JP4246565B2 - Manufacturing method of magnetic encoder - Google Patents

Manufacturing method of magnetic encoder Download PDF

Info

Publication number
JP4246565B2
JP4246565B2 JP2003279563A JP2003279563A JP4246565B2 JP 4246565 B2 JP4246565 B2 JP 4246565B2 JP 2003279563 A JP2003279563 A JP 2003279563A JP 2003279563 A JP2003279563 A JP 2003279563A JP 4246565 B2 JP4246565 B2 JP 4246565B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic encoder
sintered body
manufacturing
seal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003279563A
Other languages
Japanese (ja)
Other versions
JP2005043294A (en
Inventor
達雄 中島
晃也 大平
有人 松井
和豊 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2003279563A priority Critical patent/JP4246565B2/en
Publication of JP2005043294A publication Critical patent/JP2005043294A/en
Application granted granted Critical
Publication of JP4246565B2 publication Critical patent/JP4246565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7869Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward
    • F16C33/7879Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring
    • F16C33/7883Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted with a cylindrical portion to the inner surface of the outer race and having a radial portion extending inward with a further sealing ring mounted to the inner race and of generally L-shape, the two sealing rings defining a sealing with box-shaped cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

この発明は、車輪用軸受等の相対回転する軸受部の回転検出装置等に用いられる磁気エンコーダの製造方法に関し、例えば自動車のアンチロックブレーキシステムにおける前後の車輪回転数を検出する回転検出装置に装着されるベアリングシールの構成部品とされる磁気エンコーダの製造方法に関する。 This invention relates to a method of manufacturing a magnetic encoder employed in the rotation detecting device such as a bearing portion for rotation relative such as wheel bearings, for example, the rotation detecting device for detecting a wheel rotational speeds of the front and rear of an automobile anti-lock braking system The present invention relates to a method of manufacturing a magnetic encoder that is a component of a bearing seal to be mounted.

従来、自動車のスキッドを防止するためのアンチスキッド用回転検出装置として、次のような構造が多く用いられている。すなわち、前記回転検出装置は歯付ローターと感知センサからなっており、軸受を密封するシール装置よりそれぞれ離間させて配置し、一つの独立した回転検出装置を構成しているものが一般的である。このような従来例は、回転軸に嵌合された歯付ローターを、ナックルに取付られた回転検出センサで感知検出する構造を持ち、使われている軸受は、その側部に独立して設けられたシール装置によって、水分あるいは異物の侵入から守られる。   Conventionally, the following structure is often used as an anti-skid rotation detection device for preventing automobile skid. That is, the rotation detection device is composed of a toothed rotor and a sensing sensor, and is generally arranged so as to be separated from the seal device for sealing the bearing and constitute one independent rotation detection device. . Such a conventional example has a structure in which a toothed rotor fitted to a rotating shaft is sensed and detected by a rotation detection sensor attached to a knuckle, and a bearing used is provided independently on the side thereof. Protected against intrusion of moisture or foreign matter by the sealed device.

その他の例として特許文献1には、回転検出装置の装着スペースを削減せしめ感知性能を飛躍的に向上させることを目的として、車輪回転検出のための回転検出装置を有したベアリングシールにおいて、そこに使用するスリンガーの径方向に磁性粉の混入された弾性部材を周状に加硫成形接着し、そこに交互に磁極を配置した構造が示されている。   As another example, Patent Document 1 discloses a bearing seal having a rotation detection device for detecting wheel rotation for the purpose of reducing the mounting space of the rotation detection device and dramatically improving the sensing performance. A structure is shown in which an elastic member mixed with magnetic powder is circumferentially vulcanized and bonded in the radial direction of a slinger to be used, and magnetic poles are alternately arranged there.

また、特許文献2には、軸方向の寸法を小さくし、回転部材と固定部材との間の密閉度を良好にし、容易に取付け可能にすることを目的として、回転部材と固定部材との間がシールされ、この回転部材に回転ディスクが取付けられ、その回転ディスクに多極化されたコーダが取付けられたコーダ内蔵密閉構造としたものが示されている。使用するコーダは、磁性粒子を添加したエラストマーからなるものが用いられ、このコーダの側面を固定部材とほぼ同一平面としたシール手段とされている。   Further, in Patent Document 2, for the purpose of reducing the dimension in the axial direction, improving the degree of sealing between the rotating member and the fixed member, and enabling easy attachment, Is shown, and a rotary disk is attached to the rotary member, and a multi-polar coder is attached to the rotary disk. The coder used is made of an elastomer to which magnetic particles are added, and is a sealing means in which the side surface of the coder is substantially flush with the fixing member.

磁性粉や磁性粒子を含有するプラスチック(プラストマー)製のコーダは、やはり従来の射出成形や圧縮成形等のように、製品形状に適応した金型を使用して腑形したり、つまり金型どおりの形に成形したり、T形のダイスを用いた押出し成形やカレンダー成形のようなシート成形でシートを成形し打ち抜き加工などにより製品形状にして、その後、金属基板上に接着剤などで接着固定し製作してもよい。またこの場合、インサート成形のようにあらかじめ金型内に金属基板を組込んでおき、その後、溶融樹脂を流し入れて接着工程を同時加工して製作してもよい。   A coder made of plastic (plastomer) containing magnetic powder or magnetic particles can be formed into a bowl using a mold suitable for the product shape, like conventional injection molding or compression molding. Or by forming the sheet by extrusion molding using a T-shaped die or sheet molding such as calendering, and making it into a product shape by punching, etc., and then adhesively fixing on a metal substrate with an adhesive or the like You may make it. In this case, the metal substrate may be assembled in advance in the mold as in the case of insert molding, and then the molten resin may be poured and the bonding process may be simultaneously processed.

特許第2816783号公報Japanese Patent No. 2816783 特開平6−281018号公報JP-A-6-281018

しかし、上記の各磁気エンコーダは、いずれも多極磁石に磁性粉を含むものであり、一方、自動車用軸受等に使用される場合、路面の塩泥水に曝される厳しい環境下に置かれるため、長期使用の間の錆の発生が問題となる。特に、小型化のために磁性粉の含有量を多くした場合、錆が発生し易くなる。そこで、磁気エンコーダの多極磁石を防錆処理することを考えたが、適切な防錆材料の選定が難しい。
また、多極磁石が上記のような磁性粉を含有させたエラストマーやプラストマーでは、次に説明するように種々の課題があるため、本出願人は、多極磁石を、磁性粉と非磁性金属粉との混合粉を焼結させた焼結体としたものを提案した(特願2001−290300号)。このような多極磁石とした場合、その特性に応じた防錆処理が必要となる。
However, each of the above magnetic encoders contains a magnetic powder in a multipolar magnet. On the other hand, when used for a bearing for an automobile, etc., it is placed in a harsh environment exposed to road surface salty mud water. Rust generation during long-term use becomes a problem. In particular, when the content of magnetic powder is increased for miniaturization, rust is likely to occur. Then, although it thought about carrying out the antirust process of the multi-pole magnet of a magnetic encoder, selection of an appropriate antirust material is difficult.
In addition, the elastomer or plastomer in which the multipolar magnet contains the magnetic powder as described above has various problems as described below. The thing made into the sintered compact which sintered the powder mixed with powder was proposed (Japanese Patent Application No. 2001-290300). When such a multipolar magnet is used, a rust prevention treatment according to the characteristics is required.

さらに、本出願人は、多極磁石の表面に、クリヤー系の高防食性塗料の防錆皮膜を形成したものも提案した(特願2003−012710号)。しかし、多極磁石への変性エポキシ系クリヤー塗料のディップ方式やスプレー方式による塗装は、自動車用足回り部品に要求される耐食性能を満足するために、膜厚を厚くする必要があり、コストが高くなる場合がある。またマスキングが必要になることもあり、工程が煩雑になることがある。さらに、成膜面の膜厚均一性および平坦度を確保するため、成膜時の塗工および焼付などの工程管理幅が狭く、歩留りが悪い場合がある。また、焼結体である多極磁石を芯金に加締めた状態において、芯金と焼結体の間の耐食性を向上させるため、変性エポキシ系クリヤー塗料の含浸処理を施したり、焼結体単体塗装や封孔処理等を施すことがあるが、コストが高くなり経済的ではない。   Furthermore, the present applicant has also proposed that a rust preventive film of a clear high corrosion resistance paint is formed on the surface of a multipolar magnet (Japanese Patent Application No. 2003-012710). However, the application of a modified epoxy clear coating to a multipolar magnet by dipping or spraying requires that the film thickness be increased in order to satisfy the corrosion resistance required for undercar parts for automobiles. May be higher. Moreover, masking may be required, and the process may be complicated. Furthermore, in order to ensure the film thickness uniformity and flatness of the film formation surface, the process control width such as coating and baking during film formation is narrow, and the yield may be poor. In addition, in order to improve the corrosion resistance between the cored bar and the sintered body in a state where the multipolar magnet as a sintered body is crimped to the cored bar, an impregnation treatment with a modified epoxy clear paint is performed, or the sintered body Although single coating or sealing treatment may be performed, the cost increases and is not economical.

この発明の目的は、耐食性に優れ、長期の使用,厳しい環境下の使用においても錆の発生の問題がなく、かつ生産性に優れ、低コスト化が図れる磁気エンコーダを製造することができる磁気エンコーダの製造方法を提供することである。 The purpose of this invention, a magnetic excellent corrosion resistance, long-term use of, there is no problem of rusting even in the use of harsh environments, and excellent in productivity, it is possible to manufacture a magnetic encoder that cost can be reduced Ru der to provide a production method of the encoder.

この発明の磁気エンコーダの製造方法は、円周方向に交互に磁極を形成した多極磁石と、この多極磁石を支持する芯金とを備え、上記多極磁石が磁性粉と非磁性金属粉との混合粉を焼結させた焼結体である磁気エンコーダを製造する方法であって、上記焼結体と芯金との少なくとも一方に、これら焼結体と芯金との接触面において電着塗料侵入用の溝を設け、上記多極磁石を上記芯金の加締によってこの芯金に固定し、この焼結体を芯金に固定した焼結体芯金一体品に防食被膜を電着塗装で行い、この防食皮膜の電着塗装は、水溶性塗料中に浸漬した焼結体芯金一体品に電流を流し、電気泳動によって電気化学的に焼結体芯金一体品の表面に防食皮膜を施す方法であり、この電着塗装の工程で、前記溝内に前記水溶性電着塗料を電気泳動によって侵入させ、その後、乾燥・焼付け工程によって前記焼結体と芯金とを電着塗料で接着させることを特徴とするこの明細書で言う「加締」とは、加圧力を加えて塑性変形させることによって締め付け固定する処理全般を示し、曲げやステーキング等による締め付けを含む。 The method of manufacturing a magnetic encoder of the present invention, a multi-pole magnet formed with magnetic poles alternately in the circumferential direction, e Bei a core metal for supporting the multi-pole magnet, the multi-pole magnet the magnetic powder and the non-magnetic metal A method of manufacturing a magnetic encoder , which is a sintered body obtained by sintering powder mixed with powder, on at least one of the sintered body and the core metal, on the contact surface between the sintered body and the core metal A groove for electrodeposition coating penetration is provided, the multipolar magnet is fixed to the core metal by caulking the core metal, and an anticorrosive coating is applied to the sintered core metal integrated product in which the sintered body is fixed to the core metal. This anticorrosion coating is performed by electrodeposition coating. The surface of the sintered cored bar integrated product is electrochemically electrophoresed by applying current to the sintered cored bar integrated product immersed in water-soluble paint. In this electrodeposition coating process, the water-soluble electrodeposition paint is applied to the grooves by electrophoresis. Infested Te, then characterized by adhering said sintered body and the core in electrodeposition coating by drying and baking step. The term “clamping” as used in this specification refers to the entire process of clamping and fixing by applying plastic pressure and plastic deformation, and includes clamping by bending, staking, or the like.

この構成によると、焼結体である多極磁石を芯金に加締によって固定した焼結体芯金一体品に防食用の表面処理を施したため、耐食性に優れたものとでき、長期の使用,厳しい環境下の使用においても錆の発生の問題のない磁気エンコーダとなる。焼結体芯金一体品の状態で表面処理を施すため、個別に表面処理を施す場合に比べて工程が少なく、生産性に優れ、コスト低下が図れる。   According to this configuration, the sintered cored bar integrated product, in which the sintered multi-pole magnet is fixed to the cored bar by caulking, has been subjected to anticorrosion surface treatment. Therefore, the magnetic encoder is free from the problem of rust even when used in harsh environments. Since the surface treatment is performed in the state of a sintered metal core integrated product, the number of processes is fewer than in the case where the surface treatment is individually performed, the productivity is excellent, and the cost can be reduced.

着塗装はコーティング方式の塗装よりもつきまわり性が良いことから、上記焼結体芯金一体品の全表面を塗装でき、そのため焼結体からなる多極磁石全体の耐食性を向上させることができる。また、電着塗装では、焼結体(多極磁石)と芯金の隙間に塗料が入り込み易いので、接着効果が得られ、加締と接着の両方の効果により多極磁石を芯金に強固に保持させることができる。例えば、加締が緩くても、上記接着効果で芯金からの多極磁石の分離を防ぐことができ、製品としての信頼性が向上する。さらに、電着塗装は、コーティング方式や含浸方式と比べて、均一な塗膜を形成できるので、製品としての磁気エンコーダの寸法管理を容易にできる。 Since electrodeposition coating has better throwing power than coating-type coating, the entire surface of the sintered cored bar can be painted, which improves the corrosion resistance of the entire multi-pole magnet made of sintered body. it can. Also, in electrodeposition coating, the paint can easily enter the gap between the sintered body (multipolar magnet) and the cored bar, so an adhesion effect is obtained, and the multipolar magnet is firmly attached to the cored bar by both the caulking and bonding effects. Can be held. For example, even if caulking is loose, the adhesive effect can prevent the multipolar magnet from being separated from the cored bar, thereby improving the reliability of the product. Furthermore, since the electrodeposition coating can form a uniform coating film as compared with the coating method and the impregnation method, the size control of the magnetic encoder as a product can be easily performed.

電着塗装としては、焼結体芯金一体品をプラス極にするアニオンタイプと、マイナス極にするカチオンタイプの2つがあるが、自動車部品等のように耐食性が強く要望される場合は、カチオンタイプの電着塗装がより好ましい。   There are two types of electrodeposition coating: an anion type that makes the sintered core metal integrated product a positive electrode and a cation type that makes the negative electrode a negative electrode. A type of electrodeposition coating is more preferred.

た、上記のように、上記焼結体と芯金との少なくとも一方に、これら焼結体と芯金との接触面において電着塗料侵入用の溝を設ける。このように溝を設けた場合、焼結体と芯金とを加締によって固定し、その後に電着を行う工程において、焼結体と芯金との間に形成された溝の中に、電着塗料が電気泳動によって侵入し、その後、乾燥・焼き付け工程によって焼結体と芯金とが接着されることになり、焼結体と芯金の密着性がより向上する。 Also, as described above, at least one of the above sintered body and the core, providing a groove for electrodeposition paint penetration at a contact surface between these sintered body and the core. When the groove is provided in this way, in the step of fixing the sintered body and the cored bar by caulking, and then performing electrodeposition, in the groove formed between the sintered body and the cored bar, The electrodeposition paint penetrates by electrophoresis, and then the sintered body and the core metal are bonded by a drying and baking process, and the adhesion between the sintered body and the core metal is further improved.

上記磁性粉は、サマリウム系磁性粉であっても良く、またネオジウム系磁性粉であっても良い。これらサマリウム系磁性粉やネオジウム系磁性粉を用いると、強い磁力を得ることができる。サマリウム系磁性粉としては、サマリウム鉄(SmFeN)系磁性粉が、またネオジウム系磁性粉としてはネオジウム鉄(NdFeB)系磁性粉が用いられる。上記磁性粉は、この他に、マンガンアルミ(MnAl)ガスアトマイズ粉であっても良い。   The magnetic powder may be a samarium-based magnetic powder or a neodymium-based magnetic powder. When these samarium magnetic powder and neodymium magnetic powder are used, a strong magnetic force can be obtained. As the samarium magnetic powder, samarium iron (SmFeN) magnetic powder is used, and as the neodymium magnetic powder, neodymium iron (NdFeB) magnetic powder is used. In addition, the magnetic powder may be manganese aluminum (MnAl) gas atomized powder.

上記非磁性金属粉は、スズ粉であっても良い。磁性粉がフェライト粉やサマリウム系磁性粉やネオジウム系磁性粉である場合に、非磁性金属粉にスズ粉を用いても良い。   The nonmagnetic metal powder may be tin powder. When the magnetic powder is ferrite powder, samarium-based magnetic powder, or neodymium-based magnetic powder, tin powder may be used as the non-magnetic metal powder.

上記混合粉は2種以上の磁性粉を含むものであっても良く、また2種以上の非磁性金属粉を含むものであっても良い。また、上記混合粉は、2種以上の磁性粉を含み、かつ2種以上の非磁性金属粉を含むものであっても良い。2種以上の以上の磁性粉または2種以上の金属粉を含むものとした場合は、任意に複数種の粉を混合することで所望の特性を得ることができる。例えばフェライト粉だけでは磁力が足りない場合に、フェライト粉に希土類系磁性材料であるサマリウム系磁性粉やネオジウム系磁性粉を必要量だけ混合し、磁力向上を図りつつ安価に製作することができる。   The mixed powder may contain two or more kinds of magnetic powders, or may contain two or more kinds of nonmagnetic metal powders. The mixed powder may contain two or more kinds of magnetic powders and may contain two or more kinds of nonmagnetic metal powders. When two or more kinds of magnetic powders or two or more kinds of metal powders are included, desired characteristics can be obtained by arbitrarily mixing a plurality of kinds of powders. For example, when the magnetic force is insufficient with only the ferrite powder, it is possible to manufacture the ferrite powder at a low cost while improving the magnetic force by mixing the samarium-based magnetic powder or the neodymium-based magnetic powder, which are rare earth-based magnetic materials, with a necessary amount.

この発明の磁気エンコーダの製造方法は、車輪用軸受に備えられる磁気エンコーダに適用できる。車輪用軸受は、一般に路面の環境下にさらされた状態となり、磁気エンコーダが塩泥水を被ることがあるが、磁気エンコーダを構成する焼結体芯金一体品の全体に防食性の表面処理が施されていることから、塩泥水により磁気エンコーダに錆が発生することの防止効果が高い。
また、磁気エンコーダとこれに対面させる磁気センサとの間に砂粒等の粒子が噛み込むことがあるが、この噛み込みに対して、次のように保護される。すなわち、磁性粉と非磁性金属粉とからなる焼結体の多極磁石の表面高度は、従来の磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダに比べて硬い。そのため、車輪回転検出のための磁気エンコーダを有した車輪用軸受において、車両走行中に回転側の多極磁石の表面と固定側の磁気センサの表面との間隙に、砂粒などの粒子が噛み込まれても、多極磁石の摩耗損傷に大幅な低減効果がある。
The method for manufacturing a magnetic encoder according to the present invention can be applied to a magnetic encoder provided in a wheel bearing. Wheel bearings are generally exposed to road conditions, and the magnetic encoder may be subject to salty mud water, but the entire sintered metal core that constitutes the magnetic encoder has an anticorrosive surface treatment. Therefore, the effect of preventing the magnetic encoder from rusting due to salt water is high.
Further, particles such as sand particles may be caught between the magnetic encoder and the magnetic sensor facing the magnetic encoder. The following protection is provided against this biting. That is, the surface height of the sintered multipolar magnet made of magnetic powder and non-magnetic metal powder is harder than that of an elastic member or elastomer coder containing conventional magnetic powder or magnetic particles. For this reason, in a wheel bearing having a magnetic encoder for detecting wheel rotation, particles such as sand particles get caught in the gap between the surface of the rotating multipolar magnet and the surface of the stationary magnetic sensor during vehicle running. Even if rare, it has a significant reduction effect on wear damage of multipolar magnets.

この発明の磁気エンコーダの製造方法は、車輪用軸受における、軸受空間をシールするシール装置の構成要素となる磁気エンコーダに適用しても良い。例えば、この車輪用軸受は、複列の転走面を内周面に形成した外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、これら両転走面間に介在させた複列の転走体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、上記外方部材と内方部材との間の環状空間を密封するシール装置を設けたものとされる。このシール装置の構成要素を磁気エンコーダとする。この場合に、磁気シール装置は、上記外方部材または内方部材のうちの回転側部材に嵌合された断面L字状の第1のシール板と、この第1のシール板に対向し、上記外方部材または内方部材のうちの固定側部材に嵌合した断面L字状の第2のシール板とからなり、上記第1のシール板の立板部に摺接するサイドリップ、および円筒部に摺接するラジアルリップが上記第2のシール板に固着され、上記第1のシール板が上記磁気エンコーダにおける芯金となり、その立板部に少なくとも一部を重ねて上記多極磁石が設けられたものであっても良い。 The magnetic encoder manufacturing method of the present invention may be applied to a magnetic encoder that is a component of a seal device for sealing a bearing space in a wheel bearing . For example, this wheel bearing includes an outer member in which double-row rolling surfaces are formed on the inner peripheral surface, an inner member in which a rolling surface opposite to the rolling surface of the outer member is formed, A wheel bearing comprising a double row rolling element interposed between the rolling surfaces and rotatably supporting the wheel with respect to the vehicle body, wherein the annular space between the outer member and the inner member It is assumed that a sealing device is provided for sealing. The component of this sealing device is a magnetic encoder. In this case, the magnetic seal device is opposed to the first seal plate having an L-shaped cross section fitted to the rotation-side member of the outer member or the inner member, and the first seal plate. A side lip that is slidably in contact with a standing plate portion of the first seal plate, and a cylinder, the second seal plate having an L-shaped cross section fitted to a fixed member of the outer member or the inner member A radial lip that is in sliding contact with the portion is fixed to the second seal plate, the first seal plate is a core metal in the magnetic encoder, and the multipole magnet is provided at least partially overlapping the standing plate portion. It may be.

この構成の車輪用軸受の場合、シール装置の構成要素を磁気エンコーダとしたため、部品点数を増やすことなく、よりコンパクトな構成で車輪の回転を検出することができる。また、このようにシール装置に磁気エンコーダを構成した場合、上記の路面環境下にさらされることによる磁気エンコーダと磁気センサ間の砂粒等の噛み込みが問題となるが、この噛み込みに対して、上記と同様に多極磁石の表面高度が硬いことにより、摩耗損傷の低減効果が得られる。防食用の表面処理による防食効果もある。また、この構成の場合、第2のシール板に固着されたサイドリップおよびラジアルリップが第1のシール板に摺接すること等により、優れたシール効果が得られる。   In the case of the wheel bearing of this configuration, since the component of the seal device is a magnetic encoder, the rotation of the wheel can be detected with a more compact configuration without increasing the number of parts. Further, when the magnetic encoder is configured in the sealing device in this way, there is a problem of biting of sand particles or the like between the magnetic encoder and the magnetic sensor due to exposure to the above road surface environment. As described above, since the surface height of the multipolar magnet is hard, an effect of reducing wear damage can be obtained. There is also an anti-corrosion effect by surface treatment for anti-corrosion. Further, in the case of this configuration, an excellent sealing effect can be obtained by the side lip and radial lip fixed to the second seal plate being in sliding contact with the first seal plate.

上記第1のシール板は、例えば断面概ね逆Z字状とされて、上記回転側部材に嵌合される嵌合側の円筒部と、立板部と、他円筒部とでなるものであっても良い。シール板が断面概ね逆Z字状であると、他円筒部を焼結体の加締固定に利用でき、焼結体の加締固定がより容易に行える。   The first seal plate has, for example, a substantially inverted Z-shaped cross section, and includes a fitting-side cylindrical portion, a standing plate portion, and another cylindrical portion that are fitted to the rotation-side member. May be. When the seal plate has a substantially inverted Z-shaped cross section, the other cylindrical portion can be used for caulking and fixing the sintered body, and the caulking and fixing of the sintered body can be performed more easily.

第1のシール板を上記の断面概ね逆Z字状または断面L字状とした場合に、次の各構成としても良い。ただし、外周側円筒部を用いるものは、断面概ね逆Z字状としたものだけに適用される。
・第1のシール板の立板部が、内周側部分と外周側部分とで互いに軸方向にずれた2段形状であっても良い。
・第1のシール板の立板部に、上記多極磁石を第1のシール板の外周側円筒部の加締によって固定しても良い。
・第1のシール板における外周側円筒部の周方向複数箇所に、内径側へ突出状態に塑性変形させた塑性変形部を設け、上記第1のシール板における立板部に重ねた多極磁石を、上記塑性変形部によって加締固定しても良い。
・第1のシール板の立板部に、上記多極磁石を、第1のシール板の外周部に設けた爪状突起の塑性変形によって固定しても良い。
When the first seal plate has a substantially inverted Z-shape or L-shape in cross section, the following configurations may be employed. However, what uses an outer peripheral side cylindrical part is applied only to what was made into the cross-section substantially reverse Z shape.
The upright plate portion of the first seal plate may have a two-stage shape in which the inner peripheral portion and the outer peripheral portion are displaced from each other in the axial direction.
-You may fix the said multipolar magnet to the standing-plate part of a 1st sealing board by crimping of the outer peripheral side cylindrical part of a 1st sealing board.
A multipolar magnet provided with plastic deformation portions plastically deformed in a protruding state toward the inner diameter side at a plurality of locations in the circumferential direction of the outer cylindrical portion of the first seal plate and superimposed on the standing plate portion of the first seal plate May be crimped and fixed by the plastic deformation portion.
-You may fix the said multipolar magnet to the standing-plate part of a 1st sealing board by the plastic deformation of the nail | claw-shaped protrusion provided in the outer peripheral part of the 1st sealing board.

この発明の磁気エンコーダの製造方法は、円周方向に交互に磁極を形成した多極磁石と、この多極磁石を支持する芯金とを備え、上記多極磁石が磁性粉と非磁性金属粉との混合粉を焼結させた焼結体である磁気エンコーダを製造する方法であって
上記焼結体と芯金との少なくとも一方に、これら焼結体と芯金との接触面において電着塗料侵入用の溝を設け、上記多極磁石を上記芯金の加締によってこの芯金に固定し、この焼結体を芯金に固定した焼結体芯金一体品に防食被膜を電着塗装で行い、この防食皮膜の電着塗装は、水溶性塗料中に浸漬した焼結体芯金一体品に電流を流し、電気泳動によって電気化学的に焼結体芯金一体品の表面に防食皮膜を施す方法であり、この電着塗装の工程で、前記溝内に前記水溶性電着塗料を電気泳動によって侵入させ、その後、乾燥・焼付け工程によって前記焼結体と芯金とを電着塗料で接着させるため、耐食性に優れ、長期の使用,厳しい環境下の使用においても錆の発生の問題がなく、かつ生産性に優れ、低コスト化が図れる磁気エンコーダを製造することができるという効果がある。上記電着塗装では、上記焼結体と芯金との少なくとも一方に、これら焼結体と芯金との接触面において電着塗料侵入用の溝を設け、前記溝内に前記水溶性電着塗料を電気泳動によって侵入させ、その後、乾燥・焼付け工程によって前記焼結体と芯金とを電着塗料で接着させるため、焼結体と芯金との密着性が向上する。
The method of manufacturing a magnetic encoder of the present invention, a multi-pole magnet formed with magnetic poles alternately in the circumferential direction, e Bei a core metal for supporting the multi-pole magnet, the multi-pole magnet the magnetic powder and the non-magnetic metal A method for producing a magnetic encoder which is a sintered body obtained by sintering powder mixed with powder ,
At least one of the sintered body and the cored bar is provided with a groove for intrusion of electrodeposition paint on the contact surface between the sintered body and the cored bar, and the multipolar magnet is attached to the cored bar by caulking the cored bar. An anticorrosion coating is applied by electrodeposition coating to a sintered body cored bar integrated product in which this sintered body is fixed to a core metal , and this anticorrosion coating electrodeposition coating is a sintered body immersed in a water-soluble paint. In this method, a current is passed through the cored bar product and an anticorrosive film is electrochemically applied to the surface of the sintered cored bar united product by electrophoresis. In this electrodeposition coating process, the water-soluble electrode is placed in the groove. Adhesive coating is infiltrated by electrophoresis, and then the sintered body and the metal core are bonded together by electrodeposition coating in a drying / baking process. Therefore, it has excellent corrosion resistance and can be used for long-term use and in harsh environments. It generates no problem, and excellent productivity, manufacturing a magnetic encoder cost can be reduced Effect there Ru that it can be. In the electrodeposition coating, at least one of the sintered body and the cored bar is provided with a groove for electrodeposition coating penetration at the contact surface between the sintered body and the cored bar, and the water-soluble electrodeposition is formed in the groove. Since the paint is infiltrated by electrophoresis, and then the sintered body and the core metal are adhered by the electrodeposition paint in the drying and baking process, the adhesion between the sintered body and the core metal is improved.

この発明の第1の実施形態を図1ないし図3と共に説明する。図1に示すように、この磁気エンコーダ10は、金属製の環状の芯金11と、この芯金11の表面に周方向に沿って設けられた多極磁石14とを備える。多極磁石14は周方向に多極に磁化され、交互に磁極N,Sが形成された部材であり、多極に磁化された磁気ディスクからなる。磁極N,Sは、ピッチ円直径PCD(図2)において、所定のピッチpとなるように形成されている。多極磁石14は磁性粉と非磁性金属粉との混合粉の圧粉体を焼結させた焼結体であり、この多極磁石14を上記芯金11の加締によってこの芯金11に固定する。この焼結体を芯金11に固定した焼結体芯金一体品21に、防食用の表面処理として防食皮膜22を施している。この磁気エンコーダ10は、回転部材(図示せず)に取付けられ、図3に示すように多極磁石14に磁気センサ15を対面させて回転検出に使用されるものであり、磁気エンコーダ10と磁気センサ15とで回転検出装置20が構成される。同図は、磁気エンコーダ10を軸受(図示せず)のシール装置5の構成要素とした応用例を示し、磁気エンコーダ10は、軸受の回転側の軌道輪に取付けられる。シール装置5は、磁気エンコーダ10と、固定側のシール部材9とで構成される。シール装置5の具体構成については後に説明する。   A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the magnetic encoder 10 includes a metal annular cored bar 11 and a multipolar magnet 14 provided on the surface of the cored bar 11 along the circumferential direction. The multipolar magnet 14 is a member that is magnetized in multiple poles in the circumferential direction and has magnetic poles N and S alternately formed, and is composed of a magnetic disk magnetized in multiple poles. The magnetic poles N and S are formed to have a predetermined pitch p in the pitch circle diameter PCD (FIG. 2). The multipolar magnet 14 is a sintered body obtained by sintering a green compact of powder mixed with magnetic powder and nonmagnetic metal powder. The multipolar magnet 14 is attached to the core metal 11 by crimping the core metal 11. Fix it. An anticorrosive coating 22 is applied as a surface treatment for anticorrosion to the sintered core metal integrated product 21 in which the sintered body is fixed to the metal core 11. The magnetic encoder 10 is attached to a rotating member (not shown), and is used for rotation detection with a magnetic sensor 15 facing a multipolar magnet 14 as shown in FIG. The rotation detection device 20 is configured with the sensor 15. This figure shows an application example in which the magnetic encoder 10 is a component of a seal device 5 for a bearing (not shown), and the magnetic encoder 10 is attached to a bearing ring on the rotation side of the bearing. The seal device 5 includes a magnetic encoder 10 and a fixed-side seal member 9. A specific configuration of the sealing device 5 will be described later.

多極磁石14に混入する磁性粉としては、バリウム系およびストロンチウム系などの等方性または異方性フェライト粉であっても良い。これらのフェライト粉は顆粒状粉体であっても、湿式異方性フェライトコアからなる粉砕粉であっても良い。この湿式異方性フェライトコアからなる粉砕粉を磁性粉とした場合、非磁性金属粉との混合粉を磁場中で成形された異方性のグリーン体とする必要がある。   The magnetic powder mixed in the multipolar magnet 14 may be isotropic or anisotropic ferrite powder such as barium-based and strontium-based. These ferrite powders may be granular powders or pulverized powders composed of a wet anisotropic ferrite core. When the pulverized powder made of this wet anisotropic ferrite core is used as a magnetic powder, it is necessary to use a mixed powder with a nonmagnetic metal powder as an anisotropic green body formed in a magnetic field.

上記磁性粉は、希土類系磁性材料であっても良い。例えば希土類系磁性材料であるサマリウム鉄(SmFeN)系磁性粉やネオジウム鉄(NdFeB)系磁性粉のそれぞれ単独磁性粉であっても良い。また、磁性粉はマンガンアルミ(MnAl)ガスアトマイズ粉であっても良い。   The magnetic powder may be a rare earth magnetic material. For example, samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder, which are rare earth magnetic materials, may be used alone. The magnetic powder may be manganese aluminum (MnAl) gas atomized powder.

また、上記磁性粉は、サマリウム鉄(SmFeN)系磁性粉、ネオジウム鉄(NdFeB)系磁性粉、およびマンガンアルミ(MnAl)ガスアトマイズ粉のいずれか2種以上を混合させたものであっても良い。例えば、上記磁性粉はサマリウム鉄(SmFeN)系磁性粉とネオジウム鉄(NdFeB)系磁性粉とを混合させたもの、マンガンアルミガスアトマイズ粉とサマリウム鉄系磁性粉とを混合させたもの、およびサマリウム鉄系磁性粉とネオジウム鉄系磁性粉とマンガンアルミガスアトマイズ粉とを混合させたもの、のいずれかであっても良い。例えば、フェライト粉だけでは磁力が足りない場合に、フェライト粉に希土類系磁性材料であるサマリウム鉄(SmFeN)系磁性粉や、ネオジウム鉄(NdFeB)系磁性粉を必要量だけ混合し、磁力向上を図りつつ安価に製作することもできる。   The magnetic powder may be a mixture of two or more of samarium iron (SmFeN) magnetic powder, neodymium iron (NdFeB) magnetic powder, and manganese aluminum (MnAl) gas atomized powder. For example, the magnetic powder is a mixture of samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder, a mixture of manganese aluminum gas atomized powder and samarium iron magnetic powder, and samarium iron. Any of a mixture of a system magnetic powder, a neodymium iron system magnetic powder, and a manganese aluminum gas atomized powder may be used. For example, when the magnetic force is insufficient with ferrite powder alone, the ferrite powder is mixed with the required amount of rare earth magnetic material samarium iron (SmFeN) magnetic powder or neodymium iron (NdFeB) magnetic powder to improve the magnetic force. It can also be manufactured at low cost.

多極磁石14を形成する非磁性金属粉には、スズ、銅、アルミ、ニッケル、亜鉛、タングステン、マンガンなどの粉体、または非磁性のステンレス系金属粉のいずれか単独(1種)の粉体、もしくは2種以上からなる混合した粉体、もしくは2種以上からなる合金粉末を使用することができる。   The non-magnetic metal powder forming the multipolar magnet 14 may be a powder of tin, copper, aluminum, nickel, zinc, tungsten, manganese, or a non-magnetic stainless steel metal powder alone (one type). Body, a mixed powder composed of two or more kinds, or an alloy powder composed of two or more kinds can be used.

芯金11の材質となる金属は、磁性体、特に強磁性体となる金属が好ましく、例えば磁性体でかつ防錆性を有する鋼板が用いられる。このような鋼板として、フェライト系のステンレス鋼板(JIS規格のSUS430系等)や、防錆処理された圧延鋼板等を用いることができる。   The metal that is the material of the core metal 11 is preferably a magnetic material, particularly a metal that is a ferromagnetic material. For example, a steel plate that is magnetic and has rust prevention properties is used. As such a steel plate, a ferritic stainless steel plate (JIS standard SUS430 series or the like), a rust-proof rolled steel plate, or the like can be used.

芯金11の形状は、種々の円環状の形状とできるが、多極磁石14を固定できる形状が好ましい。特に、加締固定や嵌合固定等の機械的な固定が行える形状が好ましい。加締固定の場合、芯金11は、例えば図1(B)に示すように、嵌合側となる内径側の円筒部11aと、その一端から外径側へ延びる立板部11bと、外径縁の他円筒部11cとでなる断面概ね逆Z字状の円環状とする。なお、芯金11は断面L字状のものとしても良く、その場合は図1(B)の芯金11において、他円筒部11cが省略された形状のものとされる。芯金11を断面L字状とした場合は、例えば爪部等を立板部11b等に設けて加締固定する。   The shape of the core metal 11 can be various annular shapes, but a shape capable of fixing the multipolar magnet 14 is preferable. In particular, a shape capable of performing mechanical fixing such as caulking and fitting fixing is preferable. In the case of caulking and fixing, for example, as shown in FIG. 1B, the core metal 11 includes an inner diameter side cylindrical portion 11a serving as a fitting side, an upright plate portion 11b extending from one end to the outer diameter side, The cross section formed by the other cylindrical portion 11c of the diameter edge is a substantially inverted Z-shaped annular shape. The cored bar 11 may have an L-shaped cross section, and in that case, the cored bar 11 in FIG. 1B has a shape in which the other cylindrical portion 11c is omitted. When the metal core 11 has an L-shaped cross section, for example, a claw portion or the like is provided on the upright plate portion 11b or the like and fixed by caulking.

図1(B)の芯金11において、円筒部11a、立板部11b、および他円筒部11cは、鋼板等の金属板から一体にプレス成形されたものである。立板部11bは平坦に形成されており、その平坦な立板部11bの表面に重ねて多極磁石14の未着磁の焼結体を組み込み、外周縁の他円筒部11cを加締めることで、芯金11の立板部11bに重なり状態に多極磁石14が固定されて、焼結体芯金一体品21とされる。上記他円筒部11cは、その断面における先端側部分または略全体が、加締部となる。また、この加締部は、芯金11の円周方向の全周にわたって延び、したがって円環状となっている。なお、多極磁石14の他円筒部11cにより固定される部分は、多極磁石14の被検出面となる表面よりも凹む凹み部14bとなっていて、これにより塑性変形部11caが多極磁石14の被検出面となる表面に突出しないように成されている。   In the cored bar 11 of FIG. 1B, the cylindrical portion 11a, the standing plate portion 11b, and the other cylindrical portion 11c are integrally press-formed from a metal plate such as a steel plate. The standing plate portion 11b is formed flat, and a non-magnetized sintered body of the multipolar magnet 14 is built on the surface of the flat standing plate portion 11b, and the other cylindrical portion 11c of the outer peripheral edge is crimped. Thus, the multipolar magnet 14 is fixed in an overlapping state on the standing plate portion 11 b of the core metal 11, and the sintered core metal integrated product 21 is obtained. In the other cylindrical portion 11c, a tip side portion or substantially the whole in the cross section serves as a crimped portion. Further, the caulking portion extends over the entire circumference of the core metal 11 and thus has an annular shape. In addition, the part fixed by the other cylindrical part 11c of the multipolar magnet 14 becomes the recessed part 14b dented rather than the surface used as the to-be-detected surface of the multipolar magnet 14, Thereby, the plastic deformation part 11ca becomes a multipolar magnet. 14 so as not to protrude from the surface to be detected.

加締固定は、上記のように全周に連続して行う他に、図4,図5に断面図および正面図で示すように行っても良い。この例では、芯金11を図1の例と同じく、内径側の円筒部11aと、その一端から外径側へ延びる立板部11bと、その外径縁の円筒状の他円筒部11cとでなる断面概ね逆Z字状の円環状としている。また、他円筒部11cにおける周方向の複数箇所に、ステーキング等によって、内径側へ突出状態に塑性変形させた塑性変形部11caを設け、その塑性変形部11caにより多極磁石14を芯金11の立板部11bに固定している。この例においても、多極磁石14の塑性変形部11caにより固定される部分は、多極磁石14の被検出面となる表面よりも凹む凹み部14bとなっていて、これにより塑性変形部11caが多極磁石14の被検出面となる表面に突出しないように成されている。凹み部14bは、外径側に至るに従って表面から背面側へ近づく傾斜面14bとされている。   The caulking and fixing may be performed as shown in the sectional view and the front view in FIGS. In this example, the cored bar 11 has a cylindrical portion 11a on the inner diameter side, a standing plate portion 11b extending from one end thereof to the outer diameter side, and a cylindrical other cylindrical portion 11c on the outer diameter edge, as in the example of FIG. The cross section is generally an inverted Z-shaped ring. In addition, a plastic deformation portion 11ca that is plastically deformed in a protruding state toward the inner diameter side by staking or the like is provided at a plurality of circumferential positions in the other cylindrical portion 11c, and the multipolar magnet 14 is attached to the core metal 11 by the plastic deformation portion 11ca. Are fixed to the standing plate portion 11b. Also in this example, the portion fixed by the plastic deformation portion 11ca of the multipolar magnet 14 is a dent portion 14b that is recessed from the surface of the multipolar magnet 14 that becomes the detection surface, whereby the plastic deformation portion 11ca is The multipolar magnet 14 is configured not to protrude from the surface to be detected. The recessed portion 14b is formed as an inclined surface 14b that approaches the rear surface side from the front surface as it reaches the outer diameter side.

図1および図4に示す各例において、芯金11は、図6のように、立板部bが、内周側部分11baと外周側部分11bbとで互いに軸方向にずれた2段形状を成すものとしても良い。図6において、図示は省略するが、多極磁石14は、図1の例と同様に立板部11bにおける他円筒部11cの突出側の面に配置される。   In each example shown in FIG. 1 and FIG. 4, the cored bar 11 has a two-stage shape in which the standing plate portion b is shifted in the axial direction between the inner peripheral portion 11 ba and the outer peripheral portion 11 bb as shown in FIG. 6. It can also be made. In FIG. 6, although not shown, the multipolar magnet 14 is disposed on the protruding side surface of the other cylindrical portion 11 c in the standing plate portion 11 b as in the example of FIG. 1.

さらに、図7に示すように、図1の例と同様に断面概ね逆Z字状とされた芯金11において、その他円筒部11cの端縁における円周方向複数箇所に舌片状の爪部11cbを設け、この舌片状爪部11cbを矢印のように内径側へ塑性変形させることにより、つまり折り曲げるように加締ることにより、多極磁石14を芯金11に固定しても良い。多極磁石14は、図1などの例と同様に立板部11bにおける他円筒部11cの突出側の面に配置される。この例においても、図6の例と同様に、立板部11bを2段形状としている。立板部11bを2段形状とした場合、多極磁石14の立板部11b側の側面形状は、図12(B)に示すように、立板部11bの2段形状に沿った側面形状としても良い。   Further, as shown in FIG. 7, in the metal core 11 having a substantially inverted Z-shaped cross section similar to the example of FIG. 1, tongue-like claw portions are provided at a plurality of circumferential positions on the edge of the other cylindrical portion 11c. The multipolar magnet 14 may be fixed to the metal core 11 by providing 11 cb and plastically deforming the tongue-like claw portion 11 cb toward the inner diameter side as shown by an arrow, that is, by crimping it so as to be bent. The multipolar magnet 14 is disposed on the protruding side surface of the other cylindrical portion 11c in the upright plate portion 11b as in the example of FIG. Also in this example, like the example of FIG. 6, the standing plate portion 11b has a two-stage shape. When the standing plate portion 11b has a two-stage shape, the side shape on the standing plate portion 11b side of the multipolar magnet 14 is a side shape along the two-step shape of the standing plate portion 11b as shown in FIG. It is also good.

上記各例のようにして、多極磁石14を芯金11に加締固定してなる焼結体芯金一体品21の表面に、電着法で防食皮膜22を施して磁気エンコーダ10が構成される。この場合の防食皮膜22の電着塗装は、水溶性塗料中に浸漬した焼結体芯金一体品21に電流を流し、電気泳動によって電気化学的に焼結体芯金一体品21の表面に防食皮膜22を施すものである。上記電着塗装は、大別して、焼結体芯金一体品21をプラス極にするアニオン電着塗装と、焼結体芯金一体品21をマイナス極にするカチオン電着塗装の2種類がある。上記エンコーダ10が車輪用軸受に装着するものである場合は、耐食性が要求されるため、カチオン電着塗装により防食皮膜22を施すのが好ましい。上記電着塗装により施される電着塗膜である防食皮膜22の含水率は約10%以下とし、乾燥・焼き付けを行って最終の皮膜を形成する。   As in each of the above examples, the magnetic encoder 10 is configured by applying the anticorrosion film 22 by the electrodeposition method on the surface of the sintered cored bar integrated product 21 formed by crimping and fixing the multipolar magnet 14 to the cored bar 11. Is done. In this case, the electrodeposition coating of the anticorrosion film 22 applies an electric current to the sintered cored bar integrated product 21 immersed in the water-soluble paint, and electrochemically applied to the surface of the sintered cored bar integrated product 21 by electrophoresis. The anticorrosion film 22 is applied. The electrodeposition coating is roughly classified into two types: anion electrodeposition coating in which the sintered core metal integrated product 21 is a positive electrode and cationic electrodeposition coating in which the sintered core metal integrated product 21 is a negative electrode. . When the encoder 10 is mounted on a wheel bearing, corrosion resistance is required, and therefore, the anticorrosion film 22 is preferably applied by cationic electrodeposition coating. The moisture content of the anticorrosion coating 22 which is an electrodeposition coating applied by the electrodeposition coating is about 10% or less, and drying and baking are performed to form a final coating.

上記電着塗装の特長は、溶剤塗装などに比べて均一膜厚性が良く、さらに、つきまわりも良いことから、凹凸の大きい製品でも全表面に均一に塗装処理できる。また、マスキング技術を用いれば、電着塗装とメッキの併用、或いは電着塗装の2回繰り返しにより2色塗装も簡単に行うことができる。このため、既存の変性エポキシ系クリヤー塗料をディッピング(浸漬)方式やスプレー(吹付け)方式で塗布するものでは比較的塗装が容易でない端面部分の塗工性が、上記電着塗装では大幅に向上する。また、上記電着塗装では、焼結体芯金一体品21における焼結体加締部および内径側端面部への電着塗料の電気泳動によるつきまわり、侵入により、塗料が焼結体(多極磁石14)と芯金11との間に接着剤として作用するため、既存の変性エポキシ系クリヤー塗料をディッピング(浸漬)方式やスプレー(吹付け)方式で塗布するものに比べて、焼結体(多極磁石14)と芯金11の密着性が大幅に向上する。   The characteristics of the above-mentioned electrodeposition coating are that the uniform film thickness is better than solvent coating, and the throwing power is good, so even products with large irregularities can be uniformly coated on the entire surface. If the masking technique is used, two-color coating can be easily performed by using electrodeposition coating and plating together or by repeating electrodeposition coating twice. For this reason, the coating performance of the end face part, which is not easy to paint with the existing modified epoxy clear coating applied by dipping (spraying) method or spraying (spraying) method, is greatly improved by the above electrodeposition coating. To do. Further, in the electrodeposition coating, the coating material is sintered in the sintered body cored product 21 due to the electrophoretic coating of the sintered body crimping portion and the inner diameter side end surface portion due to electrophoresis and penetration. Since it acts as an adhesive between the pole magnet 14) and the metal core 11, it is a sintered body compared with the case where an existing modified epoxy clear coating is applied by dipping (spraying) or spraying (spraying). Adhesion between the (multipolar magnet 14) and the cored bar 11 is greatly improved.

また、上記焼結体芯金一体品21における焼結体(多極磁石14)と芯金11の密着性を向上させるために、例えば図8や図9に示すように、焼結体(多極磁石14)の裏面(芯金11と接する面)に水溶性電着塗料の侵入を許容する溝23,24を有するものとしても良い。図8の例では、径方向に延びる複数本の放射状溝23を成形しており、図9の例では、複数本の放射状溝23と、焼結体(多極磁石14)と同心状で上記放射状溝23と交差するリング状溝24を成形している。   Further, in order to improve the adhesion between the sintered body (multipolar magnet 14) and the cored bar 11 in the sintered cored bar integrated product 21, for example, as shown in FIGS. It is good also as what has the groove | channels 23 and 24 which accept | permit the penetration | invasion of water-soluble electrodeposition coating material in the back surface (surface which contact | connects the metal core 11) of the pole magnet 14). In the example of FIG. 8, a plurality of radial grooves 23 extending in the radial direction are formed, and in the example of FIG. 9, the plurality of radial grooves 23 and the sintered body (multipolar magnet 14) are concentric with the above. A ring-shaped groove 24 intersecting with the radial groove 23 is formed.

このように、焼結体(多極磁石14)の裏面に溝23,24を成形することにより、上記電着塗装工程において、これらの溝23,24内に水溶性電着塗料が電気泳動によって侵入し、その後の乾燥・焼付け工程によって焼結体(多極磁石14)と芯金11とを電着塗料で接着させることができる。   Thus, by forming the grooves 23 and 24 on the back surface of the sintered body (multipolar magnet 14), the water-soluble electrodeposition paint is electrophoresed in the grooves 23 and 24 in the electrodeposition coating process. The sintered body (multipolar magnet 14) and the cored bar 11 can be adhered with an electrodeposition paint by intrusion and subsequent drying and baking processes.

なお、図8および図9では、焼結体(多極磁石14)の裏面に溝23,24を成形した場合を示したが、これに限らず、図10〜図12に示すように、芯金11の立板部11bまたは立板部11bから他円筒部11cにまたがって、水溶性電着塗料の侵入を許容する溝25,25A,26を形成しても良い。図10の例では、立板部11bの焼結体(多極磁石14)と接する面に径方向に延びる複数本の放射状溝25をプレス加工あるいは切削加工により形成している。図11の例では、立板部11bから他円筒部11cに跨がる複数本の放射状溝25Aをプレス加工あるいは切削加工により形成している。図12の例では、立板部11bに複数本の放射状溝25と、芯金11と同心状で上記放射状溝25と交差するリング状溝26を、プレス加工あるいは切削加工により形成している。   8 and 9 show the case where the grooves 23 and 24 are formed on the back surface of the sintered body (multipolar magnet 14). However, the present invention is not limited to this, as shown in FIGS. You may form the groove | channel 25,25A, 26 which accept | permits the penetration | invasion of water-soluble electrodeposition coating material from the standing plate part 11b or the standing plate part 11b of the gold | metal | money 11 to the other cylindrical part 11c. In the example of FIG. 10, a plurality of radial grooves 25 extending in the radial direction are formed by pressing or cutting on the surface of the standing plate portion 11 b that contacts the sintered body (multipolar magnet 14). In the example of FIG. 11, a plurality of radial grooves 25A extending from the standing plate portion 11b to the other cylindrical portion 11c are formed by pressing or cutting. In the example of FIG. 12, a plurality of radial grooves 25 and a ring-shaped groove 26 that is concentric with the core metal 11 and intersects the radial grooves 25 are formed in the standing plate portion 11 b by pressing or cutting.

この構成の磁気エンコーダ10は、図3と共に前述したように、多極磁石14に磁気センサ15を対面させて回転検出に使用される。磁気エンコーダ10を回転させると、多極磁石14の多極に磁化された各磁極N,Sの通過が磁気センサ15で検出され、パルスのかたちで回転が検出される。磁極N,Sのピッチp(図2)は細かく設定でき、例えばピッチpが1.5mm、ピッチ相互差±3%という精度を得ることもでき、これにより精度の高い回転検出が行える。ピッチ相互差は、磁気エンコーダ10から所定距離だけ離れた位置で検出される各磁極間の距離の差を目標ピッチに対する割合で示した値である。磁気エンコーダ10が図3のように軸受のシール装置5に応用されたものである場合、磁気エンコーダ10の取付けられた軸受の回転が検出されることになる。   As described above with reference to FIG. 3, the magnetic encoder 10 having this configuration is used for rotation detection with the magnetic sensor 15 facing the multipolar magnet 14. When the magnetic encoder 10 is rotated, the magnetic sensor 15 detects the passage of the magnetic poles N and S magnetized in the multipole of the multipolar magnet 14, and the rotation is detected in the form of pulses. The pitch p (FIG. 2) of the magnetic poles N and S can be set finely. For example, it is possible to obtain an accuracy that the pitch p is 1.5 mm and the pitch difference is ± 3%, thereby enabling highly accurate rotation detection. The pitch mutual difference is a value indicating a difference in distance between the magnetic poles detected at a position away from the magnetic encoder 10 by a predetermined distance as a ratio to the target pitch. When the magnetic encoder 10 is applied to the bearing seal device 5 as shown in FIG. 3, the rotation of the bearing to which the magnetic encoder 10 is attached is detected.

この磁気エンコーダ10は、焼結体である多極磁石14を芯金11に加締によって固定した焼結体芯金一体品21に防食用の表面処理を施したため、耐食性に優れたものとでき、長期の使用,厳しい環境下の使用においても錆の発生の問題のない磁気エンコーダとなる。例えば車輪用軸受のような錆の発生し易い環境下で使用することができる。   This magnetic encoder 10 has excellent corrosion resistance because the sintered cored bar integrated product 21 in which the multipolar magnet 14 as a sintered body is fixed to the cored bar 11 by caulking is subjected to a surface treatment for corrosion protection. It is a magnetic encoder that does not have the problem of rusting even in long-term use or in severe environments. For example, it can be used in an environment where rust is easily generated, such as a wheel bearing.

また、多極磁石14は、磁性粉の混入した焼結体からなるため、次に示すように、安定したセンシングの得られる磁力を確保しながら薄肉化できて、磁気エンコーダ10のコンパクト化が図れるうえ、耐摩耗性に優れ、また生産性にも優れたものとなる。   In addition, since the multipolar magnet 14 is made of a sintered body mixed with magnetic powder, the magnetic encoder 10 can be made thin while securing a magnetic force for obtaining stable sensing as shown below, and the magnetic encoder 10 can be made compact. In addition, it has excellent wear resistance and excellent productivity.

さらに、多極磁石14の表面高度は、従来の磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダに比べて硬い。そのため、車輪回転検出のための回転検出装置20に応用した場合に、車両走行中に回転側の多極磁石14の表面と固定側の磁気センサ15の表面の隙間に、砂粒などの粒子が噛み込まれても、多極磁石14の摩耗損傷が生じ難く、従来の弾性体製としたものに比べて、摩耗の大幅な低減効果がある。   Furthermore, the surface height of the multipolar magnet 14 is harder than that of a conventional elastic member or elastomer coder containing magnetic powder or magnetic particles. For this reason, when applied to the rotation detection device 20 for detecting wheel rotation, particles such as sand particles bite into the gap between the surface of the multipolar magnet 14 on the rotating side and the surface of the magnetic sensor 15 on the fixed side while the vehicle is running. Even if it is inserted, wear damage of the multipolar magnet 14 hardly occurs, and there is a significant reduction effect of wear as compared with a conventional elastic body.

この実施形態の特に特長的な利点をまとめると、次のとおりである。
・電着塗装は、コーティング方式の塗装よりも、つきまわり性が良いことから、製品全体を塗装できるので、焼結体(多極磁石14)全体の耐食性を向上できる。
・電着塗装は、コーティング方式の塗装よりも、つきまわり性が良いことから、焼結体(多極磁石14)と芯金11の隙間に入り込み易いので、接着効果があり、「加締」と「接着」の両方で焼結体と芯金を保持器できる。仮に、加締が緩くても接着効果で分離を防ぐことができるので、製品の信頼性が向上する。
・電着塗装は、コーティング方式と比べて、均一な塗膜を形成できるので、製品の寸法管理が容易にできる。
・焼結体(多極磁石14)または芯金(11)の少なくともいずれか一方に凹みを設けることで、焼結体と芯金の密着性を向上できる。
The particularly characteristic advantages of this embodiment are summarized as follows.
-Since electrodeposition coating has better throwing power than coating-type coating, the entire product can be painted, so that the corrosion resistance of the entire sintered body (multipolar magnet 14) can be improved.
・ Since electrodeposition coating has better throwing power than coating-type coating, it is easy to enter the gap between the sintered body (multi-pole magnet 14) and the cored bar 11. The sintered body and the metal core can be held by both “adhesion” and “adhesion”. Even if the caulking is loose, separation can be prevented by the adhesive effect, so that the reliability of the product is improved.
-Electrodeposition coating can form a uniform coating film compared to the coating method, making product dimensional control easier.
-The adhesiveness of a sintered compact and a core metal can be improved by providing a dent in at least any one of a sintered compact (multipolar magnet 14) or a core metal (11).

つぎに、上記電着塗装による防食皮膜22の耐食性能の試験結果を、表1と共に説明する。試験は、上記実施形態にかかる実施例1〜10、および比較例1〜10となる各サンプルにつき行った。上記サンプルには、焼結体の多極磁石14を構成する磁性粉として、サマリウム鉄(Sm−Fe−N)系磁性粉を用いたものと、ネオジウム鉄(Nd−Fe−B)系磁性粉を用いたものとを準備した。バインダはいずれもSnとした。いずれの磁性粉を用いたか、および配合比については、表1の中に示した。この配合割合で、φ54mm×φ66mm×1.5mmのグリーン体(未焼結圧粉体)を加圧プレスで成形し、大気中で1時間焼成した。各サンプルの焼結体(多極磁石14)および芯金11の形状は、表1中に図番で示す各図の形状である。実施例1〜10となる各サンプルでは、これらの焼結体芯金一体品21に上述した各種電着塗装を行い、防錆皮膜22を形成した。これに対して、比較例1〜10の各サンプルでは、エポキシコートやエポキシ含浸などの各種塗装を行った。   Next, the test results of the corrosion resistance performance of the anticorrosion film 22 by the electrodeposition coating will be described together with Table 1. The test was conducted for each sample to be Examples 1 to 10 and Comparative Examples 1 to 10 according to the above embodiment. In the above samples, as the magnetic powder constituting the sintered multi-pole magnet 14, samarium iron (Sm-Fe-N) magnetic powder and neodymium iron (Nd-Fe-B) magnetic powder are used. The one using was prepared. The binder was all Sn. Which magnetic powder was used and the blending ratio are shown in Table 1. With this blending ratio, a green body (unsintered green compact) of φ54 mm × φ66 mm × 1.5 mm was molded with a pressure press and fired in the air for 1 hour. The shapes of the sintered body (multipolar magnet 14) and the cored bar 11 of each sample are the shapes shown in FIG. In each sample used in Examples 1 to 10, the above-described various electrodeposition coatings were performed on these sintered cored bar integrated products 21 to form a rust preventive film 22. On the other hand, in each sample of Comparative Examples 1 to 10, various coatings such as epoxy coating and epoxy impregnation were performed.

これらの各サンプルに対して、それぞれ以下の試験を行った。
(1)各サンプルについて、55℃に加温したNaClを5%溶液中に24時間浸し、耐食性能を比較した。表1には耐食性に優れる順に、◎,○,△,×のマークを示した。
(2)防錆処理品である上記各サンプルを製品として使用する場合は、焼結体(多極磁石14)および芯金11の表面の平坦度が重要であり、平坦度が悪いと、回転検出装置20の検出感度が悪くなる可能性があり、好ましくない。この観点から、上記表面形状を測定し、その測定結果である表面粗さRzが50μm以下であると○、50μmより大きければ×として表1に併記した。
(3)焼結体(多極磁石14)と芯金11の密着性を評価するため、焼結体と芯金11の隙間に鉄製の治具を差し込み、強制的に剥離させた。密着性が良い場合、焼結体(多極磁石14)と芯金11の界面で剥がれることはなく、焼結体内部で破壊するので、芯金11表面に固着する塗膜量が多い。表1には、付着量の多い順に、◎,○,△,×のマークを併記した。
The following tests were performed on each of these samples.
(1) About each sample, NaCl heated at 55 degreeC was immersed in 5% solution for 24 hours, and the corrosion resistance was compared. Table 1 shows marks of ◎, ○, Δ, and × in order of excellent corrosion resistance.
(2) When the above samples, which are rust-proofed products, are used as products, the flatness of the surfaces of the sintered body (multipolar magnet 14) and the cored bar 11 is important. The detection sensitivity of the detection device 20 may deteriorate, which is not preferable. From this point of view, the surface shape was measured, and when the surface roughness Rz, which is the measurement result, was 50 μm or less, it was shown in Table 1 as ○, and when it was larger than 50 μm, it was marked as x.
(3) In order to evaluate the adhesion between the sintered body (multipolar magnet 14) and the cored bar 11, an iron jig was inserted into the gap between the sintered body and the cored bar 11 and was forcibly separated. When the adhesion is good, it does not peel off at the interface between the sintered body (multipolar magnet 14) and the cored bar 11, and breaks inside the sintered body, so that the amount of the coating film fixed on the surface of the cored bar 11 is large. In Table 1, ◎, ○, △, × marks are also shown in descending order of adhesion amount.

Figure 0004246565
Figure 0004246565

表1中の各例は、次に詳細を示す例であり、表1に示す試験結果から、次の事項がわかる。
実施例1:焼結体(多極磁石14)にSm−Fe−N系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21にカチオン電着を行った。この例は、耐食性、平坦度、密着性のすべてに優れていた。
実施例2:焼結体(多極磁石14)にSm−Fe−N系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21にアニオン電着を行った。この例は、カチオン電着の場合と比べて耐食性は若干劣るものの、平坦度、密着性は優れていた。
実施例3:焼結体(多極磁石14)にNd−Fe−B系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21にカチオン電着を行った。この例は、耐食性、平坦度、密着性のすべてに優れていた。
実施例4〜10:焼結体(多極磁石14)あるいは芯金11のいずれか一方、または両方に溝を入れた焼結体芯金一体品21にカチオン電着を行った。これらの各例では、いずれも耐食性、平坦度、密着性のすべてに優れていた。特に密着性に関しては、非常に優れていた。
比較例1:焼結体(多極磁石14)にSm−Fe−N系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21に対して、エポキシ系クリヤー塗膜をコーティングし、180℃で20分間の焼付けを行った。この例では、焼結体表面の耐食性は良好であったが、付着し難い内径部の耐食性が劣っていた。平坦度は良好であったが、密着性は劣っていた。
比較例2:焼結体(多極磁石14)にSm−Fe−N系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21に対して、エポキシ系クリヤー(東京ペイント製:TPR−RC クリヤー)をシンナーで希釈し、その希釈液に焼結体を浸して真空引きを行い、焼結体と芯金11の隙間に強制的に樹脂を含浸させ、一定時間保持した後、焼結体を取り出して180℃で20分間の焼付けを行った。この例は、耐食性は良好であったが、平坦度が劣っており、密着性についても電着塗装の場合よりも劣っていた。
比較例3:焼結体(多極磁石14)にNd−Fe−B系磁性体を用い、焼結体および芯金11に溝を入れていない焼結体芯金一体品21に対して、エポキシ系クリヤー(東京ペイント製:TPR−RC クリヤー)をシンナーで希釈し、その希釈液に焼結体を浸して真空引きを行い、焼結体と芯金11の隙間に強制的に樹脂を含浸させ、一定時間保持した後、焼結体を取り出して180℃で20分間の焼付けを行った。この例は、耐食性が良好であったが、平坦度が劣っており、密着性も電着塗装の場合よりも劣っていた。
比較例4〜10:焼結体(多極磁石14)にSm−Fe−N系磁性体を用い、焼結体または芯金11のいずれか一方、または両方に溝を入れた焼結体芯金一体品21に対して、エポキシ系クリヤー(東京ペイント製:TPR−RC クリヤー)をシンナーで希釈し、その希釈液に焼結体を浸して真空引きを行い、焼結体と芯金11の隙間に強制的に樹脂を含浸させ、一定時間保持した後、焼結体を取り出して180℃で20分間の焼付けを行った。これらの例は、耐食性は良好であったが、平坦度が劣っており、密着性も電着塗装の場合よりも劣っていた。
Each example in Table 1 is an example showing details in the following, and the following matters can be understood from the test results shown in Table 1.
Example 1: Sm-Fe-N magnetic material was used for the sintered body (multipolar magnet 14), and cation electrodeposition was performed on the sintered body and the sintered core metal integrated product 21 in which no groove was formed in the core metal 11. Went. This example was excellent in all of corrosion resistance, flatness and adhesion.
Example 2 An Sm—Fe—N magnetic material was used for the sintered body (multipolar magnet 14), and anion electrodeposition was applied to the sintered body and the cored metal integrated product 21 having no grooves in the cored bar 11. Went. In this example, although the corrosion resistance was slightly inferior to that in the case of cationic electrodeposition, the flatness and adhesion were excellent.
Example 3 Cationic electrodeposition on a sintered body and a cored bar integrated product 21 in which a groove is not formed in the sintered body and the cored bar 11 using a Nd-Fe-B based magnetic body as a sintered body (multipolar magnet 14). Went. This example was excellent in all of corrosion resistance, flatness and adhesion.
Examples 4 to 10: Cationic electrodeposition was performed on a sintered core metal integrated product 21 in which a groove was formed in one or both of the sintered body (multipolar magnet 14) and the core metal 11. In each of these examples, all were excellent in corrosion resistance, flatness, and adhesion. In particular, the adhesion was very excellent.
Comparative Example 1: For a sintered body cored bar integrated product 21 in which a sintered body and a cored bar 11 are not grooved using an Sm-Fe-N based magnetic body as a sintered body (multipolar magnet 14), An epoxy clear coating film was coated and baked at 180 ° C. for 20 minutes. In this example, although the corrosion resistance of the sintered compact surface was favorable, the corrosion resistance of the inner diameter part which is hard to adhere was inferior. The flatness was good, but the adhesion was poor.
Comparative Example 2: For a sintered body cored bar integrated product 21 in which a sintered body and the cored bar 11 are not grooved using an Sm-Fe-N based magnetic body as a sintered body (multipolar magnet 14), Epoxy clear (Tokyo Paint: TPR-RC clear) is diluted with thinner, and the sintered compact is immersed in the diluted solution and evacuated, and the gap between the sintered compact and the core metal 11 is forcibly impregnated with resin. After holding for a certain period of time, the sintered body was taken out and baked at 180 ° C. for 20 minutes. In this example, the corrosion resistance was good, but the flatness was inferior, and the adhesion was also inferior to that of the electrodeposition coating.
Comparative example 3: Nd-Fe-B based magnetic body is used for the sintered body (multi-pole magnet 14), and the sintered body and the cored bar integrated product 21 in which the groove is not formed in the cored bar 11, Epoxy clear (Tokyo Paint: TPR-RC clear) is diluted with thinner, and the sintered body is immersed in the diluted solution and evacuated, and the gap between the sintered body and the core 11 is forcibly impregnated with resin. After holding for a certain period of time, the sintered body was taken out and baked at 180 ° C. for 20 minutes. In this example, the corrosion resistance was good, but the flatness was inferior, and the adhesion was also inferior to that of the electrodeposition coating.
Comparative Examples 4 to 10: Sintered body core using a sintered body (multipolar magnet 14) with an Sm-Fe-N-based magnetic body and a groove formed in one or both of the sintered body and the cored bar 11. An epoxy clear (Tokyo Paint: TPR-RC clear) is diluted with a thinner with respect to the gold integrated product 21, and the sintered body is immersed in the diluted solution to perform vacuuming. After the resin was forcibly impregnated in the gap and held for a certain time, the sintered body was taken out and baked at 180 ° C. for 20 minutes. In these examples, the corrosion resistance was good, but the flatness was poor, and the adhesion was also inferior to that of the electrodeposition coating.

つぎに、この磁気エンコーダ10を備えた車輪用軸受の一例、およびそのシール装置5の例を、図13,図14と共に説明する。図13に示すように、この車輪用軸受は、内方部材1および外方部材2と、これら内外の部材1,2間に収容される複数の転動体3と、内外の部材1,2間の端部環状空間を密封するシール装置5,13とを備える。一端のシール装置5は、磁気エンコーダ10付きのものである。内方部材1および外方部材2は、転動体3の軌道面1a,2aを有しており、各軌道面1a,2aは溝状に形成されている。内方部材1および外方部材2は、各々転動体3を介して互いに回転自在となった内周側の部材および外周側の部材のことであり、軸受内輪および軸受外輪の単独であっても、これら軸受内輪や軸受外輪と別の部品とが組合わさった組立部材であっても良い。また、内方部材1は、軸であっても良い。転動体3は、ボールまたはころからなり、この例ではボールが用いられている。   Next, an example of a wheel bearing provided with the magnetic encoder 10 and an example of the seal device 5 will be described with reference to FIGS. As shown in FIG. 13, the wheel bearing includes an inner member 1 and an outer member 2, a plurality of rolling elements 3 accommodated between the inner and outer members 1 and 2, and the inner and outer members 1 and 2. Sealing devices 5 and 13 for sealing the end annular space. The sealing device 5 at one end is provided with a magnetic encoder 10. The inner member 1 and the outer member 2 have raceway surfaces 1a and 2a of the rolling element 3, and each raceway surface 1a and 2a is formed in a groove shape. The inner member 1 and the outer member 2 are an inner peripheral member and an outer peripheral member that are rotatable with respect to each other via the rolling elements 3, respectively. An assembly member in which the bearing inner ring and the bearing outer ring are combined with another component may be used. Further, the inner member 1 may be a shaft. The rolling element 3 consists of a ball or a roller, and a ball is used in this example.

この車輪用軸受は、複列の転がり軸受、詳しくは複列のアンギュラ玉軸受とされていて、その軸受内輪は、各転動体列の軌道面1a,1aがそれぞれ形成された一対の分割型の内輪18,19からなる。これら内輪18,19は、ハブ輪6の軸部の外周に嵌合し、ハブ輪6と共に上記内方部材1を構成する。なお、内方部材1は、上記のようにハブ輪6および一対の分割型の内輪18,19からなる3部品の組立部品とする代わりに、ハブ輪6および片方の内輪18が一体化された軌道面付きのハブ輪と、もう片方の内輪19とで構成される2部品からなるものとしても良い。   This wheel bearing is a double-row rolling bearing, more specifically, a double-row angular contact ball bearing, and the inner ring of the bearing is a pair of split type in which the raceway surfaces 1a and 1a of the respective rolling element rows are respectively formed. It consists of inner rings 18 and 19. The inner rings 18 and 19 are fitted to the outer periphery of the shaft portion of the hub ring 6 and constitute the inner member 1 together with the hub ring 6. The inner member 1 is integrated with the hub ring 6 and one inner ring 18 instead of the three-piece assembly part including the hub ring 6 and the pair of split inner rings 18 and 19 as described above. It is good also as what consists of two components comprised by the hub ring with a raceway surface and the other inner ring | wheel 19. FIG.

ハブ輪6には、等速自在継手7の一端(例えば外輪)が連結され、ハブ輪6のフランジ部6aに車輪(図示せず)がボルト8で取付けられる。等速自在継手7は、その他端(例えば内輪)が駆動軸に連結される。外方部材2は、軸受外輪からなり、懸架装置におけるナックル等からなるハウジング(図示せず)に取付けられる。転動体3は各列毎に保持器4で保持されている。   One end (for example, an outer ring) of the constant velocity universal joint 7 is connected to the hub wheel 6, and a wheel (not shown) is attached to the flange portion 6 a of the hub wheel 6 with a bolt 8. The other end (for example, inner ring) of the constant velocity universal joint 7 is connected to the drive shaft. The outer member 2 includes a bearing outer ring, and is attached to a housing (not shown) including a knuckle or the like in the suspension device. The rolling elements 3 are held by a holder 4 for each row.

図14は、磁気エンコーダ付きのシール装置5を拡大して示す。このシール装置5は、図3に示したものと同じであり、その一部を前述したが、図14において、詳細を説明する。このシール装置5は、磁気エンコーダ10またはその芯金11がスリンガとなり、内方部材1および外方部材2のうちの回転側の部材に取付けられる。この例では、回転側の部材は内方部材1であるため、磁気エンコーダ10は内方部材1に取付けられる。   FIG. 14 shows an enlarged view of the sealing device 5 with a magnetic encoder. The sealing device 5 is the same as that shown in FIG. 3 and a part of the sealing device 5 has been described above, but the details will be described with reference to FIG. The sealing device 5 is attached to a rotating member of the inner member 1 and the outer member 2 with the magnetic encoder 10 or its core 11 serving as a slinger. In this example, since the member on the rotation side is the inner member 1, the magnetic encoder 10 is attached to the inner member 1.

このシール装置5は、内方部材1と外方部材2に各々取付けられた第1および第2の金属板製の環状のシール板(11),12を有する。第1のシール板(11)は、上記磁気エンコーダ10における芯金11のことであり、以下、芯金11として説明する。磁気エンコーダ10は、図1ないし図3と共に前述した第1の実施形態にかかるものであり、その重複する説明を省略する。この磁気エンコーダ10における多極磁石14に対面して、同図のように磁気センサ15を配置することにより、車輪回転速度の検出用の回転検出装置20が構成される。   This sealing device 5 has annular sealing plates (11), 12 made of first and second metal plates attached to the inner member 1 and the outer member 2, respectively. The first seal plate (11) is the core metal 11 in the magnetic encoder 10 and will be described as the core metal 11 below. The magnetic encoder 10 is according to the first embodiment described above with reference to FIGS. 1 to 3, and redundant description thereof is omitted. The rotation detection device 20 for detecting the wheel rotation speed is configured by arranging the magnetic sensor 15 as shown in the figure so as to face the multipolar magnet 14 in the magnetic encoder 10.

第2のシール板12は、上記シール部材9(図3)を構成する部材であり、第1のシール板である芯金11の立板部11bに摺接するサイドリップ16aと円筒部11aに摺接するラジアルリップ16b,16cとを一体に有する。これらリップ16a〜16cは、第2のシール板12に加硫接着された弾性部材16の一部として設けられている。これらリップ16a〜16cの枚数は任意で良いが、図14の例では、1枚のサイドリップ16aと、軸方向の内外に位置する2枚のラジアルリップ16c,16bとを設けている。第2のシール板12は、固定側部材である外方部材2との嵌合部に弾性部材16を抱持したものとしてある。すなわち、弾性部材16は、円筒部12aの内径面から先端部外径までを覆う先端覆い部16dを有するものとし、この先端覆い部16dが、第2のシール板12と外方部材2との嵌合部に介在する。第2のシール板12の円筒部12aと第1のシール板である芯金11の他円筒部11cとは僅かな径方向隙間をもって対峙させ、その隙間でラビリンスシール17を構成している。   The second seal plate 12 is a member constituting the seal member 9 (FIG. 3), and slides on the side lip 16a and the cylindrical portion 11a that are in sliding contact with the upright plate portion 11b of the core metal 11 that is the first seal plate. Radial lips 16b and 16c that are in contact with each other are integrally provided. The lips 16 a to 16 c are provided as a part of the elastic member 16 that is vulcanized and bonded to the second seal plate 12. The number of the lips 16a to 16c may be arbitrary, but in the example of FIG. 14, one side lip 16a and two radial lips 16c and 16b positioned inside and outside in the axial direction are provided. The second seal plate 12 is configured such that an elastic member 16 is held in a fitting portion with the outer member 2 that is a fixed side member. That is, the elastic member 16 has a tip cover portion 16d that covers from the inner diameter surface of the cylindrical portion 12a to the outer diameter of the tip portion, and this tip cover portion 16d is formed between the second seal plate 12 and the outer member 2. Intervenes in the fitting part. The cylindrical portion 12a of the second seal plate 12 and the other cylindrical portion 11c of the core metal 11 serving as the first seal plate are opposed to each other with a slight radial gap, and the labyrinth seal 17 is configured by the gap.

この構成の車輪用軸受によると、車輪と共に回転する内方部材1の回転が、この内方部材1に取付けられた磁気エンコーダ10を介して、磁気センサ15で検出され、車輪回転速度が検出される。   According to the wheel bearing of this configuration, the rotation of the inner member 1 rotating together with the wheel is detected by the magnetic sensor 15 via the magnetic encoder 10 attached to the inner member 1, and the wheel rotation speed is detected. The

磁気エンコーダ10は、シール装置5の構成要素としたため、部品点数を増やすことなく、車輪の回転を検出することができる。車輪用軸受は、一般に路面の環境下にさらされた状態となり、磁気エンコーダ10が塩泥水を被ることがあるが、磁気エンコーダ10を構成する焼結体芯金一体品21の全体に防食性の表面処理が施されていることから、塩泥水により磁気エンコーダ10に錆が発生するのを確実に防止することができる。また、磁気エンコーダ10と、これに対面させる磁気センサ15との間に砂粒等の粒子が噛み込むことがあるが、上記のように磁気エンコーダ10の多極磁石14は焼結体からなるものであって硬質であるため、多極磁石14の表面の摩耗損傷は従来の弾性体製のものに比べて大幅に低減される。   Since the magnetic encoder 10 is a constituent element of the sealing device 5, the rotation of the wheel can be detected without increasing the number of parts. The wheel bearing is generally exposed to the road surface environment, and the magnetic encoder 10 may be covered with salt mud water. However, the sintered cored bar integrated product 21 constituting the magnetic encoder 10 has an anticorrosive property as a whole. Since the surface treatment is performed, it is possible to reliably prevent the magnetic encoder 10 from being rusted by the salt mud water. Further, particles such as sand particles may be caught between the magnetic encoder 10 and the magnetic sensor 15 facing the magnetic encoder 10, but as described above, the multipolar magnet 14 of the magnetic encoder 10 is made of a sintered body. Since it is hard, wear damage on the surface of the multipolar magnet 14 is greatly reduced as compared with a conventional elastic body.

内外の部材1,2間のシールについては、第2のシール板12に設けられた各シールリップ16a〜16cの摺接と、第2のシール板12の円筒部12aに第1のシール板である芯金11の他円筒部11cが僅かな径方向隙間で対峙することで構成されるラビリンスシール17とで得られる。   As for the seal between the inner and outer members 1 and 2, the first seal plate is used for sliding contact of the seal lips 16 a to 16 c provided on the second seal plate 12 and the cylindrical portion 12 a of the second seal plate 12. It is obtained with the labyrinth seal 17 constituted by the other cylindrical portion 11c of a certain core metal 11 facing each other with a slight radial gap.

なお、図13および図14に示す車輪用軸受では、磁気エンコーダ10の芯金11を、図1の形状のものとした場合について示しているが、磁気エンコーダ10として図4〜図7に示した各例のものを用いても良い。
また、磁気エンコーダ10を軸受のシール装置5の構成要素とする場合等において、多極磁石14を、上記各実施形態とは逆に軸受に対して内向きに設けても良い。すなわち、多極磁石14を芯金11の軸受内側の面に設けても良い。その場合、芯金11は非磁性体製のものとすることが好ましい。
また、外方部材が回転側部材となる車輪用軸受では、外方部材に磁気エンコーダを取付ける。
In the wheel bearings shown in FIGS. 13 and 14, the core bar 11 of the magnetic encoder 10 is shown as having the shape of FIG. 1, but the magnetic encoder 10 is shown in FIGS. 4 to 7. Each example may be used.
Further, when the magnetic encoder 10 is used as a component of the bearing seal device 5, the multipolar magnet 14 may be provided inward with respect to the bearing, contrary to the above embodiments. That is, the multipolar magnet 14 may be provided on the inner surface of the bearing of the core metal 11. In that case, the cored bar 11 is preferably made of a non-magnetic material.
Further, in a wheel bearing in which the outer member is a rotating member, a magnetic encoder is attached to the outer member.

(A)はこの発明の第1の実施形態にかかる磁気エンコーダの製造方法を適 用する磁気エンコーダの部分斜視図、(B)は同磁気エンコーダの組立過程を示す部分斜視図である。(A) is a partial perspective view of the magnetic encoder of the method for manufacturing a magnetic encoder that written to the first embodiment will be applied to the present invention, is a partial perspective view showing the assembly process of the magnetic encoder (B) . 同磁気エンコーダを正面から示す磁極の説明図である。It is explanatory drawing of the magnetic pole which shows the same magnetic encoder from the front. 同磁気エンコーダを備えたシール装置と磁気センサとを示す部分破断正面図である。It is a partial fracture front view showing a sealing device provided with the magnetic encoder and a magnetic sensor. 同磁気エンコーダにおける多極磁石の一例の裏面を示す斜視図である。It is a perspective view which shows the back surface of an example of the multipolar magnet in the magnetic encoder. 同磁気エンコーダにおける多極磁石の他の例の裏面を示す斜視図である。It is a perspective view which shows the back surface of the other example of the multipolar magnet in the same magnetic encoder. 同磁気エンコーダにおける芯金の一例を示す部分斜視図である。It is a fragmentary perspective view which shows an example of the metal core in the magnetic encoder. 同磁気エンコーダにおける芯金の他の例を示す部分斜視図である。It is a fragmentary perspective view which shows the other example of the metal core in the magnetic encoder. 同磁気エンコーダにおける芯金のさらに他の例を示す部分斜視図である。It is a fragmentary perspective view which shows the other example of the metal core in the magnetic encoder. この発明の他の実施形態にかかる磁気エンコーダの部分斜視図である。It is a fragmentary perspective view of the magnetic encoder concerning other embodiment of this invention. 同磁気エンコーダの正面図である。It is a front view of the magnetic encoder. 芯金の変形例の部分断面図である。It is a fragmentary sectional view of the modification of a metal core. (A),(B)は、それぞれ芯金の他の変形例、およびその芯金を用いた磁気エンコーダの部分斜視図である。(A), (B) is another partial perspective view of the other modification of a metal core, and the magnetic encoder using the metal core, respectively. 第1の実施形態にかかる磁気エンコーダの製造方法で製造された磁気エンコーダを備えた車輪用軸受の全体の断面図である。It is a cross-sectional view of the entire wheel bearing having a magnetic encoder manufactured by the manufacturing method of the magnetic encoder that written to the first embodiment. 同車輪用軸受の部分断面図である。It is a fragmentary sectional view of the bearing for the wheels.

符号の説明Explanation of symbols

1…内方部材
2…外方部材
3…転動体
5…シール装置
10…磁気エンコーダ
11…芯金(第1のシール板)
11a…円筒部
11b…立板部
11c…他円筒部
12…第2のシール板
14…多極磁石
15…磁気センサ
16a…サイドリップ
16b,16c…ラジアルリップ
20…回転検出装置
21…焼結体芯金一体品
22…防食皮膜
DESCRIPTION OF SYMBOLS 1 ... Inner member 2 ... Outer member 3 ... Rolling body 5 ... Sealing device 10 ... Magnetic encoder 11 ... Core metal (1st sealing board)
11a ... Cylindrical portion 11b ... Standing plate portion 11c ... Other cylindrical portion 12 ... Second seal plate 14 ... Multipolar magnet 15 ... Magnetic sensor 16a ... Side lip 16b, 16c ... Radial lip 20 ... Rotation detector 21 ... Sintered body Core metal integrated product 22 ... Anti-corrosion coating

Claims (13)

円周方向に交互に磁極を形成した多極磁石と、この多極磁石を支持する芯金とを備え、上記多極磁石が磁性粉と非磁性金属粉との混合粉を焼結させた焼結体である磁気エンコーダを製造する方法であって
上記焼結体と芯金との少なくとも一方に、これら焼結体と芯金との接触面において電着塗料侵入用の溝を設け、上記多極磁石を上記芯金の加締によってこの芯金に固定し、この焼結体を芯金に固定した焼結体芯金一体品に防食被膜を電着塗装で行い、この防食皮膜の電着塗装は、水溶性塗料中に浸漬した焼結体芯金一体品に電流を流し、電気泳動によって電気化学的に焼結体芯金一体品の表面に防食皮膜を施す方法であり、この電着塗装の工程で、前記溝内に前記水溶性電着塗料を電気泳動によって侵入させ、その後、乾燥・焼付け工程によって前記焼結体と芯金とを電着塗料で接着させることを特徴とする磁気エンコーダの製造方法
And multipolar magnets forming the pole alternately in the circumferential direction, e Bei a core metal for supporting the multi-pole magnet, the multi-pole magnet is by sintering mixed powder of a magnetic powder and a nonmagnetic metal powder A method of manufacturing a magnetic encoder that is a sintered body ,
At least one of the sintered body and the cored bar is provided with a groove for intrusion of electrodeposition paint on the contact surface between the sintered body and the cored bar, and the multipolar magnet is attached to the cored bar by caulking the cored bar. An anticorrosion coating is applied by electrodeposition coating to a sintered body cored bar integrated product in which this sintered body is fixed to a core metal , and this anticorrosion coating electrodeposition coating is a sintered body immersed in a water-soluble paint. In this method, a current is passed through the cored bar product and an anticorrosive film is electrochemically applied to the surface of the sintered cored bar united product by electrophoresis. In this electrodeposition coating process, the water-soluble electrode is placed in the groove. A method of manufacturing a magnetic encoder , comprising: adhering a coating material by electrophoresis, and then bonding the sintered body and the cored bar with an electrodeposition coating material through a drying and baking process .
請求項1において、上記電着塗装がカチオン電着である磁気エンコーダの製造方法2. The method of manufacturing a magnetic encoder according to claim 1, wherein the electrodeposition coating is cationic electrodeposition. 請求項1または請求項2において、上記磁性粉がサマリウム系磁性粉である磁気エンコーダの製造方法。 3. The method of manufacturing a magnetic encoder according to claim 1, wherein the magnetic powder is a samarium-based magnetic powder . 請求項1ないし請求項3のいずれかにおいて、上記磁性粉がネオジウム系磁性粉である磁気エンコーダの製造方法4. The method of manufacturing a magnetic encoder according to claim 1, wherein the magnetic powder is a neodymium-based magnetic powder. 請求項1ないし請求項4のいずれかにおいて、上記非磁性金属粉がスズ粉である磁気エンコーダの製造方法 5. The method of manufacturing a magnetic encoder according to claim 1, wherein the nonmagnetic metal powder is tin powder. 請求項1ないし請求項5のいずれかにおいて、上記混合粉が2種以上の磁性粉または2種以上の非磁性金属粉を含む磁気エンコーダの製造方法 6. The method of manufacturing a magnetic encoder according to claim 1, wherein the mixed powder includes two or more kinds of magnetic powders or two or more kinds of nonmagnetic metal powders. 請求項1ないし請求項6のいずれかにおいて、前記磁気エンコーダが車輪用軸受に用いられるものである磁気エンコーダの製造方法。7. The method of manufacturing a magnetic encoder according to claim 1, wherein the magnetic encoder is used for a wheel bearing. 請求項7において、上記車輪用軸受が、複列の転走面を内周面に形成した外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、これら両転走面間に介在させた複列の転走体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
上記外方部材と内方部材との間の環状空間を密封するシール装置を設け、このシール装置は、上記外方部材または内方部材のうちの回転側部材に嵌合された断面L字状の第1のシール板と、この第1のシール板に対向し、上記外方部材または内方部材のうちの固定側部材に嵌合した断面L字状の第2のシール板とからなり、上記第1のシール板の立板部に摺接するサイドリップ、および円筒部に摺接するラジアルリップが上記第2のシール板に固着され、上記第1のシール板が上記磁気エンコーダにおける芯金となり、その立板部に重ねて上記多極磁石が設けられる、
磁気エンコーダの製造方法。
8. The wheel bearing according to claim 7, wherein the wheel bearing includes an outer member having a double row rolling surface formed on an inner peripheral surface, and an inner member formed with a rolling surface facing the rolling surface of the outer member. A double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A sealing device that seals the annular space between the outer member and the inner member is provided, and the sealing device has an L-shaped cross section that is fitted to the rotating side member of the outer member or the inner member. The first seal plate and the second seal plate facing the first seal plate and fitted to the fixed member of the outer member or the inner member, and having an L-shaped cross section, The side lip slidably contacting the upright plate portion of the first seal plate and the radial lip slidably contacting the cylindrical portion are fixed to the second seal plate, and the first seal plate serves as a core metal in the magnetic encoder, the multi-pole magnet is Ru provided superposed on the standing portion,
Manufacturing method of magnetic encoder.
請求項7において、上記車輪用軸受が、複列の転走面を内周面に形成した外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、これら両転走面間に介在させた複列の転走体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
上記外方部材と内方部材との間の環状空間を密閉するシール装置を設け、このシール装置は、上記外方部材または内方部材のうちの回転側部材に嵌合された断面概ね逆Z字状の第1のシール板と、この第1のシール板に対向し、上記外方部材または内方部材のうちの固定側部材に嵌合した断面L字状の第2のシール板とからなり、上記第1のシール板の立板部に摺接するサイドリップ、および円筒部に摺接するラジアルリップが上記第2のシール板に固着され、上記第1のシール板が上記磁気エンコーダにおける芯金となり、その立板部に重ねて上記多極磁石が設けられている、
磁気エンコーダの製造方法
8. The wheel bearing according to claim 7, wherein the wheel bearing includes an outer member having a double row rolling surface formed on an inner peripheral surface, and an inner member formed with a rolling surface facing the rolling surface of the outer member. A double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A sealing device for sealing an annular space between the outer member and the inner member is provided, and this sealing device has a substantially inverted Z cross-section fitted to the rotating side member of the outer member or the inner member. A first seal plate having a letter shape, and a second seal plate having an L-shaped cross section facing the first seal plate and fitted to the fixed member of the outer member or the inner member. The side lip that is in sliding contact with the upright plate portion of the first seal plate and the radial lip that is in sliding contact with the cylindrical portion are fixed to the second seal plate, and the first seal plate is a core metal in the magnetic encoder. next, the multipolar magnet is that provided overlapping on the standing portion,
Manufacturing method of magnetic encoder .
請求項9において、上記第1のシール板の上記多極磁石が重ねられる立板部が、内周側部分と外周側部分とで互いに軸方向にずれた2段形状である磁気エンコーダの製造方法10. The method of manufacturing a magnetic encoder according to claim 9, wherein the upright plate portion on which the multipolar magnets of the first seal plate are stacked has a two-stage shape in which the inner peripheral portion and the outer peripheral portion are displaced from each other in the axial direction. . 請求項9または請求項10において、上記第1のシール板における立板部に重ねた多極磁石を、第1のシール板の外周側円筒部の加締によって固定した磁気エンコーダの製造方法 The method of manufacturing a magnetic encoder according to claim 9 or 10, wherein the multipolar magnet overlaid on the standing plate portion of the first seal plate is fixed by caulking the outer peripheral side cylindrical portion of the first seal plate. 請求項9または請求項10において、上記第1のシール板における外周側円筒部の周方向複数箇所に内径側へ突出状態に塑性変形させた塑性変形部を設け、上記第1のシール板における立板部に重ねた多極磁石を、上記塑性変形部によって加締固定した磁気エンコーダの製造方法。 In Claim 9 or Claim 10 , the plastic deformation part which carried out the plastic deformation to the inner diameter side is provided in the peripheral direction cylindrical part in the 1st seal board in the peripheral direction, and it stands in the 1st seal board. A method of manufacturing a magnetic encoder in which a multipolar magnet overlaid on a plate portion is crimped and fixed by the plastic deformation portion . 請求項9または請求項10において、上記第1のシール板における上記立板部に重ねた多極磁石を、第1のシール板の外周円筒部に設けた爪状突起の塑性変形によって固定した磁気エンコーダの製造方法 According to claim 9 or claim 10, magnetism above the multi-pole magnet superimposed on the standing portion of the first sealing plate, and fixed by plastic deformation of the claw-like projection provided on the outer peripheral cylindrical portion of the first sealing plate Encoder manufacturing method .
JP2003279563A 2003-07-25 2003-07-25 Manufacturing method of magnetic encoder Expired - Fee Related JP4246565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003279563A JP4246565B2 (en) 2003-07-25 2003-07-25 Manufacturing method of magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003279563A JP4246565B2 (en) 2003-07-25 2003-07-25 Manufacturing method of magnetic encoder

Publications (2)

Publication Number Publication Date
JP2005043294A JP2005043294A (en) 2005-02-17
JP4246565B2 true JP4246565B2 (en) 2009-04-02

Family

ID=34265634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003279563A Expired - Fee Related JP4246565B2 (en) 2003-07-25 2003-07-25 Manufacturing method of magnetic encoder

Country Status (1)

Country Link
JP (1) JP4246565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081196A (en) * 2021-11-30 2023-06-07 주식회사 코렌스이엠 Target for preventing shaft current and shaft voltage of a motor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1517149B1 (en) 2003-09-16 2009-07-22 Ntn Corporation Process for mounting a magnetic encoder
WO2006027845A1 (en) 2004-09-10 2006-03-16 Ntn Corporation Magnetic encoder and bearing for wheel comprising same
JP2010002228A (en) * 2008-06-18 2010-01-07 Jtekt Corp Bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230081196A (en) * 2021-11-30 2023-06-07 주식회사 코렌스이엠 Target for preventing shaft current and shaft voltage of a motor
KR102633053B1 (en) 2021-11-30 2024-02-02 주식회사 코렌스이엠 Target for preventing shaft current and shaft voltage of a motor

Also Published As

Publication number Publication date
JP2005043294A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
US7237960B2 (en) Magnetic encoder and wheel support bearing assembly utilizing the same
JP4372438B2 (en) Wheel bearing
EP1788359B1 (en) Magnetic encoder and bearing for wheel comprising same
JP2004037441A (en) Magnetic encoder and wheel bearing using it
JP4688507B2 (en) Manufacturing method of magnetic encoder
JP4246565B2 (en) Manufacturing method of magnetic encoder
JP4246581B2 (en) Mounting method of magnetic encoder in wheel bearing etc.
JP2006145365A (en) Magnetic encoder, and bearing for wheel equipped with the same
JP2004084925A (en) Magnetic encoder and wheel bearing provided with encoder
JP3967353B2 (en) Magnetic encoder and bearing provided with the same
JP4312149B2 (en) Bearing with magnetic encoder and wheel bearing
JP2006153576A (en) Magnetic encoder and bearing for wheel having it
JP2006189365A (en) Magnetic encoder and bearing for wheel equipped with the same
JP2004085534A (en) Magnetic encoder and bearing for wheel equipped with the same
JP2005106091A (en) Magnetic encoder and wheel bearing having this encoder
JP4498330B2 (en) Magnetic encoder and wheel bearing provided with the same
JP4361003B2 (en) Wheel bearing
JP2006153577A (en) Magnetic encoder and bearing for wheel having it
JP4408798B2 (en) Bearing with magnetic encoder and wheel bearing
JP3881359B2 (en) Bearing seal device
JP4037406B2 (en) Magnetic encoder and bearing provided with the same
JP4319135B2 (en) Wheel bearing
JP2006153578A (en) Magnetic encoder and bearing for wheel having it
JP2005099042A (en) Bearing with magnetic encoder and bearing for wheel
JP4530766B2 (en) Magnetic encoder and wheel bearing provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees