幅25mm×長さ25mm×厚さ1mmの銀メッキした銅板1の上に、縦10.0mm×横10.0mmの大きさであり厚さが300μmとなるように,焼結性銀粒子組成物2を載せ、25℃で1時間静置した後の焼結性銀粒子組成物の大きさを測定し、縦と横の長さの平均値で示した。焼結性銀粒子組成物2がペースト状である場合には、縦10.0mm×横10.0mmの大きさであり厚さが300μmの開口部を有する金型とスキージを用いて,ペースト状組成物を銀メッキした銅板上に印刷塗布し、25℃で1時間静置した後の焼結性銀粒子組成物の大きさを測定し、縦と横の長さの平均値で示した。
[Shape retention of sinterable metal particle composition]
A sinterable silver particle composition on a silver-plated copper plate 1 having a width of 25 mm, a length of 25 mm, and a thickness of 1 mm so that the size is 10.0 mm in length × 10.0 mm in width and the thickness is 300 μm. 2 and the size of the sinterable silver particle composition after being allowed to stand at 25 ° C. for 1 hour was measured, and indicated by an average value of length and width. When the sinterable silver particle composition 2 is in the form of a paste, it is pasted using a mold and a squeegee having a size of 10.0 mm in length × 10.0 mm in width and a thickness of 300 μm. The composition was printed and coated on a silver-plated copper plate, and the size of the sinterable silver particle composition after being allowed to stand at 25 ° C. for 1 hour was measured, and indicated by an average value of length and width.

[接着強度A]
幅25mm×長さ75mm×厚さ1mmの銀メッキした銅板の上に、幅5mm×長さ5mm×厚さ100μmのシート状の焼結性銀粒子組成物を置き、その上に幅5mm×長さ5mm×厚さ0.5mmの銀製のチップを搭載後、強制循環式オーブン内で200℃で1時間加熱することにより、銀製チップを銀メッキ銅板に接着させた。試験体をオーブンから取り出し放冷したところ、銀粒子が焼結して該銅板と該銀製チップが接着していた。かくして得られた接着強度測定用試験体を,ダイシェア強度測定試験機に取付け、銀製チップの側面を,ダイシェア強度測定試験機のダイシェアツールにより速度23mm/分で押圧し、銀製チップと銀メッキ銅板間の接合部がせん断破壊したときの荷重を、接着強度(単位;kgf)とした。なお、接着強度試験は3回であり、その平均値を接着強度Aとした。
[Adhesive strength A]
A sheet-like sinterable silver particle composition having a width of 5 mm, a length of 5 mm, and a thickness of 100 μm is placed on a silver-plated copper plate having a width of 25 mm, a length of 75 mm, and a thickness of 1 mm, and a width of 5 mm × length. After mounting a silver chip having a thickness of 5 mm and a thickness of 0.5 mm, the silver chip was adhered to the silver-plated copper plate by heating at 200 ° C. for 1 hour in a forced circulation oven. When the specimen was taken out of the oven and allowed to cool, the silver particles were sintered and the copper plate and the silver chip were adhered. The test specimen for measuring the adhesive strength thus obtained is attached to a die shear strength measuring tester, and the side surface of the silver chip is pressed at a speed of 23 mm / min by the die shear tool of the die shear strength measuring tester, so that the silver tip and the silver plated copper plate are pressed. The load when the joint between them was sheared and broken was defined as the adhesive strength (unit: kgf). The adhesive strength test was performed three times, and the average value was defined as adhesive strength A.

[接着強度B]
幅25mm×長さ75mm×厚さ1mmの銀メッキした銅板に、5mm×5mm×厚さ100μmのシート状の焼結性銀粒子組成物を置き、その上に幅5mm×長さ5mm×厚さ0.5mmの銀製のチップを搭載して接着強度測定用前躯体を作った。接着強度測定用前躯体を超音波熱圧着装置に取付け、超音波振動の周波数30kHz、超音波振動の振幅4μm、押当て圧力100N/cmという条件で,超音波熱圧着装置の圧着部(プローブ)を,上方から接着強度測定用前躯体の銀製チップの上部に押し当てて、超音波振動を印加しながら200℃の温度で30秒間圧着した。試験体を超音波熱圧着装置から取り出し放冷したところ、銀粒子が焼結して該銅板と該銀製チップが接着していた。かくして得られた接着強度測定用試験体を,ダイシェア強度測定試験機に取付け、銀製チップの側面を,ダイシェア強度測定試験機のダイシェアツールにより速度23mm/分で押圧し、銀製チップと銀メッキ銅板間の接合部がせん断破壊したときの荷重を、接着強度(単位;kgf)とした。なお、接着強度試験は3回であり、その平均値を接着強度Bとした。
[Adhesive strength B]
A sinterable silver particle composition 5 mm × 5 mm × 100 μm thick is placed on a silver-plated copper plate 25 mm wide × 75 mm long × 1 mm thick, and 5 mm wide × 5 mm long × thickness thereon. A 0.5 mm silver chip was mounted to make an adhesive strength measurement precursor. The adhesive strength measurement precursor is attached to an ultrasonic thermocompression bonding device, and the ultrasonic thermocompression bonding device (probe) (probe) has a frequency of ultrasonic vibration of 30 kHz, an ultrasonic vibration amplitude of 4 μm, and a pressing pressure of 100 N / cm 2. ) Was pressed from above onto the upper part of the silver chip of the precursor for adhesive strength measurement, and crimped for 30 seconds at a temperature of 200 ° C. while applying ultrasonic vibration. When the test body was taken out of the ultrasonic thermocompression bonding apparatus and allowed to cool, the silver particles were sintered and the copper plate and the silver chip were bonded. The test specimen for measuring the adhesive strength thus obtained is attached to a die shear strength measuring tester, and the side surface of the silver chip is pressed at a speed of 23 mm / min by the die shear tool of the die shear strength measuring tester, so that the silver tip and the silver plated copper plate are pressed. The load when the joint between them was sheared and broken was defined as the adhesive strength (unit: kgf). The adhesive strength test was performed three times, and the average value was defined as adhesive strength B.

[実施例1]
ガラス製容器に、市販の,還元法で製造された銀粒子をフレーク化した,1次粒子の平均粒径が4μm(レーザー回折法により測定)であるフレーク状の銀粒子100部と、分散媒(B)としてデュレン(和光純薬工業株式会社発売の試薬、融点80℃、沸点191℃)25部を投入し、90℃のホットプレート上でよく攪拌して均一なペースト状物とした。該容器をホットプレートから取り外して、25℃の雰囲気中に置いた。このペースト状の焼結性銀粒子組成物を,厚さ130μmのポリイミドシート2枚の間に挟んで、90℃に加熱されたプレス機で300μm厚となるように加圧した。ポリイミドシートごとプレス機から取り出して冷却し、ポリイミドシートから引き剥がして、シート状組成物を得た。このシート状組成物は、銀粒子が均一に分散したデュレンからなり、25℃では硬い固体状であり、90℃に昇温するとペースト状になった。すなわち、熱可塑性であった。
この焼結性銀粒子組成物の形状保持性、および、焼結性銀粒子組成物による固形状金属の接着強度を測定し、結果を表1にまとめて示した。以上の結果より、この焼結性銀粒子組成物は、フレーク状の銀粒子とデュレンの分離がなく、形状保持性に優れ、しかも、金属製部材を強固に接合するのに有用なことがわかった。
[Example 1]
In a glass container, 100 parts of flaky silver particles having an average primary particle diameter of 4 μm (measured by laser diffraction method) obtained by flaking silver particles produced by a reduction method on a commercially available container, and a dispersion medium As (B), 25 parts of durene (reagent sold by Wako Pure Chemical Industries, Ltd., melting point 80 ° C., boiling point 191 ° C.) was added and stirred well on a 90 ° C. hot plate to obtain a uniform paste. The container was removed from the hot plate and placed in an atmosphere at 25 ° C. This paste-like sinterable silver particle composition was sandwiched between two 130 μm-thick polyimide sheets and pressed to a thickness of 300 μm with a press machine heated to 90 ° C. The polyimide sheet was taken out of the press machine, cooled, and peeled off from the polyimide sheet to obtain a sheet-like composition. This sheet-like composition was made of durene in which silver particles were uniformly dispersed, was a hard solid at 25 ° C., and became a paste when heated to 90 ° C. That is, it was thermoplastic.
The shape retention of this sinterable silver particle composition and the adhesive strength of the solid metal by the sinterable silver particle composition were measured. The results are summarized in Table 1. From the above results, it can be seen that this sinterable silver particle composition has no separation of flaky silver particles and durene, has excellent shape retention, and is useful for strongly joining metal members. It was.

[実施例2]
実施例1において、デュレンの代わりにピナコール(和光純薬工業株式会社発売の試薬、融点42℃、沸点175℃)を用いた以外は、実施例1と同様にして、焼結性金属粒子組成物を調製した。この焼結性銀粒子組成物は90℃ではペースト状である。この焼結性銀粒子組成物を,厚さ130μmのポリイミドシート2枚の間に挟んで、90℃に加熱されたプレス機で,300μm厚となるように加圧した。ポリイミドシートごとプレス機から取り出して冷却し、ポリイミドシートから引き剥がして、シート状組成物を得た。このシート状組成物は、銀粒子が均一に分散したピナコールからなり、25℃では硬い固体状であり、80℃に昇温するとペースト状になった。すなわち、熱可塑性であった。
この焼結性銀粒子組成物の形状保持性、および、焼結性銀粒子組成物による固形状金属の接着強度を測定し、結果を表1にまとめて示した。以上の結果より、この焼結性銀粒子組成物は、フレーク状の銀粒子とピナコールの分離がなく、形状保持性に優れ、しかも、金属製部材を強固に接合するのに有用なことがわかった。
[Example 2]
In Example 1, a sinterable metal particle composition was used in the same manner as in Example 1 except that pinacol (reagent sold by Wako Pure Chemical Industries, Ltd., melting point 42 ° C., boiling point 175 ° C.) was used instead of durene. Was prepared. This sinterable silver particle composition is pasty at 90 ° C. The sinterable silver particle composition was sandwiched between two polyimide sheets having a thickness of 130 μm, and pressed with a press machine heated to 90 ° C. so as to have a thickness of 300 μm. The polyimide sheet was taken out of the press machine, cooled, and peeled off from the polyimide sheet to obtain a sheet-like composition. This sheet-like composition was composed of pinacol in which silver particles were uniformly dispersed, was a hard solid at 25 ° C., and became a paste when heated to 80 ° C. That is, it was thermoplastic.
The shape retention of this sinterable silver particle composition and the adhesive strength of the solid metal by the sinterable silver particle composition were measured. The results are summarized in Table 1. From the above results, it can be seen that this sinterable silver particle composition has no separation of flaky silver particles and pinacol, has excellent shape retention, and is useful for firmly joining metal members. It was.

[実施例3]
実施例2において、ピナコール25部の代わりにピナコール22部とベンジルアルコール(和光純薬工業株式会社発売の試薬、融点−15℃、沸点205℃)3部を用いた以外は、実施例2と同様にして,焼結性銀粒子組成物を調製した。この焼結性銀粒子組成物は、90℃ではペースト状である。この焼結性銀粒子組成物を,厚さ130μmのポリイミドシート2枚の間に挟んで、90℃に加熱されたプレス機で300μm厚となるように加圧した。ポリイミドシートごとプレス機から取り出して冷却し、ポリイミドシートから引き剥がして、シート状組成物を得た。シート状組成物は、銀粒子とピナコールとベンジルアルコールが良く分散した均一で硬い固体状であった。この焼結性銀粒子組成物の形状保持性、および、焼結性銀粒子組成物による固形状金属の接着強度を測定し、結果を表1にまとめて示した。以上の結果より、この焼結性銀粒子組成物は、銀粒子とピナコールとベンジルアルコールの分離がなく、形状保持性に優れ、しかも、金属製部材を強固に接合するのに有用なことがわかった。
[Example 3]
In Example 2, 22 parts of pinacol and 3 parts of benzyl alcohol (reagent sold by Wako Pure Chemical Industries, Ltd., melting point: -15 ° C, boiling point: 205 ° C) were used in place of 25 parts of pinacol. Thus, a sinterable silver particle composition was prepared. This sinterable silver particle composition is pasty at 90 ° C. The sinterable silver particle composition was sandwiched between two 130 μm-thick polyimide sheets and pressed to a thickness of 300 μm with a press machine heated to 90 ° C. The polyimide sheet was taken out of the press machine, cooled, and peeled off from the polyimide sheet to obtain a sheet-like composition. The sheet-like composition was a uniform and hard solid in which silver particles, pinacol and benzyl alcohol were well dispersed. The shape retention of this sinterable silver particle composition and the adhesive strength of the solid metal by the sinterable silver particle composition were measured. The results are summarized in Table 1. From the above results, it was found that this sinterable silver particle composition has no separation of silver particles, pinacol and benzyl alcohol, has excellent shape retention, and is useful for strongly joining metal members. It was.

[比較例1]
実施例1において、分散媒としてデュレンの代わりに、ウンデカン(和光純薬工業株式会社発売の試薬、融点−26℃、沸点196℃)を用いた以外は、実施例1と同様にして、焼結性銀粒子組成物を調製した。この焼結性銀粒子組成物は、25℃でも流動性のあるペースト状であり、シート状に成型することはできなかった。この焼結性銀粒子組成物の形状保持性、および、焼結性銀粒子組成物による固形状金属の接着強度を測定し、結果を表1にまとめて示した。
[Comparative Example 1]
In Example 1, sintering was carried out in the same manner as in Example 1 except that undecane (a reagent sold by Wako Pure Chemical Industries, Ltd., melting point -26 ° C., boiling point 196 ° C.) was used instead of durene as the dispersion medium. Silver particle composition was prepared. This sinterable silver particle composition was in a paste form having fluidity even at 25 ° C., and could not be formed into a sheet. The shape retention of this sinterable silver particle composition and the adhesive strength of the solid metal by the sinterable silver particle composition were measured. The results are summarized in Table 1.

[比較例2]
市販の,還元法で製造された銀粒子をフレーク化した,1次粒子の平均粒径が3.0μm(レーザー回折法により測定)であるフレーク状の銀粒子(0.5重量%のステアリン酸で銀表面が被覆されており、この銀粒子は撥水性を有する)100部に、分散媒としてエチレングリコール(和光純薬工業株式会社発売の試薬、誘電率39.0、融点−13℃、沸点198℃)15部を添加し、回転式混練機を用いて均一に混合することにより、ペースト状銀粒子組成物を調製した。
この焼結性銀粒子組成物は、25℃でも流動性のあるペースト状であり、シート状に成型することはできなかった。この焼結性銀粒子組成物の形状保持性、および、焼結性銀粒子組成物による固形状金属の接着強度を測定し、結果を表1にまとめて示した。
[Comparative Example 2]
Flaked silver particles (0.5% by weight of stearic acid) having an average primary particle size of 3.0 μm (measured by laser diffraction method) obtained by flaking commercially available silver particles produced by a reduction method The silver surface is coated with 100 parts of this silver particle having water repellency, and ethylene glycol as a dispersion medium (reagent sold by Wako Pure Chemical Industries, Ltd., dielectric constant 39.0, melting point −13 ° C., boiling point) A paste-like silver particle composition was prepared by adding 15 parts at 198 ° C. and mixing uniformly using a rotary kneader.
This sinterable silver particle composition was in a paste form having fluidity even at 25 ° C., and could not be formed into a sheet. The shape retention of this sinterable silver particle composition and the adhesive strength of the solid metal by the sinterable silver particle composition were measured. The results are summarized in Table 1.

Figure 0004247800
Figure 0004247800

本発明の焼結性金属粒子組成物は、焼結性金属粒子と分散媒の分離がなく、また、形状保持性に優れているため、コンデンサ,抵抗,ダイオード,メモリ,演算素子(CPU)等のチップ部品を精度良く基板へ接合するのに有用である。 Since the sinterable metal particle composition of the present invention does not separate the sinterable metal particles and the dispersion medium and has excellent shape retention, a capacitor, resistor, diode, memory, arithmetic element (CPU), etc. This is useful for accurately bonding the chip component to the substrate.

Claims (4)

(A) 平均粒径が0.001〜50μmである焼結性金属粒子100重量部と、(B)常温で固体状であり,金属粒子(A)の焼結温度以下の温度で溶融し揮発する分散媒3〜100重量部とからなり、常温または加熱下で可塑性を有することを特徴とする、焼結性金属粒子組成物。(A) 100 parts by weight of sinterable metal particles having an average particle diameter of 0.001 to 50 μm, and (B) solid at normal temperature and melted and volatilized at a temperature lower than the sintering temperature of metal particles (A) A sinterable metal particle composition comprising 3 to 100 parts by weight of a dispersion medium that has a plasticity at room temperature or under heating. (A) 平均粒径が0.001〜50μmである焼結性金属粒子100重量部と、(B)常温で固体状であり,金属粒子(A)の焼結温度以下の温度で溶融し揮発する分散媒3〜100重量部とを、分散媒(B)の融点以上の温度で混合してペースト状とし、常温に冷却することを特徴とする、請求項1記載の焼結性金属粒子組成物の製造方法。(A) 100 parts by weight of sinterable metal particles having an average particle diameter of 0.001 to 50 μm, and (B) solid at normal temperature and melted and volatilized at a temperature lower than the sintering temperature of metal particles (A) The sinterable metal particle composition according to claim 1, wherein 3 to 100 parts by weight of the dispersion medium to be mixed is pasted at a temperature equal to or higher than the melting point of the dispersion medium (B) and cooled to room temperature. Manufacturing method. 請求項1記載の焼結性金属粒子組成物からなりシート状であることを特徴とする、金属製部材の接合剤。It consists of a sinterable metal particle composition of Claim 1, and is a sheet form, The joining agent of metal members characterized by the above-mentioned. 請求項1記載の焼結性金属粒子組成物または請求項3記載の接合剤を,複数の金属製部材間に介在させ、分散媒(B)の融点以上の温度に加熱して分散媒(B)を揮散させ、加熱により,加圧しつつ加熱により,加圧しつつ超音波振動印加により,または,加圧,加熱しつつ超音波振動印加により、金属粒子(A)同士を焼結させて複数の金属製部材同士を接合することを特徴とする、金属製部材の接合方法。The sinterable metal particle composition according to claim 1 or the bonding agent according to claim 3 is interposed between a plurality of metal members and heated to a temperature equal to or higher than the melting point of the dispersion medium (B). ) Is volatilized, heated, pressurized and heated, pressurized and applied with ultrasonic vibration, or pressurized and heated and applied with ultrasonic vibration, and the metal particles (A) are sintered together, A method for joining metal members, comprising joining metal members together.
JP2008528272A 2006-11-29 2007-03-20 Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method Active JP4247800B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006322505 2006-11-29
JP2006322505 2006-11-29
PCT/JP2007/000277 WO2008065728A1 (en) 2006-11-29 2007-03-20 Sintering metal particle composition having plasticity, method of producing the same, bonding agent and bonding method

Publications (2)

Publication Number Publication Date
JP4247800B2 true JP4247800B2 (en) 2009-04-02
JPWO2008065728A1 JPWO2008065728A1 (en) 2010-03-04

Family

ID=39467532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008528272A Active JP4247800B2 (en) 2006-11-29 2007-03-20 Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method

Country Status (3)

Country Link
JP (1) JP4247800B2 (en)
TW (1) TW200822990A (en)
WO (1) WO2008065728A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131095A1 (en) 2017-01-11 2018-07-19 日立化成株式会社 Copper paste for pressureless bonding, bonded body and semiconductor device
WO2023282229A1 (en) 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Metal paste for bonding, and bonded body and method for producing same
WO2023282235A1 (en) 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Metal paste for joining, joint, and manufacturing method therefor

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011021255A (en) * 2009-07-16 2011-02-03 Applied Nanoparticle Laboratory Corp Three-metallic-component type composite nanometallic paste, method of bonding, and electronic component
JPWO2011007442A1 (en) * 2009-07-16 2012-12-20 株式会社応用ナノ粒子研究所 Two kinds of metal component type composite nano metal paste, bonding method and electronic component
JP4795483B1 (en) * 2010-04-12 2011-10-19 ニホンハンダ株式会社 Method for manufacturing metal member assembly and metal member assembly
MY160373A (en) * 2010-07-21 2017-03-15 Semiconductor Components Ind Llc Bonding structure and method
KR20230074824A (en) 2010-11-03 2023-05-31 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same
KR20130099998A (en) 2010-11-08 2013-09-06 나믹스 가부시끼가이샤 Metal particles and manufacturing method for same
US9221130B2 (en) 2010-12-17 2015-12-29 Furukawa Electric Co., Ltd. Material for thermal bonding, coating material for thermal bonding, coating, and electronic component bonding method
JP5830302B2 (en) * 2011-08-11 2015-12-09 古河電気工業株式会社 Heat bonding material, heat bonding sheet, and heat bonding molded body
JP6087425B2 (en) * 2013-05-08 2017-03-01 国立大学法人大阪大学 Joining method
JP6918445B2 (en) * 2016-06-24 2021-08-11 日東電工株式会社 Heat-bonding sheet and heat-bonding sheet with dicing tape
JP6864505B2 (en) 2016-06-24 2021-04-28 日東電工株式会社 Heat-bonding sheet and heat-bonding sheet with dicing tape
JP6858519B2 (en) * 2016-09-21 2021-04-14 日東電工株式会社 Sheet for heat bonding and sheet for heat bonding with dicing tape
US20200048504A1 (en) * 2017-03-29 2020-02-13 Nitto Denko Corporation Thermal-bonding sheet and thermal-bonding sheet-attached dicing tape
WO2019092960A1 (en) 2017-11-13 2019-05-16 日東電工株式会社 Composition for sinter bonding, sheet for sinter bonding, and dicing tape having sheet for sinter bonding
WO2019092959A1 (en) 2017-11-13 2019-05-16 日東電工株式会社 Composition for sinter bonding, sheet for sinter bonding, and dicing tape with sheet for sinter bonding
WO2019208071A1 (en) 2018-04-27 2019-10-31 日東電工株式会社 Manufacturing method for semiconductor device
JP7143156B2 (en) 2018-04-27 2022-09-28 日東電工株式会社 Semiconductor device manufacturing method
JP7228577B2 (en) 2018-04-27 2023-02-24 日東電工株式会社 Semiconductor device manufacturing method
JP7084228B2 (en) 2018-06-26 2022-06-14 日東電工株式会社 Semiconductor device manufacturing method
JPWO2022138455A1 (en) * 2020-12-25 2022-06-30
KR20230123475A (en) * 2020-12-25 2023-08-23 가부시끼가이샤 레조낙 Film adhesive and its manufacturing method, dicing die-bonding integrated film and its manufacturing method, and semiconductor device and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254792A (en) * 1987-04-13 1988-10-21 古河電気工業株式会社 Method of mounting component
JP2005205696A (en) * 2004-01-21 2005-08-04 Ebara Corp Joining article
JP4347381B2 (en) * 2005-05-25 2009-10-21 ニホンハンダ株式会社 Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131095A1 (en) 2017-01-11 2018-07-19 日立化成株式会社 Copper paste for pressureless bonding, bonded body and semiconductor device
KR20190105610A (en) 2017-01-11 2019-09-17 히타치가세이가부시끼가이샤 Copper pastes, assemblies and semiconductor devices for pressureless bonding
US10930612B2 (en) 2017-01-11 2021-02-23 Showa Denko Materials Co., Ltd. Copper paste for pressureless bonding, bonded body and semiconductor device
US11532588B2 (en) 2017-01-11 2022-12-20 Showa Denko Materials Co., Ltd. Copper paste for pressureless bonding, bonded body and semiconductor device
WO2023282229A1 (en) 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Metal paste for bonding, and bonded body and method for producing same
WO2023282235A1 (en) 2021-07-06 2023-01-12 昭和電工マテリアルズ株式会社 Metal paste for joining, joint, and manufacturing method therefor
KR20240031329A (en) 2021-07-06 2024-03-07 가부시끼가이샤 레조낙 Metal paste for joining, joined body, and method of manufacturing the same

Also Published As

Publication number Publication date
WO2008065728A1 (en) 2008-06-05
TW200822990A (en) 2008-06-01
JPWO2008065728A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4247800B2 (en) Sinterable metal particle composition having plasticity, its production method, bonding agent and bonding method
JP4247801B2 (en) Paste-like metal particle composition and joining method
JP4362742B2 (en) Method for solidifying paste-like metal particle composition, method for joining metal members, and method for producing printed wiring board
JPWO2007034833A1 (en) Paste-like silver particle composition, method for producing solid silver, solid silver, joining method, and method for producing printed wiring board
JP5940782B2 (en) Use of aliphatic hydrocarbons and paraffins as solvents in sintered silver pastes
JP4347381B2 (en) Paste silver composition for adhesion of metal-based adherend, method for producing the same, and method for bonding metal-based adherend
JP4470193B2 (en) Method for producing heat-sinterable silver particles, method for producing solid silver, method for joining metal members, method for producing printed wiring board, and method for producing bumps for electrical circuit connection
TWI628256B (en) Metal paste and use thereof for the connecting of components
JP5611537B2 (en) Conductive bonding material, bonding method using the same, and semiconductor device bonded thereby
JP4795483B1 (en) Method for manufacturing metal member assembly and metal member assembly
CN109070206A (en) The engagement manufacturing method of copper thickener, the manufacturing method of conjugant and semiconductor device
EP3041627A1 (en) Metal sintering film compositions
JP6900148B2 (en) Silver paste and semiconductor devices using it
JP2012052198A (en) Paste-like silver particle composition, method for manufacturing metallic member joined body, and metallic member joined body
JP2013216919A (en) Method for manufacturing heat-sinterable silver particle, paste-like silver particle composition, method for manufacturing solid silver, method for joining metal members, method for manufacturing printed wiring board, and method for manufacturing electrical circuit connection bump
JP6312858B2 (en) Metal paste and its use for joining components
JP2010248617A (en) Porous silver sheet, method of manufacturing metal member joined body, metal member joined body, method of manufacturing bump for connecting electric circuit, and bump for connecting electric circuit
WO2022009754A1 (en) Bonding composition and formulation method for bonding composition
JP6556302B1 (en) Paste-like silver particle composition, method for producing metal member assembly, and method for producing composite of sintered porous silver particle and cured resin
CN110036450B (en) Conductive bonding material and method for manufacturing semiconductor device
JP6624620B1 (en) Paste-like silver particle composition, method for producing metal member joined body, and metal member joined body
JP2006111807A (en) Electronic part and method for producing the same
JP2023038748A (en) Heated bonding material stuck with bond essentially consisting of metal nanoparticle and second metal particle, and electric apparatus bonding method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4247800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250