JP4319135B2 - Wheel bearing - Google Patents

Wheel bearing Download PDF

Info

Publication number
JP4319135B2
JP4319135B2 JP2004359631A JP2004359631A JP4319135B2 JP 4319135 B2 JP4319135 B2 JP 4319135B2 JP 2004359631 A JP2004359631 A JP 2004359631A JP 2004359631 A JP2004359631 A JP 2004359631A JP 4319135 B2 JP4319135 B2 JP 4319135B2
Authority
JP
Japan
Prior art keywords
magnetic
powder
multipolar magnet
magnetic encoder
encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004359631A
Other languages
Japanese (ja)
Other versions
JP2005164602A (en
Inventor
達雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2004359631A priority Critical patent/JP4319135B2/en
Publication of JP2005164602A publication Critical patent/JP2005164602A/en
Application granted granted Critical
Publication of JP4319135B2 publication Critical patent/JP4319135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Description

この発明は、相対回転する軸受部の回転検出装置等に用いられる磁気エンコーダを備えた車輪用軸受に関し、例えば自動車のアンチロックブレーキシステムにおける前後の車輪回転数を検出する回転検出装置に装着されるベアリングシールの構成部品とされる磁気エンコーダを備えた車輪用軸受に関する。 The present invention relates to a wheel bearings equipped with a magnetic encoder for use in a rotation detecting device such as a bearing portion for relative rotation, for example in the rotation detecting device for detecting a wheel rotational speeds of the front and rear of an automobile anti-lock braking system The present invention relates to a wheel bearing provided with a magnetic encoder as a component of a bearing seal to be mounted.

従来、自動車のスキッドを防止するためのアンチスキッド用回転検出装置として、次のような構造が多く用いられている。すなわち、前記回転検出装置は歯付ローターと感知センサからなっており、その際、軸受を密封するシール装置よりそれぞれ離間させて配置し、一つの独立した回転検出装置を構成しているものが一般的である。
このような従来例は、回転軸に嵌合された歯付ローターを、ナックルに取付られた回転検出センサで感知検出する構造を持ち、使われている軸受は、その側部に独立して設けられたシール装置によって、水分あるいは異物の侵入から守られる。
Conventionally, the following structure is often used as an anti-skid rotation detection device for preventing automobile skid. That is, the rotation detection device is composed of a toothed rotor and a sensing sensor, and in this case, the rotation detection device is generally arranged apart from the seal device for sealing the bearing, and constitutes an independent rotation detection device. Is.
Such a conventional example has a structure in which a toothed rotor fitted to a rotating shaft is sensed and detected by a rotation detection sensor attached to a knuckle, and a bearing used is provided independently on the side thereof. Protected against intrusion of moisture or foreign matter by the sealed device.

その他の例として特許文献1には、回転検出装置の装着スペースを削減せしめ感知性能を飛躍的に向上させることを目的として、車輪回転検出のための回転検出装置を有したベアリングシールにおいて、そこに使用するスリンガーの径方向に磁性粉の混入された弾性部材を周状に加硫成形接着し、そこに交互に磁極を配設した構造が示されている。
また、特許文献2には、軸方向の寸法を小さくし、回転部材と固定部材との間の密閉度を良好にし、容易に取り付け可能にすることを目的として、回転部材と固定部材との間がシールされ、この回転部材に回転ディスクが取り付けられ、その回転ディスクに多極化されたコーダが取り付けられたコーダ内蔵密閉構造としたものが示されている。使用するコーダは、磁性粒子を添加したエラストマーからなるものが用いられ、このコーダの側面を固定部材の側面とほぼ同一平面としたシール手段とされている。
As another example, Patent Document 1 discloses a bearing seal having a rotation detection device for detecting wheel rotation for the purpose of reducing the mounting space of the rotation detection device and dramatically improving the sensing performance. A structure is shown in which an elastic member mixed with magnetic powder is circumferentially vulcanized and bonded in the radial direction of a slinger to be used, and magnetic poles are alternately arranged there.
Further, in Patent Document 2, for the purpose of reducing the dimension in the axial direction, improving the degree of sealing between the rotating member and the fixed member, and enabling easy attachment, the gap between the rotating member and the fixed member is disclosed. Is shown, and a rotating disk is attached to the rotating member, and a multi-polar coder is attached to the rotating disk. The coder used is made of an elastomer to which magnetic particles are added, and the side surface of the coder is a sealing means that is substantially flush with the side surface of the fixing member.

磁性粉や磁性粒子を含有するプラスチック(プラストマー) 製のコーダは、やはり従来の射出成形や圧縮成形等のように、製品形状に適応した金型を使用して賦形したり、つまり金型どおりの形に成形したり、 T形のダイスを用いた押出し成形やカレンダー成形のようなシート成形でシートを成形し打ち抜き加工などにより製品形状にして、その後、金属基板上に接着剤などで接着固定し製作してもよい。またこの場合、インサート成形のようにあらかじめ金型内に金属基板を組込んでおき、その後、溶融樹脂を流し入れて接着工程を同時加工して製作してもよい。
特許第2816783号公報 特開平6−281018号公報 公開昭63−115008号公報 公開昭63−300910号公報
A coder made of plastic (plastomer) containing magnetic powder or magnetic particles is shaped by using a mold suitable for the product shape, as in conventional injection molding or compression molding. Or by forming a sheet by extrusion molding using a T-shaped die or sheet molding such as calendering, and then punching it into a product shape, and then bonding and fixing on a metal substrate with an adhesive You may make it. In this case, the metal substrate may be assembled in advance in the mold as in the case of insert molding, and then the molten resin may be poured and the bonding process may be simultaneously processed.
Japanese Patent No. 2816783 JP-A-6-281018 Publication Sho 63-115008 Publication Sho 63-300910

しかしながら、上記従来例のうち、特許文献1や特許文献2に示されるベアリングシールにおいては、そこに使用するスリンガーの径方向に磁性粉の混入された弾性部材を周状に加硫成形接着したり、または多極化されたコーダが取り付けられたコーダ内蔵密閉構造としてそのコーダを磁性粒子が添加したエラストマーにしようとすると、磁性粉や磁性粒子を保持するためのバインダとなるエラストマーや弾性部材成分が必要になる。しかしエラストマーや弾性部材成分をバインダに用いる場合、コーダ形状に賦形前に必ず磁性粉や磁性粒子とエラストマーや弾性部材の混練による分散工程が必要になるが、この工程ではコーダ中のバインダ成分に対する磁性粉や磁性粒子の相対含有率(体積分率)が上げにくいため、磁気センサに安定してセンシングされる磁力を得ようとするにはコーダの厚み寸法を厚くする必要があった。   However, among the above conventional examples, in the bearing seals shown in Patent Document 1 and Patent Document 2, an elastic member mixed with magnetic powder in the radial direction of the slinger used therein is vulcanized and bonded in a circumferential shape. Or, if the coder is to be an elastomer with magnetic particles added as a coder built-in sealed structure with a multipolar coder attached, an elastomer or elastic member component that becomes a binder for holding magnetic powder or magnetic particles is required. Become. However, when an elastomer or elastic member component is used for the binder, a dispersion step is always required by kneading the magnetic powder or magnetic particles with the elastomer or elastic member before shaping into the coder shape. In this step, the binder component in the coder Since it is difficult to increase the relative content (volume fraction) of magnetic powder or magnetic particles, it is necessary to increase the thickness of the coder in order to obtain a magnetic force that is stably sensed by the magnetic sensor.

また、 磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダの成形は、 射出成形や圧縮成形等のように製品形状に適応した金型を使用して賦形し、また加硫工程が必要な場合は金型内に必要とされる加硫時間だけ、加圧しながら保持しなければならず、生産上多くの工程を必要とした。
さらに磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダは、例えば車輪回転検出のための回転検出装置を有したベアリングシールにおいて、回転検出装置の装着スペースを削減せしめ、かつ感知性能を飛躍的に向上させるために、そこに使用するスリンガーの軸方向で近接かつ相対した部位に感知センサを配置しなければならない。しかしこの場合、車両走行中に回転側のベアリングシール表面と固定側の感知センサ表面の間隙に、砂粒などの異物粒子が侵入し噛み込まれると、弾性部材やエラストマー製のコーダ表面は摩耗などによる激しい損傷が認められることがあった。
In addition, molding of elastic members and elastomeric coders containing magnetic powder and magnetic particles is performed by using a mold suitable for the product shape, such as injection molding and compression molding, and the vulcanization process is performed. When necessary, the vulcanization time required in the mold had to be maintained under pressure, requiring many steps in production.
In addition, elastic members and elastomeric coders containing magnetic powder and magnetic particles, for example, in bearing seals with a rotation detection device for detecting wheel rotation, reduce the mounting space for the rotation detection device and dramatically improve sensing performance. In order to improve the quality of the sensor, the sensor must be disposed at a position close to and opposite to the slinger used in the axial direction. However, in this case, if foreign particles such as sand particles enter the gap between the bearing seal surface on the rotating side and the surface of the sensing sensor on the fixed side while the vehicle is running, the elastic member and the elastomer coder surface will be worn. Severe damage was observed.

磁性粉や磁性粒子の含有するプラスチック(プラストマー)製のコーダの場合、上述した従来の射出成形や圧縮成形やT形ダイスを用いた押出し成形やカレンダー成形のようなシート成形、およびインサート成形で製造しようとすると、やはり磁性粉や磁性粒子を保持するためのバインダとなる合成樹脂成分が必要になる。しかし合成樹脂成分をバインダに用いる場合も、従来はエラストマーなどと同様に、コーダ形状に賦形前に必ず磁性粉や磁性粒子とプラストマーや弾性部材の混練による分散工程が必要になる。 やはりこの工程では、コーダ中のバインダ成分に対する磁性粉や磁性粒子の相対含有率(体積分率)が上げにくいため、磁気センサに安定してセンシングされる磁力を得ようとするにはコーダの厚み寸法を厚くする必要があった。また、このように磁性粉や磁性粒子とプラストマーや弾性部材を従来の製造法で混練して製作した成形前材料を、金型内に射出( インジェクション)したり圧縮(コンプレッション)してコーダに賦形する時、またインサート成形などで賦形する時に、材料中に含有される磁性粒子成分は金属の酸化物であるため硬くて量産製造的には金型や成形機の摩耗が問題となり、また磁性粒子成分の含有が高い成形前材料は溶融粘度が高くなり、成形圧力や金型型締力などを上げるなど、成形上の負荷が大きくなるなどの問題があった。   In the case of a coder made of plastic (plastomer) containing magnetic powder or magnetic particles, it is manufactured by conventional injection molding, compression molding, sheet molding such as extrusion molding using T-shaped dies or calendar molding, and insert molding. If it is going to do, the synthetic resin component used as a binder for hold | maintaining magnetic powder and a magnetic particle will be needed. However, when a synthetic resin component is used for a binder, a dispersion step by kneading magnetic powder, magnetic particles, plastomer, and an elastic member is always required before shaping into a coder shape, like an elastomer. Again, in this process, the relative content (volume fraction) of magnetic powder and magnetic particles with respect to the binder component in the coder is difficult to increase, so the thickness of the coder is used to obtain a magnetic force that is stably sensed by the magnetic sensor. It was necessary to increase the dimensions. In addition, pre-molding materials produced by kneading magnetic powder, magnetic particles, plastomers, and elastic members in this way by conventional manufacturing methods are injected (injected) into the mold or compressed (compressed) to be applied to the coder. When forming, or by shaping by insert molding, etc., the magnetic particle component contained in the material is a metal oxide, so it is hard and wear of molds and molding machines becomes a problem in mass production. The pre-molding material with a high content of magnetic particle components has a problem that the melt viscosity becomes high and the molding load increases, such as increasing the molding pressure and the mold clamping force.

T形ダイスを用いた押出し成形やカレンダー成形のようなシート成形の場合でも、材料中に含有される磁性粒子成分は金属酸化物で硬いため、量産製造的にはT形ダイスやカレンダー成形機のロールの摩耗が問題となった。   Even in the case of sheet molding such as extrusion molding and calendar molding using a T-shaped die, the magnetic particle component contained in the material is hard with metal oxide, so that for mass production, T-shaped die and calendar molding machine Roll wear became a problem.

この発明の目的は、堅固で、耐摩耗性に優れ、磁力向上を図りつつ安価に製造することのできる磁気エンコーダを提供することである。
この発明の他の目的は、回転検出のための磁気エンコーダが堅固で、耐摩耗性に優れ、磁力向上を図りつつ安価に得られる軸受および車輪用軸受を提供することである。
An object of the present invention is to provide a magnetic encoder that is robust, has excellent wear resistance, and can be manufactured at low cost while improving magnetic force.
Another object of the present invention is to provide a bearing and a wheel bearing that can be obtained at low cost while the magnetic encoder for detecting rotation is solid, excellent in wear resistance, and improving magnetic force.

この発明の車輪用軸受は、複列の軌道面を内周面に形成した外方部材と、この外方部材の軌道面と対向する軌道面を外周面に形成した内方部材と、これら両軌道面間に介在させた複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、前記内方部材と外方部材のうちの回転側部材に磁気エンコーダを取付け、この磁気エンコーダは、前記内方部材と外方部材間の空間における固定側部材の端面よりも内側に配置し、前記磁気エンコーダ、円周方向に交互に磁極を形成した多極磁石により構成され、上記多極磁石が、磁性粉と非磁性金属粉との粉体同士のドライブレンドによる混合粉を焼結させた焼結体であり、前記混合粉が2種以上の磁性粉を含み、前記混合粉を加圧成形してなる圧粉体の空孔率が14〜19vol %であることを特徴とする。上記多極磁石は、例えば円環状等の環状とされ、または円盤状とされる。この磁気エンコーダは、上記多極磁石を芯金に支持させたものである。その場合に、上記芯金も円環状等の環状とされ、または円盤状としても良い。
この構成によると、多極磁石が、磁性粉と非磁性金属粉との混合粉を焼結させた焼結体であるため、次の各利点が得られる。
(1) .従来のエラストマーやプラストマーに比べて磁性粉比率を高くすることができ、そのため、単位体積あたりの磁力を大きくすることができる。これにより検出感度の向上が可能になる。
(2) .従来の焼結磁石である磁性粉のみを焼結したものに比べて、バインダとなる非磁性金属粉の存在のために割れ難い。
(3) .従来のエラストマー等に比べて表面が硬いため、耐摩耗性に優れ、また損傷し難い。
(4) .従来のエラストマー等に比べて、生産性に優れる。
また、前記混合粉を加圧成形してなる圧粉体の空孔率は14〜19vol %である。空孔率が5vol %より少ない場合、成形圧力を除圧する際に原料粉の弾性変形の回復により生じるスプリングバックにより、圧粉体つまりグリーン体が破損する可能性がある。また、空孔が30vol %よりも多い場合、焼結体の機械的強度が弱くなる。また、粒子間の密着不足により、圧粉体が成形できない場合がある。
The wheel bearing according to the present invention includes an outer member having a double-row raceway surface formed on the inner peripheral surface, an inner member having a raceway surface opposite to the raceway surface of the outer member formed on the outer peripheral surface, A wheel bearing having a double row rolling element interposed between the raceway surfaces and rotatably supporting the wheel with respect to the vehicle body, wherein the rotating side member of the inner member and the outer member is magnetized. An encoder is attached, and the magnetic encoder is arranged on the inner side of the end surface of the fixed side member in the space between the inner member and the outer member, and the magnetic encoder is a multipolar device in which magnetic poles are alternately formed in the circumferential direction. is constituted by a magnet, the multi-pole magnet is a sintered body obtained by sintering the mixed-powder by dry blending of the powder between the magnetic powder and the non-magnetic metal powder, the mixed powder is not less than two magnetic The compact has a porosity of 14 to 1 including powder and formed by pressing the mixed powder. Characterized in that it is a vol%. The multipolar magnet is, for example, an annular shape such as an annular shape or a disc shape. The magnetic encoder is obtained by supporting the multi-pole magnet to the core. In that case, the core metal may also have an annular shape such as an annular shape, or a disc shape.
According to this configuration, since the multipolar magnet is a sintered body obtained by sintering a mixed powder of magnetic powder and nonmagnetic metal powder, the following advantages are obtained.
(1). Compared to conventional elastomers and plastomers, the magnetic powder ratio can be increased, so that the magnetic force per unit volume can be increased. Thereby, the detection sensitivity can be improved.
(2). Compared to a conventional sintered magnet that is sintered only with magnetic powder, it is difficult to break due to the presence of non-magnetic metal powder as a binder.
(3). Since the surface is harder than conventional elastomers, etc., it is excellent in wear resistance and hardly damaged.
(Four) . Productivity is superior to conventional elastomers.
Moreover, the porosity of the green compact formed by pressure-molding the mixed powder is 14 to 19 vol%. When the porosity is less than 5 vol%, the green compact, that is, the green body, may be damaged by the spring back generated by the recovery of elastic deformation of the raw material powder when the molding pressure is released. Moreover, when there are more voids than 30 vol%, the mechanical strength of the sintered body becomes weak. In addition, the green compact may not be formed due to insufficient adhesion between the particles.

上記混合粉は、2種以上の磁性粉を含むものであるため、任意に複数種の粉を混合することで所望の特性を得ることができる。例えば、フェライト粉だけでは磁力が足りない場合に、フェライト粉に希土類系磁性材料であるサマリウム系磁性粉やネオジウム系磁性粉を必要量だけ混合し、磁力向上を図りつつ安価に製作することができる。   Since the mixed powder contains two or more kinds of magnetic powder, desired characteristics can be obtained by arbitrarily mixing a plurality of kinds of powder. For example, when the magnetic force is insufficient with ferrite powder alone, it can be manufactured at low cost while improving the magnetic force by mixing ferrite powder with the required amount of rare earth magnetic material samarium magnetic powder or neodymium magnetic powder. .

フェライト粉は、他の磁性粉に比べて安価であり、これを用いると磁気エンコーダを安価に製造できる。フェライト粉は顆粒粉体であっても良く、また湿式異方性フェライトコアからなる粉砕粉であっても良い。この湿式異方性フェライトコアの粉砕粉とした場合、非磁性金属粉との混合粉を磁場中で成形されたグリーン体とする必要がある。グリーン体は未焼結の圧粉体のことである。
希土類系磁性粉は、例えば、サマリウム系磁性粉であっても良く、またネオジウム系磁性粉であっても良い。これらサマリウム系磁性粉やネオジウム系磁性粉を用いると、強い磁力を得ることができる。上記サマリウム系磁性粉としては、サマリウム鉄(SmFeN)系磁性粉が、またネオジウム系磁性粉としてはネオジウム鉄(NdFeB)系磁性粉が用いられる。上記磁性粉は、この他に、マンガンアルミ(MnAl)ガスアトマイズ粉であっても良い。
Ferrite powder is cheaper than other magnetic powders, and using this, a magnetic encoder can be manufactured at low cost. The ferrite powder may be a granular powder or a pulverized powder made of a wet anisotropic ferrite core. When the pulverized powder of this wet anisotropic ferrite core is used, the mixed powder with the nonmagnetic metal powder needs to be a green body molded in a magnetic field. Green body is green compact.
The rare earth magnetic powder may be, for example, a samarium magnetic powder or a neodymium magnetic powder. When these samarium magnetic powder and neodymium magnetic powder are used, a strong magnetic force can be obtained. As the samarium-based magnetic powder, samarium iron (SmFeN) -based magnetic powder is used, and as the neodymium-based magnetic powder, neodymium iron (NdFeB) -based magnetic powder is used. In addition, the magnetic powder may be manganese aluminum (MnAl) gas atomized powder.

2種以上を混合させた磁性粉は、サマリウム鉄(SmFeN)系磁性粉、ネオジウム鉄(NdFeB)系磁性粉、およびマンガンアルミ(MnAl)ガスアトマイズ粉のいずれか2種以上を混合させたものであっても良い。例えば、上記磁性粉はサマリウム鉄(SmFeN)系磁性粉とネオジウム鉄(NdFeB)系磁性粉とを混合させたもの、ネオジウム鉄系磁性粉とマンガンアルミガスアトマイズ粉とを混合させたもの、マンガンアルミガスアトマイズ粉とサマリウム鉄系磁性粉とを混合させたもの、およびサマリウム鉄系磁性粉とネオジウム鉄系磁性粉とマンガンアルミガスアトマイズ粉とを混合させたもの、のいずれかであっても良い。また、上記磁性粉は、フェライト粉に希土類系磁性材料であるサマリウム鉄(SmFeN)系磁性粉またはネオジウム鉄(NdFeB)系磁性粉を必要量だけ混合したものであっても良い。   The magnetic powder in which two or more types are mixed is a mixture of two or more of samarium iron (SmFeN) magnetic powder, neodymium iron (NdFeB) magnetic powder, and manganese aluminum (MnAl) gas atomized powder. May be. For example, the magnetic powder is a mixture of samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder, a mixture of neodymium iron magnetic powder and manganese aluminum gas atomized powder, manganese aluminum gas atomized Either a mixture of powder and samarium iron-based magnetic powder, or a mixture of samarium iron-based magnetic powder, neodymium iron-based magnetic powder, and manganese aluminum gas atomized powder may be used. The magnetic powder may be a mixture of a ferrite powder and a samarium iron (SmFeN) magnetic powder or neodymium iron (NdFeB) magnetic powder, which is a rare earth magnetic material, in a necessary amount.

上記非磁性金属粉はステンレス粉であっても良く、またスズ粉であっても良い。ステンレス粉は他の非磁性金属粉に比べて防錆性に優れ、これを用いた焼結体は、防錆性に優れたものとなる。
また、前記混合粉は、2種以上の非磁性金属粉を含むものであっても良い。2種以上の非磁性金属粉を含むものとした場合も、任意に複数種の粉を混合することで所望の特性を得ることができる。
The nonmagnetic metal powder may be stainless steel powder or tin powder. Stainless steel powder is superior in rust resistance as compared to other nonmagnetic metal powders, and a sintered body using the powder is excellent in rust resistance.
The mixed powder may contain two or more kinds of nonmagnetic metal powders. Even when two or more kinds of non-magnetic metal powders are included, desired characteristics can be obtained by arbitrarily mixing a plurality of kinds of powders.

上記混合粉に使用する磁性粉および非磁性金属粉は、いずれも平均粒径が10μm以上150μm以下であることが良い。
これらの粉体のいずれか一方または両方の平均粒径が10μmより小さいと、圧粉体を得るときに、金型内に混合粉が流れ込み難く、所定形状の圧粉体を形成できない。これら粉体のいずれか一方または両方の平均粒径が150μmより大きいと、圧粉体強度が出ない。
The magnetic powder and nonmagnetic metal powder used for the mixed powder preferably have an average particle size of 10 μm or more and 150 μm or less.
When the average particle diameter of either one or both of these powders is smaller than 10 μm, when obtaining a green compact, it is difficult for the mixed powder to flow into the mold and a green compact with a predetermined shape cannot be formed. If the average particle size of one or both of these powders is larger than 150 μm, the green compact strength will not be achieved.

上記磁性粉と非磁性金属粉とは、予め決められた配合比で粉体混合機を用いて混合し、この混合粉を常温下、金型内で加圧成形して圧粉体を得る。
このとき、非磁性金属粉をバインダとして磁性粉を混入した混合磁性粉からなる焼結体は、その非磁性金属粉と磁性粉の組成比を調整しながら粉体混合機で分散させた粉体同士のドライブレンドができるため、焼結体中の磁性粉の相対的な含有率(体積分率)を上げられる。このため、磁気センサに安定してセンシングされる磁力が容易に得られる。
しかも、多極磁石とする焼結体の製造においても、粉体同士のドライブレンドによる混合粉の焼結成形法は、従来のエラストマーや弾性部材の場合の射出成形や圧縮成形に比べて加硫工程などがなく、また成形上の負荷が少ないため、生産工程を大幅に簡略化することができる。また、焼結加工での圧粉体の成形の場合、エラストマーや弾性部材の射出成形や圧縮成形に比べ、金型の摩耗などの問題は生じない。
また、この多極磁石とする焼結体を芯金に取付ける場合に、その芯金への取付けは、簡便な加締加工や、圧入加工等の機械的固定法で行えることから、たとえ高低温環境下で過酷な条件にさらされても信頼性を保持することができる。
上記焼結体に、円周方向に交互に磁極を着磁して多極磁石とする。
The magnetic powder and the nonmagnetic metal powder are mixed at a predetermined blending ratio using a powder mixer, and the mixed powder is pressure-molded in a mold at room temperature to obtain a green compact.
At this time, the sintered body made of the mixed magnetic powder mixed with the magnetic powder using the nonmagnetic metal powder as the binder is dispersed by the powder mixer while adjusting the composition ratio of the nonmagnetic metal powder and the magnetic powder. Since dry blending can be performed, the relative content (volume fraction) of the magnetic powder in the sintered body can be increased. For this reason, the magnetic force stably sensed by the magnetic sensor can be easily obtained.
Moreover, even in the production of sintered bodies that are multipolar magnets, the sintered powder molding method using dry blending of powders is vulcanized compared to conventional injection molding and compression molding for elastomers and elastic members. Since there are no processes and the molding load is small, the production process can be greatly simplified. Further, in the case of forming a green compact by sintering, problems such as wear of the mold do not occur as compared with injection molding or compression molding of an elastomer or an elastic member.
In addition, when mounting this sintered body as a multipolar magnet to a cored bar, the mounting to the cored bar can be done by a simple caulking process or a mechanical fixing method such as press-fitting. Reliability can be maintained even when exposed to harsh conditions in the environment.
A magnetic pole is alternately magnetized in the circumferential direction on the sintered body to obtain a multipolar magnet.

この構成の磁気エンコーダは、多極磁石に磁気センサを対面させて回転検出に使用される。この磁気エンコーダを回転させると、多極磁石の各磁極の通過が磁気センサで検出され、パルスのかたちで回転が検出される。上記多極磁石は、磁性粉の混入した焼結体からなるため、上述したように、安定したセンシングの得られる磁力を確保できて、磁気エンコーダのコンパクト化が図れるうえ、耐摩耗性に優れる。また、多極磁石を芯金に支持させたものとする場合に、加締や圧入などの組付け方法で金属製の芯金と多極磁石とを一体化できるため、固定法としても優れたものとなる。   The magnetic encoder having this configuration is used for rotation detection with a magnetic sensor facing a multipolar magnet. When this magnetic encoder is rotated, the passage of each magnetic pole of the multipolar magnet is detected by the magnetic sensor, and the rotation is detected in the form of pulses. Since the multi-pole magnet is made of a sintered body mixed with magnetic powder, as described above, it is possible to secure a magnetic force with which stable sensing can be obtained, to make the magnetic encoder compact and to have excellent wear resistance. In addition, when a multi-pole magnet is supported on a cored bar, the metal cored bar and the multi-pole magnet can be integrated by an assembly method such as caulking or press-fitting. It will be a thing.

この発明の磁気エンコーダ付き軸受は、内輪と外輪の対向する軌道面間に転動体を介在させた転がり軸受において、前記内輪と外輪のうちの回転側輪に磁気エンコーダを取付け、この磁気エンコーダは、前記内輪と外輪間の空間における固定側輪の端面よりも内側に配置し、前記磁気エンコーダとして、この発明の上記いずれかの構成の磁気エンコーダを用いたことを特徴とする。
この構成によると、回転検出のための磁気エンコーダの堅固性、耐摩耗性に優れ、成形時のスプリングバックによる圧粉体の破損がなく、かつ焼結体の機械的強度にも優れ、生産性に優れる。
A bearing with a magnetic encoder according to the present invention is a rolling bearing in which a rolling element is interposed between raceways facing an inner ring and an outer ring. A magnetic encoder is attached to a rotating side wheel of the inner ring and the outer ring. A magnetic encoder having any one of the above-described configurations of the present invention is used as the magnetic encoder, which is disposed inside the end surface of the fixed side wheel in the space between the inner ring and the outer ring.
According to this configuration, the magnetic encoder for rotation detection has excellent robustness and wear resistance, there is no damage to the green compact due to the spring back during molding, and the sintered body has excellent mechanical strength and productivity. Excellent.

車輪用軸受は、一般に路面の環境下にさらされた状態となり、磁気エンコーダとこれに対面させる磁気センサとの間に砂粒等の粒子が噛み込むことがあるが、この噛み込みに対して、次のように保護される。
すなわち、磁性粉と非磁性金属粉とからなる焼結体の多極磁石の表面硬度は、従来の磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダに比べて硬い。そのため、車輪回転検出のための磁気エンコーダを有した車輪用軸受において、車両走行中に回転側の多極磁石の表面と固定側の磁気センサの表面との間隙に、砂粒などの粒子が噛み込まれても、多極磁石の摩耗損傷に大幅な低減効果がある。
In general, wheel bearings are exposed to the road surface environment, and particles such as sand particles may be caught between the magnetic encoder and the magnetic sensor that faces the magnetic encoder. Protected like.
That is, the surface hardness of the sintered multipolar magnet made of magnetic powder and nonmagnetic metal powder is harder than that of a conventional elastic member or elastomer coder containing magnetic powder or magnetic particles. For this reason, in a wheel bearing having a magnetic encoder for detecting wheel rotation, particles such as sand particles get caught in the gap between the surface of the rotating multipolar magnet and the surface of the stationary magnetic sensor during vehicle running. Even if rare, it has a significant reduction effect on wear damage of multipolar magnets.

この発明の車輪用軸受は、複列の軌道面を内周面に形成した外方部材と、この外方部材の軌道面と対向する軌道面を外周面に形成した内方部材と、これら両軌道面間に介在させた複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
前記内方部材と外方部材のうちの回転側部材に磁気エンコーダを取付け、この磁気エンコーダは、前記内方部材と外方部材間の空間における固定側部材の端面よりも内側に配置し、前記磁気エンコーダとして、円周方向に交互に磁極を形成した多極磁石により構成され、上記多極磁石が、磁性粉と非磁性金属粉との混合粉を焼結させた焼結体であり、前記混合粉が2種以上の磁性粉を含み、前記混合粉を加圧成形してなる圧粉体の空孔率が14〜19vol%であるものとしたため、安定したセンシングの得られる磁力を確保でき、また堅固で耐摩耗性にも優れたものとなる。特に、2種以上の磁性粉を含むものであるため、任意に複数種の粉を混合することで所望の特性を得ることができ、例えば、磁力向上を図りつつ安価に製作することができる。
また、この多極磁石を芯金へ取付ける場合に、その取付けは、簡便な加締加工や圧入加工等の機械的固定法で行えることから、たとえ高低温環境下で過酷な条件にさらされても信頼性を保持することができる。
上記車輪用軸受は、回転検出のための磁気エンコーダの堅固性、耐摩耗性に優れ、成形時のスプリングバックによる圧粉体の破損がなく、かつ焼結体の機械的強度にも優れ、生産性に優れる。
The wheel bearing according to the present invention includes an outer member having a double-row raceway surface formed on the inner peripheral surface, an inner member having a raceway surface opposite to the raceway surface of the outer member formed on the outer peripheral surface, A double-row rolling element interposed between the raceway surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body,
A magnetic encoder is attached to the rotation side member of the inner member and the outer member, and the magnetic encoder is disposed on the inner side of the end surface of the fixed member in the space between the inner member and the outer member, the magnetic encoder is constituted by a multipolar magnet formed of magnetic poles alternately in the circumferential direction, the multi-pole magnet is located in a sintered body obtained by sintering a mixed powder of a magnetic powder and a nonmagnetic metal powder Since the mixed powder contains two or more kinds of magnetic powders, and the porosity of the green compact obtained by pressure-molding the mixed powder is 14 to 19 vol%, the magnetic force for obtaining stable sensing is obtained. It can be secured, and is solid and excellent in wear resistance. In particular, since it contains two or more kinds of magnetic powders, desired characteristics can be obtained by arbitrarily mixing a plurality of kinds of powders. For example, it can be manufactured at low cost while improving magnetic force.
In addition, when this multipole magnet is attached to the core, it can be attached by mechanical fixing methods such as simple caulking and press-fitting, so it is exposed to harsh conditions even in high and low temperature environments. Even reliability can be maintained.
The vehicle wheel bearings, robustness of the magnetic encoder for the rotation detection, excellent wear resistance, no breakage of the green compact by spring back during molding, and excellent in mechanical strength of the sintered body, Excellent productivity.

この発明の第1の実施形態を図1ないし図3と共に説明する。図1に示すように、この磁気エンコーダ10は、金属製の環状の芯金11と、この芯金11の表面に周方向に沿って設けられた多極磁石14とを備える。多極磁石14は周方向に多極に磁化され、交互に磁極N,Sが形成された部材であり、多極に磁化された磁気ディスクからなる。磁極N,Sは、ピッチ円直径PCD(図2)において、所定のピッチpとなるように形成されている。この磁気エンコーダ10は、回転部材(図示せず)に取付けられ、図3に示すように多極磁石14に磁気センサ15を対面させて回転検出に使用されるものであり、磁気エンコーダ10と磁気センサ15とで回転検出装置20が構成される。同図は、磁気エンコーダ10を軸受(図示せず)のシール装置5の構成要素とした応用例を示し、磁気エンコーダ10は、軸受の回転側の軌道輪に取付けられる。シール装置5は、磁気エンコーダ10と、固定側のシール部材9とで構成される。シール装置5の具体構成については後に説明する。   A first embodiment of the present invention will be described with reference to FIGS. As shown in FIG. 1, the magnetic encoder 10 includes a metal annular cored bar 11 and a multipolar magnet 14 provided on the surface of the cored bar 11 along the circumferential direction. The multipolar magnet 14 is a member that is magnetized in multiple poles in the circumferential direction and has magnetic poles N and S alternately formed, and is composed of a magnetic disk magnetized in multiple poles. The magnetic poles N and S are formed to have a predetermined pitch p in the pitch circle diameter PCD (FIG. 2). The magnetic encoder 10 is attached to a rotating member (not shown), and is used for rotation detection with a magnetic sensor 15 facing a multipolar magnet 14 as shown in FIG. The rotation detection device 20 is configured with the sensor 15. This figure shows an application example in which the magnetic encoder 10 is a component of a seal device 5 for a bearing (not shown), and the magnetic encoder 10 is attached to a bearing ring on the rotation side of the bearing. The seal device 5 includes a magnetic encoder 10 and a fixed-side seal member 9. A specific configuration of the sealing device 5 will be described later.

多極磁石14に混入する磁性粉としては、バリウム系およびストロンチウム系などの等方性または異方性フェライト粉であっても良い。これらのフェライト粉は顆粒状粉体であっても、湿式異方性フェライトコアからなる粉砕粉であっても良い。この湿式異方性フェライトコアからなる粉砕粉を磁性粉とした場合、非磁性金属粉との混合粉を磁場中で成形された異方性のグリーン体とする必要がある。   The magnetic powder mixed in the multipolar magnet 14 may be isotropic or anisotropic ferrite powder such as barium-based and strontium-based. These ferrite powders may be granular powders or pulverized powders composed of a wet anisotropic ferrite core. When the pulverized powder made of this wet anisotropic ferrite core is used as a magnetic powder, it is necessary to use a mixed powder with a nonmagnetic metal powder as an anisotropic green body formed in a magnetic field.

また、磁性粉は希土類系磁性材料であっても良い。例えば希土類系磁性材料であるサマリウム鉄(SmFeN)系磁性粉やネオジウム鉄(NdFeB)系磁性粉のそれぞれ単独磁性粉であっても良い。また、磁性粉はマンガンアルミ(MnAl)ガスアトマイズ粉であっても良い。   The magnetic powder may be a rare earth magnetic material. For example, samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder, which are rare earth magnetic materials, may be used alone. The magnetic powder may be manganese aluminum (MnAl) gas atomized powder.

また、上記磁性粉は、サマリウム鉄(SmFeN)系磁性粉、ネオジウム鉄(NdFeB)系磁性粉、およびマンガンアルミ(MnAl)ガスアトマイズ粉のいずれか2種以上を混合させたものであっても良い。例えば、上記磁性粉はサマリウム鉄(SmFeN)系磁性粉とネオジウム鉄(NdFeB)系磁性粉とを混合させたもの、マンガンアルミガスアトマイズ粉とサマリウム鉄系磁性粉とを混合させたもの、およびサマリウム鉄系磁性粉とネオジウム鉄系磁性粉とマンガンアルミガスアトマイズ粉とを混合させたもの、のいずれかであっても良い。
また、例えば、フェライト分だけでは磁力が足りない場合に、フェライト粉に希土類系磁性材料であるサマリウム鉄(SmFeN)系磁性粉やネオジウム鉄(NdFeB)系磁性粉を必要量だけ混合し、磁力向上を図りつつ安価に製作することもできる。
The magnetic powder may be a mixture of two or more of samarium iron (SmFeN) magnetic powder, neodymium iron (NdFeB) magnetic powder, and manganese aluminum (MnAl) gas atomized powder. For example, the magnetic powder is a mixture of samarium iron (SmFeN) magnetic powder and neodymium iron (NdFeB) magnetic powder, a mixture of manganese aluminum gas atomized powder and samarium iron magnetic powder, and samarium iron. Any of a mixture of a system magnetic powder, a neodymium iron system magnetic powder, and a manganese aluminum gas atomized powder may be used.
Also, for example, when the magnetic force is insufficient with only the ferrite content, the required amount of samarium iron (SmFeN) magnetic powder or neodymium iron (NdFeB) magnetic powder, which is a rare earth magnetic material, is mixed with the ferrite powder to improve the magnetic force. It can also be manufactured at a low cost.

また、多極磁石14を形成する非磁性金属粉には、スズ、銅、アルミ、ニッケル、亜鉛、タングステン、マンガンなどの粉体、または非磁性のステンレス系金属粉のいずれか単独(1種)の粉体、もしくは2種以上からなる混合した粉体、もしくは2種以上からなる合金粉末を使用することができる。   In addition, the nonmagnetic metal powder forming the multipolar magnet 14 may be any one of powders of tin, copper, aluminum, nickel, zinc, tungsten, manganese, etc., or nonmagnetic stainless steel metal powder alone (one type). These powders, mixed powders of two or more, or alloy powders of two or more can be used.

磁性粉および非磁性金属粉はいずれも平均粒径で10μm以上150μm以下が良く、好ましくは20μm以上130μm以下が好適である。これら粉体のいずれか一方または両方の平均粒径が10μmより小さいと、混合粉にして常温下、金型内で加圧成形して圧粉体を得ようとしても、金型内にうまく混合粉が流れ込まないことがあり、所定形状の圧粉体を形成できない。また、これら粉体のいずれか一方または両方の平均粒径が150μmより大きいと、混合粉にして常温下、金型内で加圧成形して圧粉体を得ようとしても、圧粉体強度が出ないために、金型から脱型できず成形できない。
上述した平均粒径範囲の磁性粉と非磁性金属粉を予め決められた配合比で粉体混合機を用いて混合し、この混合粉を常温下、金型内で加圧成形することにより圧粉体を得る。
Both the magnetic powder and the nonmagnetic metal powder have an average particle size of 10 μm to 150 μm, preferably 20 μm to 130 μm. If the average particle size of one or both of these powders is smaller than 10 μm, even if you try to obtain a green compact by pressing it in a mold at room temperature to make a mixed powder, it will mix well in the mold Powder may not flow in, and a green compact with a predetermined shape cannot be formed. In addition, if the average particle size of one or both of these powders is larger than 150 μm, even if an attempt is made to obtain a green compact by pressing it in a mold at room temperature as a mixed powder, the green compact strength Therefore, it cannot be removed from the mold and cannot be molded.
The above-mentioned average particle size range magnetic powder and non-magnetic metal powder are mixed at a predetermined mixing ratio using a powder mixer, and the mixed powder is pressed in a mold at room temperature. Obtain powder.

多極磁石14を形成する混合粉中の配合において、磁性粉でない非磁性金属粉の体積配合率は、1vol %以上で90vol %以下が良いが、望ましくは5vol %以上85vol %以下、さらに望ましくは10vol %以上80vol %以下が良い。
磁性粉でない非磁性金属粉の体積含有率が1vol %よりも少ないと、金属バインダとして非磁性金属粉が少ないため、焼結後得られた多極磁石14は、硬いが脆い。このため、後述するように、多極磁石14とする焼結体を芯金11上に加締加工や圧入加工などで機械的に固定しようとしても、割れてしまう。また、金属バインダとして少なすぎるために、圧粉体が成形できない場合がある。
磁性粉でない非磁性金属粉の体積含有率が90vol %より多いと、相対的に磁性成分が少ないため、焼結後、得られた多極磁石14の着磁強度を大きくできず、磁気エンコーダ10に所望される安定したセンシングの得られる磁力を確保することができない。
In the blending in the mixed powder forming the multipolar magnet 14, the volume blending ratio of the non-magnetic metal powder that is not magnetic powder is preferably 1 vol% or more and 90 vol% or less, preferably 5 vol% or more and 85 vol% or less, and more desirably 10 vol% or more and 80 vol% or less are good.
When the volume content of the nonmagnetic metal powder that is not magnetic powder is less than 1 vol%, the nonmagnetic metal powder is small as a metal binder, so that the multipolar magnet 14 obtained after sintering is hard but brittle. For this reason, as will be described later, even if the sintered body to be the multipolar magnet 14 is mechanically fixed on the core metal 11 by caulking or press-fitting, it is cracked. Moreover, since there are too few metal binders, a green compact may not be shape | molded.
If the volume content of the nonmagnetic metal powder that is not magnetic powder is more than 90 vol%, the magnetic component is relatively small, so that the magnetization strength of the obtained multipolar magnet 14 cannot be increased after sintering, and the magnetic encoder 10 Therefore, it is not possible to secure the magnetic force for obtaining the desired stable sensing.

焼結後得られた多極磁石14の線膨張係数は、0.5×10-5以上で9.0×10-5以下が良いが、望ましくは0.8×10-5以上で7×10-5以下、さらに望ましくは0.9×10-5以上で5×10-5以下が良い。
芯金11の材質となる金属材料の線膨張係数は、たとえばステンレス鋼(JIS規格のSUS430)の場合、1.0×10-5である。多極磁石14の線膨張係数が0.5×10-5より大きい場合、もしくは9×10-5より小さい場合、芯金11の材質となる金属材料との線膨張係数の差が大きいため、高低温環境下で使用されときの寸法変化量の差が大きくなり、多極磁石14と芯金11が干渉して多極磁石14が破損する場合がある。また、多極磁石14と芯金11の固定が確保できなくなる。
The linear expansion coefficient of the multipolar magnet 14 obtained after sintering is preferably 0.5 × 10 −5 or more and 9.0 × 10 −5 or less, but preferably 0.8 × 10 −5 or more and 7 × 10 −5 or less, more preferably 0.9 × 10 −5 or more and 5 × 10 −5 or less.
For example, in the case of stainless steel (JIS standard SUS430), the linear expansion coefficient of the metal material used as the material of the core metal 11 is 1.0 × 10 −5 . When the linear expansion coefficient of the multipolar magnet 14 is larger than 0.5 × 10 −5 or smaller than 9 × 10 −5 , the difference in linear expansion coefficient from the metal material that is the material of the core metal 11 is large. The difference in dimensional change when used in a high and low temperature environment becomes large, and the multipolar magnet 14 and the core metal 11 may interfere with each other and the multipolar magnet 14 may be damaged. Further, it becomes impossible to secure the multipolar magnet 14 and the cored bar 11.

圧粉体作成にあたり、磁性粉と非磁性金属粉の配合時に、例えば、ステアリン酸亜鉛などのような潤滑剤を添加して圧粉体成形性を改善することもできる。
これらの圧粉体(グリーン体)は、5〜30vol %の空孔を持つことが望ましい。好ましくは12〜22vol %、さらに好ましくは14〜19vol %である。空孔率が5vol %より少ない場合、成形圧力を除圧する際に原料粉の弾性変形の回復により生じるスプリングバックにより、圧粉体(グリーン体)が破損する可能性がある。また、空孔が30vol %よりも多い場合、焼結体の機械的強度が弱くなるため、後述するように、芯金11上に加締加工や圧入加工などで機械的に固定しようとしても割れてしまう。また、粒子間の密着不足により、圧粉体(グリーン体)が成形できない場合がある。
In forming the green compact, a lubricant such as zinc stearate may be added to improve the green compact moldability when the magnetic powder and the nonmagnetic metal powder are blended.
These green compacts (green bodies) desirably have 5 to 30 vol% pores. Preferably it is 12-22 vol%, More preferably, it is 14-19 vol%. When the porosity is less than 5 vol%, the green compact may be damaged due to springback caused by recovery of elastic deformation of the raw material powder when the molding pressure is released. In addition, when the number of pores is more than 30 vol%, the mechanical strength of the sintered body is weakened, and as described later, even if it is attempted to be mechanically fixed on the core metal 11 by caulking or press fitting, etc. End up. In addition, the green compact may not be formed due to insufficient adhesion between the particles.

磁性粉および非磁性金属粉は高価であることから、板厚は薄い方が好ましい。圧縮成形性およびハンドリングから、好ましい板厚は0.3mm〜5mm、さらに好ましくは0.6mm〜3mmである。板厚が0.3mmよりも薄い場合、金型内への充填が困難であり、グリーン成形体が得難い。また、得られたグリーン成形体もハンドリング時に破損してしまう可能性があるので好ましくない。一方、グリーン成形体の板厚が10mmよりも厚い場合、成形性やハンドリングは向上するが、コスト面では不利となる。また、厚すぎるとグリーン成形体の密度むらが発生しやすくなり、焼成後の変形が生じやすくなるという問題がある。これらの点から、板厚は0.3mm〜5mmが好ましい。
得られたグリーン成形体は、図4のように炉内で加熱焼結することで、ディスク形状の焼結体とされる。この炉内での加熱焼結は、大気中、電気炉で行っても良く、また真空炉により、または不活性ガスを流入しながらプッシャー炉、もしくはイナート炉で行っても良い。
Since magnetic powder and non-magnetic metal powder are expensive, it is preferable that the plate thickness is thin. In view of compression moldability and handling, the preferred plate thickness is 0.3 mm to 5 mm, more preferably 0.6 mm to 3 mm. When the plate thickness is less than 0.3 mm, it is difficult to fill the mold and it is difficult to obtain a green molded body. Moreover, since the obtained green molded object may also be damaged at the time of handling, it is not preferable. On the other hand, when the green molded body is thicker than 10 mm, the moldability and handling are improved, but it is disadvantageous in terms of cost. On the other hand, when the thickness is too thick, uneven density of the green molded body tends to occur, and deformation after firing tends to occur. From these points, the plate thickness is preferably 0.3 mm to 5 mm.
The obtained green molded body is heated and sintered in a furnace as shown in FIG. 4 to form a disk-shaped sintered body. The heating and sintering in the furnace may be performed in an electric furnace in the atmosphere, or may be performed in a pusher furnace or an inert furnace while flowing an inert gas in a vacuum furnace.

磁気エンコーダ10を形成する焼結体は、防錆処理のために、例えば図5のように防錆被膜22を施しても良い。この防錆被膜22は換言すれば防食被膜である。この防錆被膜22には、クリヤー系の高防食性塗料を用いることができる。この塗料は芯金11と焼結体間の接着剤としての効果も期待でき、また焼結多孔質体表層の空孔内部に浸入し、クリヤー塗膜成分のアンカー効果により表面で好適に保持され、長期間の使用においても防錆被膜層として良好な密着性を維持することができる。
クリヤー系の高防食性塗料としては、変性エポキシ塗料、変性エポキシフェノール硬化タイプ塗料、エポキシメラミン系塗料、アクリル系塗料などが挙げられる。これらの中で、とくに変性エポキシフェノール硬化系およびエポキシメラミン系のクリヤー系塗料が好適である。
また、脂肪または洗浄した焼結体にクリヤーを真空含浸、デッピング(浸漬)、吹付け(スプレー)塗装、静電塗装等の方法によって塗布し、自然または強制的に風乾して焼結体に付着したクリヤー中の溶剤成分を除去し、所定の焼付条件(温度・時間)でクリヤー層を焼結体上に焼付けることで、図5のように、多極磁石14の表面に防錆被膜22を形成しても良い。この防錆被膜22は、磁気エンコーダ10全体の表面に形成しても良い。この磁気エンコーダ10を例えば車輪用軸受に取付ける場合、上記のように形成された防錆(食)被膜の膜厚は、車輪用軸受として要求される耐食性能を満足できる厚みであれば特に制限されないが、望ましくは0.5μm以上が良い。
車輪用軸受として使用されるとき、上記磁気センサ15と磁気エンコーダ10表面の間隙に砂粒などを噛み込むと、磁気エンコーダ10表面に傷を付けることがある。被膜の厚みが0.5μmより薄いと、その傷は基材である焼結体まで到達してしまい、そこからの錆の発生が防止できないことがある。
The sintered body forming the magnetic encoder 10 may be provided with a rust preventive coating 22 as shown in FIG. In other words, the rust preventive film 22 is an anticorrosive film. The rust-proof coating 22 can be a clear high anti-corrosion paint. This paint can also be expected to have an effect as an adhesive between the core metal 11 and the sintered body, and penetrates into the pores of the surface layer of the sintered porous body and is suitably held on the surface by the anchor effect of the clear coating film component. Even during long-term use, good adhesion can be maintained as a rust-proof coating layer.
Examples of clear anticorrosive paints include modified epoxy paints, modified epoxy phenol curable paints, epoxy melamine paints, and acrylic paints. Among these, a modified epoxy phenol curing type and epoxy melamine type clear coating are particularly suitable.
Also, apply the clear to vacuum or impregnation (dipping), spray (spray) coating, electrostatic coating, etc. on fat or washed sintered body, and adhere to the sintered body by natural or forced air drying. The solvent component in the clear is removed, and the clear layer is baked on the sintered body under a predetermined baking condition (temperature and time), so that the rust preventive coating 22 is applied to the surface of the multipolar magnet 14 as shown in FIG. May be formed. The rust preventive coating 22 may be formed on the entire surface of the magnetic encoder 10. When this magnetic encoder 10 is attached to, for example, a wheel bearing, the film thickness of the anticorrosion (corrosion) film formed as described above is not particularly limited as long as it can satisfy the corrosion resistance required for the wheel bearing. However, 0.5 μm or more is desirable.
When used as a wheel bearing, if sand particles or the like are caught in the gap between the magnetic sensor 15 and the surface of the magnetic encoder 10, the surface of the magnetic encoder 10 may be damaged. If the thickness of the coating is thinner than 0.5 μm, the scratches may reach the sintered body as the base material, and the generation of rust from there may not be prevented.

芯金11の材質となる金属は、磁性体、特に強磁性体となる金属が好ましく、例えば磁性体でかつ防錆性を有する鋼板が用いられる。このような鋼板として、フェライト系のステンレス鋼板(JIS規格のSUS430系等)や、防錆処理された圧延鋼板等を用いることができる。   The metal that is the material of the core metal 11 is preferably a magnetic material, particularly a metal that is a ferromagnetic material. For example, a steel plate that is magnetic and has rust prevention properties is used. As such a steel plate, a ferritic stainless steel plate (JIS standard SUS430 series or the like), a rust-proof rolled steel plate, or the like can be used.

芯金11の形状は、種々の円環状の形状とできるが、多極磁石14を固定できる形状が好ましい。特に、加締固定や嵌合固定等の機械的な固定が行える形状が好ましい。
加締固定の場合、芯金11は、例えば図1(B)に示すように、嵌合側となる内径側の円筒部11aと、その一端から外径側へ延びる立板部11bと、外径縁の他筒部11cとでなる断面概ね逆Z字状の円環状とする。
円筒部11a、立板部11b、および他筒部11cは、鋼板等の金属板から一体にプレス成形されたものである。立板部11bは平坦に形成されており、その平坦な立板部11bの表面に重ねて多極磁石14の未着磁の焼結体を組み込み、外周縁の他筒部11cを加締めることで、芯金11の立板部11bに重なり状態に多極磁石14が固定される。上記他筒部11cは、その断面における先端側部分または略全体が、加締部となる。また、この加締部は、芯金11の円周方向の全周に渡って延び、したがって円環状となっている。多極磁石14の加締部である他筒部11cにより固定される部分は、多極磁石14の被検出面となる表面よりも凹む凹み部14aとなっていて、芯金11の加締部である他筒部11cが、多極磁石14の被検出面となる表面から突出しないようにされている。上記凹み部14aは、多極磁石14の被検出面となる表面よりも若干背面側に後退した段差部として形成されている。多極磁石14の外周縁における凹み部14aよりも裏面側の部分は、断面が円弧状の曲面とされ、この曲面部分に沿うように、他筒部11cの加締部分が形成される。加締固定は、図5に断面図で示すように、多極磁石14の外周部を全周にわたって加締固定してもよい。
The shape of the core metal 11 can be various annular shapes, but a shape capable of fixing the multipolar magnet 14 is preferable. In particular, a shape capable of performing mechanical fixing such as caulking and fitting fixing is preferable.
In the case of caulking and fixing, for example, as shown in FIG. 1B, the core metal 11 includes an inner diameter side cylindrical portion 11a serving as a fitting side, an upright plate portion 11b extending from one end to the outer diameter side, The cross section formed by the other cylindrical portion 11c of the radial edge has a generally inverted Z-shaped annular shape.
The cylindrical portion 11a, the upright plate portion 11b, and the other cylindrical portion 11c are integrally formed by pressing from a metal plate such as a steel plate. The standing plate portion 11b is formed flat, and a non-magnetized sintered body of the multipolar magnet 14 is built on the surface of the flat standing plate portion 11b, and the other cylindrical portion 11c of the outer peripheral edge is crimped. Thus, the multipolar magnet 14 is fixed in an overlapping state with the standing plate portion 11 b of the core metal 11. The other cylindrical portion 11c has a crimped portion at the front end side portion or substantially the whole in its cross section. Further, this caulking portion extends over the entire circumference of the core metal 11 and thus has an annular shape. The portion fixed by the other cylindrical portion 11 c that is the crimping portion of the multipolar magnet 14 is a recessed portion 14 a that is recessed from the surface to be detected of the multipolar magnet 14, and the crimping portion of the core metal 11. The other cylindrical portion 11c is configured not to protrude from the surface to be detected of the multipolar magnet 14. The recessed portion 14 a is formed as a stepped portion that is slightly retracted to the back side from the surface to be detected of the multipolar magnet 14. A portion of the outer peripheral edge of the multipolar magnet 14 on the back side with respect to the recessed portion 14a is a curved surface having a circular cross section, and a crimped portion of the other cylindrical portion 11c is formed along the curved surface portion. As shown in the sectional view of FIG. 5, the caulking and fixing may be performed by caulking and fixing the outer periphery of the multipolar magnet 14 over the entire circumference.

また、加締固定は、図6,図7に断面図および正面図で示すように行っても良い。この例では、芯金11を図1の例と同じく、内径側の円筒部11aと、その一端から外径側へ延びる立板部11bと、その外径縁の円筒状の他筒部11cとでなる断面概ね逆Z字状の円環状としている。その他筒部11cにおける周方向の複数箇所に、ステーキング等によって、内径側へ突出状態に塑性変形させた塑性変形部11caを設け、その塑性変形部11caにより多極磁石14を芯金11の立板部11bに固定している。この例においても、多極磁石14の塑性変形部11caにより固定される部分は、多極磁石14の被検出面となる表面よりも凹む凹み部14bとなっていて、これにより塑性変形部11caが多極磁石14の被検出面となる表面に突出しないように成されている。凹み部14bは、外径側に至に従って表面から背面側へ近づく傾斜面14bとされている。   Further, the caulking and fixing may be performed as shown in the sectional view and the front view in FIGS. In this example, the cored bar 11 has a cylindrical portion 11a on the inner diameter side, a standing plate portion 11b extending from one end to the outer diameter side, and a cylindrical other cylindrical portion 11c on the outer diameter edge, as in the example of FIG. The cross section is generally an inverted Z-shaped ring. In addition, a plastic deformation portion 11ca that is plastically deformed in a protruding state toward the inner diameter side by staking or the like is provided at a plurality of locations in the circumferential direction of the cylindrical portion 11c, and the multipolar magnet 14 is placed upright on the core metal 11 by the plastic deformation portion 11ca. It is fixed to the plate part 11b. Also in this example, the portion fixed by the plastic deformation portion 11ca of the multipolar magnet 14 is a dent portion 14b that is recessed from the surface of the multipolar magnet 14 that becomes the detection surface, whereby the plastic deformation portion 11ca is The multipolar magnet 14 is configured not to protrude from the surface to be detected. The recessed portion 14b is an inclined surface 14b that approaches the rear surface side from the front surface toward the outer diameter side.

図1および図6に示す各例において、芯金11は、図8のように、立板部11bが、内周側部分11baと外周側部分11bbとで互いに軸方向にずれた段付き形状を成すものとしても良い。図8において、図示は省略するが、多極磁石14は、図1などの例と同様に立板部11bにおける他筒部11cの突出側の面に配置される。
さらに、図9に示すように、上記各例と同様に断面概ね逆Z字状とされた芯金11において、その他筒部11cの端縁における円周方向複数箇所に舌片状の爪部11cbを設け、この舌片状爪部11cbを矢印のように内径側へ塑性変形させることにより、つまり加締ることにより、多極磁石14を芯金11に固定しても良い。多極磁石14は、図1などの例と同様に立板部11bにおける他筒部11cの突出側の面に配置される。この例においても、図8の例と同様に、立板部11bを段付き形状としている。立板部11bを段付きとした場合、多極磁石14の立板部11b側の側面形状は、図9(B)に示すように、立板部11bの段付き形状に沿った側面形状としてもよい。
In each example shown in FIG. 1 and FIG. 6, the cored bar 11 has a stepped shape in which the upright plate portion 11b is displaced in the axial direction between the inner peripheral portion 11ba and the outer peripheral portion 11bb as shown in FIG. It can also be made. In FIG. 8, although not shown, the multipolar magnet 14 is disposed on the surface of the upright plate portion 11b on the protruding side of the other cylindrical portion 11c, as in the example of FIG.
Furthermore, as shown in FIG. 9, in the metal core 11 having a substantially inverted Z-shaped cross section as in the above examples, tongue-like claw portions 11cb are provided at a plurality of locations in the circumferential direction at the edge of the other cylindrical portion 11c. The multi-pole magnet 14 may be fixed to the core metal 11 by plastically deforming the tongue-like claw portion 11cb toward the inner diameter side as shown by an arrow, that is, by crimping. The multipolar magnet 14 is arranged on the surface of the upright plate portion 11b on the protruding side of the other cylindrical portion 11c as in the example of FIG. Also in this example, like the example of FIG. 8, the standing plate portion 11b has a stepped shape. When the standing plate portion 11b is stepped, the side surface shape of the multipolar magnet 14 on the side of the standing plate portion 11b is, as shown in FIG. 9B, a side shape along the stepped shape of the standing plate portion 11b. Also good.

なお、圧入固定の場合、例えば図10に示すように、芯金11を、内径側の円筒部11aと、その一端から外径側へ延びる立板部11b”とでなる断面L字状の円環状とする。円筒部11aと立板部11b”とは、鋼板等の金属板から一体にプレス成形されたものである。立板部11b”は平坦に形成されており、その平坦な立板部11b”まで、多極磁石14となるディスク状の焼結体を円筒部11aの外周に圧入して固定する。立板部11b”の高さは、多極磁石14の内周部付近が当たる高さとされる。   In the case of press-fitting and fixing, for example, as shown in FIG. 10, the cored bar 11 is a circle having an L-shaped cross section including a cylindrical portion 11 a on the inner diameter side and a standing plate portion 11 b ″ extending from one end to the outer diameter side. The cylindrical portion 11a and the upright plate portion 11b ″ are integrally formed by pressing from a metal plate such as a steel plate. The upright plate portion 11b ″ is formed flat, and a disk-like sintered body that becomes the multipolar magnet 14 is press-fitted and fixed to the outer periphery of the cylindrical portion 11a up to the flat upright plate portion 11b ″. The height of the upright plate portion 11 b ″ is set so that the vicinity of the inner peripheral portion of the multipolar magnet 14 hits.

また、上記各例では芯金11を鋼板プレス成形品製としたが、図11に示すように、芯金11は、鋼材等の削り出し品からなるものとしても良い。同図の例の芯金11は立板部11bの溝部11baを切削加工溝としている。   In each of the above examples, the metal core 11 is made of a steel plate press-formed product. However, as shown in FIG. 11, the metal core 11 may be made of a machined product such as a steel material. The cored bar 11 in the example of the figure has the groove 11ba of the standing plate 11b as a cutting groove.

上記のように金属環状部材である芯金11に周方向に沿って設けられた混合磁性粉焼結磁石ディスクは、周方向に多極に着磁することにより多極磁石14となり、この多極磁石14と芯金11とで磁気エンコーダ10が構成される。この場合に、非磁性金属粉をバインダとして磁性粉を混入した混合磁性粉焼結磁石ディスク(焼結体)は、その非磁性金属粉と磁性粉の組成比を調整しながら粉体混合機で分散させることで粉体同士のドライブレンドとすることができる。そのため焼結体中の磁性粉の相対的な含有率(体積分率)を上げられる。したがって、磁気センサ15(図3)に安定してセンシングされる磁力が容易に得られ、多極磁石14を厚くする必要がない。   The mixed magnetic powder sintered magnet disk provided along the circumferential direction on the metal core 11 that is a metal annular member as described above becomes a multipolar magnet 14 by being magnetized in multiple directions in the circumferential direction. The magnet 14 and the cored bar 11 constitute a magnetic encoder 10. In this case, the mixed magnetic powder sintered magnet disk (sintered body) mixed with magnetic powder using nonmagnetic metal powder as a binder is adjusted with a powder mixer while adjusting the composition ratio of the nonmagnetic metal powder and magnetic powder. By dispersing, a dry blend of powders can be obtained. Therefore, the relative content rate (volume fraction) of the magnetic powder in the sintered body can be increased. Therefore, the magnetic force stably sensed by the magnetic sensor 15 (FIG. 3) can be easily obtained, and it is not necessary to make the multipolar magnet 14 thick.

この構成の磁気エンコーダ10は、図3と共に前述したように、多極磁石14に磁気センサ15を対面させて回転検出に使用される。磁気エンコーダ10を回転させると、多極磁石14の多極に磁化された各磁極N,Sの通過が磁気センサ15で検出され、パルスのかたちで回転が検出される。磁極N,Sのピッチp(図2)は細かく設定でき、例えばピッチpが1.5mm、ピッチ相互差±3%という精度を得ることもでき、これにより精度の高い回転検出が行える。ピッチ相互差は、磁気エンコーダ10から所定距離だけ離れた位置で検出される各磁極間の距離の差を目標ピッチに対する割合で示した値である。磁気エンコーダ10が図3のように軸受のシール装置5に応用されたものである場合、磁気エンコーダ10の取付けられた軸受の回転が検出されることになる。
多極磁石14は、磁性粉の混入した焼結体(混合磁性粉焼結ディスク)からなるため、次に示すように、安定したセンシングの得られる磁力を確保しながら薄肉化できて、磁気エンコーダ10のコンパクト化が図れるうえ、耐摩耗性に優れ、また生産性にも優れたものとなる。
As described above with reference to FIG. 3, the magnetic encoder 10 having this configuration is used for rotation detection with the magnetic sensor 15 facing the multipolar magnet 14. When the magnetic encoder 10 is rotated, the magnetic sensor 15 detects the passage of the magnetic poles N and S magnetized in the multipole of the multipolar magnet 14, and the rotation is detected in the form of pulses. The pitch p (FIG. 2) of the magnetic poles N and S can be set finely. For example, it is possible to obtain an accuracy that the pitch p is 1.5 mm and the pitch difference is ± 3%, thereby enabling highly accurate rotation detection. The pitch mutual difference is a value indicating a difference in distance between the magnetic poles detected at a position away from the magnetic encoder 10 by a predetermined distance as a ratio to the target pitch. When the magnetic encoder 10 is applied to the bearing seal device 5 as shown in FIG. 3, the rotation of the bearing to which the magnetic encoder 10 is attached is detected.
Since the multi-pole magnet 14 is made of a sintered body (mixed magnetic powder sintered disk) mixed with magnetic powder, the magnetic pole can be thinned while securing a magnetic force to obtain stable sensing as shown below. 10 can be made compact, and it is excellent in wear resistance and productivity.

さらに、多極磁石14の表面硬度は、従来の磁性粉や磁性粒子の含有する弾性部材やエラストマー製のコーダに比べて硬い。そのため、車輪回転検出のための回転検出装置20に応用した場合に、車両走行中に回転側の多極磁石14の表面と固定側の磁気センサ15の表面の間隙に、砂粒などの粒子が噛み込まれても、多極磁石14の摩耗損傷が生じ難く、従来の弾性体製としたものに比べて、摩耗の大幅な低減効果がある。
なお、金属環状部材である芯金11に周方向に沿って設けられた多極磁石14となる混合磁性粉焼結磁石ディスク表面の平坦度は、200μm以下が良いが、望ましくは100μm以下が良い。ディスク表面の平坦度が200μmより上である場合、磁気センサ15とディスク面の間隙(エアギャップ)が、磁気エンコーダ10の回転中に変化することで、センシング精度を悪化させてしまう。
同様の理由で、磁気エンコーダ10の回転中における、混合磁性粉焼結磁石ディスク表面の面振れも、200μm以下が良く、望ましくは100μm以下が良い。
Furthermore, the surface hardness of the multipolar magnet 14 is harder than that of an elastic member or elastomer coder containing conventional magnetic powder or magnetic particles. For this reason, when applied to the rotation detection device 20 for detecting wheel rotation, particles such as sand particles bite into the gap between the surface of the rotation-side multipolar magnet 14 and the surface of the stationary-side magnetic sensor 15 during vehicle travel. Even if it is inserted, wear damage of the multipolar magnet 14 hardly occurs, and there is a significant reduction effect of wear as compared with a conventional elastic body.
The flatness of the surface of the mixed magnetic powder sintered magnet disk that becomes the multipolar magnet 14 provided along the circumferential direction on the metal core 11 that is a metal annular member is preferably 200 μm or less, and preferably 100 μm or less. . When the flatness of the disk surface is higher than 200 μm, the gap between the magnetic sensor 15 and the disk surface (air gap) changes during the rotation of the magnetic encoder 10, thereby degrading the sensing accuracy.
For the same reason, the surface runout of the mixed magnetic powder sintered magnet disk surface during rotation of the magnetic encoder 10 is preferably 200 μm or less, and preferably 100 μm or less.

つぎに、この磁気エンコーダ10を備えた磁気エンコーダ付き軸受である車輪用軸受の一例、およびそのシール装置5の例を、図12,図13と共に説明する。図12に示すように、この車輪用軸受は、内方部材1および外方部材2と、これら内外の部材1,2間に収容される複数の転動体3と、内外の部材1,2間の端部環状空間を密封するシール装置5,13とを備える。一端のシール装置5は、磁気エンコーダ10付きのものである。内方部材1および外方部材2は、転動体3の軌道面1a,2aを有しており、各軌道面1a,2aは溝状に形成されている。内方部材1および外方部材2は、各々転動体3を介して互いに回転自在となった内周側の部材および外周側の部材のことであり、軸受内輪および軸受外輪の単独であっても、これら軸受内輪や軸受外輪と別の部品とが組合わさった組立部材であっても良い。また、内方部材1は、軸であっても良い。転動体3は、ボールまたはころからなり、この例ではボールが用いられている。   Next, an example of a wheel bearing which is a bearing with a magnetic encoder provided with the magnetic encoder 10 and an example of the seal device 5 will be described with reference to FIGS. As shown in FIG. 12, the wheel bearing includes an inner member 1 and an outer member 2, a plurality of rolling elements 3 accommodated between the inner and outer members 1 and 2, and the inner and outer members 1 and 2. Sealing devices 5 and 13 for sealing the end annular space. The sealing device 5 at one end is provided with a magnetic encoder 10. The inner member 1 and the outer member 2 have raceway surfaces 1a and 2a of the rolling element 3, and each raceway surface 1a and 2a is formed in a groove shape. The inner member 1 and the outer member 2 are an inner peripheral member and an outer peripheral member that are rotatable with respect to each other via the rolling elements 3, respectively. An assembly member in which the bearing inner ring and the bearing outer ring are combined with another component may be used. Further, the inner member 1 may be a shaft. The rolling element 3 consists of a ball or a roller, and a ball is used in this example.

この車輪用軸受は、複列の転がり軸受、詳しくは複列のアンギュラ玉軸受とされていて、その軸受内輪は、各転動体列の軌道面1a,1aがそれぞれ形成された一対の分割型の内輪18,19からなる。これら内輪18,19は、ハブ輪6の軸部の外周に嵌合し、ハブ輪6と共に上記内方部材1を構成する。なお、内方部材1は、上記のようにハブ輪6および一対の分割型の内輪18,19からなる3部品の組立部品とする代わりに、ハブ輪6および片方の内輪18が一体化された軌道面付きのハブ輪と、もう片方の内輪19とで構成される2部品からなるものとしても良い。   This wheel bearing is a double-row rolling bearing, more specifically, a double-row angular contact ball bearing, and the inner ring of the bearing is a pair of split type in which the raceway surfaces 1a and 1a of the respective rolling element rows are respectively formed. It consists of inner rings 18 and 19. The inner rings 18 and 19 are fitted to the outer periphery of the shaft portion of the hub ring 6 and constitute the inner member 1 together with the hub ring 6. The inner member 1 is integrated with the hub ring 6 and one inner ring 18 instead of the three-piece assembly part including the hub ring 6 and the pair of split inner rings 18 and 19 as described above. It is good also as what consists of two components comprised by the hub ring with a raceway surface and the other inner ring | wheel 19. FIG.

ハブ輪6には、等速自在継手7の一端(例えば外輪)が連結され、ハブ輪6のフランジ部6aに車輪(図示せず)がボルト8で取付けられる。等速自在継手7は、その他端(例えば内輪)が駆動軸に連結される。
外方部材2は、軸受外輪からなり、懸架装置におけるナックル等からなるハウジング(図示せず)に取付けられる。転動体3は各列毎に保持器4で保持されている。
One end (for example, an outer ring) of the constant velocity universal joint 7 is connected to the hub wheel 6, and a wheel (not shown) is attached to the flange portion 6 a of the hub wheel 6 with a bolt 8. The other end (for example, inner ring) of the constant velocity universal joint 7 is connected to the drive shaft.
The outer member 2 includes a bearing outer ring, and is attached to a housing (not shown) including a knuckle or the like in the suspension device. The rolling elements 3 are held by a holder 4 for each row.

図13は、磁気エンコーダ付きのシール装置5を拡大して示す。このシール装置5は、図3に示したものと同じであり、その一部を前述したが、図13において、詳細を説明する。このシール装置5は、磁気エンコーダ10またはその芯金11がスリンガとなり、内方部材1および外方部材2のうちの回転側の部材に取付けられる。この例では、回転側の部材は内方部材1であるため、磁気エンコーダ10は内方部材1に取付けられる。
また、磁気エンコーダ10は、外方部材2と内方部材1のうちの固定側部材である外方部材2の端面2kよりも内側で、外方部材2と内方部材1間の空間に配置されている。この実施形態では、磁気エンコーダ10は、その全体が、内方部材1と外方部材2間の空間における軌道面1a,2aと、内方部材1および外方部材2の端面1k,2kとの間に収容されている。
FIG. 13 shows an enlarged view of the sealing device 5 with a magnetic encoder. The sealing device 5 is the same as that shown in FIG. 3, and a part of the sealing device 5 has been described above, but the details will be described with reference to FIG. The sealing device 5 is attached to a rotating member of the inner member 1 and the outer member 2 with the magnetic encoder 10 or its core 11 serving as a slinger. In this example, since the member on the rotation side is the inner member 1, the magnetic encoder 10 is attached to the inner member 1.
The magnetic encoder 10 is disposed in the space between the outer member 2 and the inner member 1 on the inner side of the end surface 2k of the outer member 2 which is a fixed side member of the outer member 2 and the inner member 1. Has been. In this embodiment, the magnetic encoder 10 is entirely composed of the raceway surfaces 1a and 2a in the space between the inner member 1 and the outer member 2, and the end surfaces 1k and 2k of the inner member 1 and the outer member 2. Is housed in between.

このシール装置5は、内方部材1と外方部材2に各々取付けられた第1および第2の金属板製の環状のシール板(11),12を有する。第1のシール板(11)は、上記磁気エンコーダ10における芯金11のことであり、以下、芯金11として説明する。磁気エンコーダ10は、図1ないし図3と共に前述した第1の実施形態にかかるものであり、その重複する説明を省略する。この磁気エンコーダ10における多極磁石14に対面して、同図のように磁気センサ15を配置することにより、車輪回転速度の検出用の回転検出装置20が構成される。   This sealing device 5 has annular sealing plates (11), 12 made of first and second metal plates attached to the inner member 1 and the outer member 2, respectively. The first seal plate (11) is the core metal 11 in the magnetic encoder 10 and will be described as the core metal 11 below. The magnetic encoder 10 is according to the first embodiment described above with reference to FIGS. 1 to 3, and redundant description thereof is omitted. The rotation detection device 20 for detecting the wheel rotation speed is configured by arranging the magnetic sensor 15 as shown in the figure so as to face the multipolar magnet 14 in the magnetic encoder 10.

第2のシール板12は、上記シール部材9(図3)を構成する部材であり、第1のシール板である芯金11の立板部11bに摺接するサイドリップ16aと円筒部11aに摺接するラジアルリップ16b,16cとを一体に有する。これらリップ16a〜16cは、第2のシール板12に加硫接着された弾性部材16の一部として設けられている。これらリップ16a〜16cの枚数は任意で良いが、図13の例では、1枚のサイドリップ16aと、軸方向の内外に位置する2枚のラジアルリップ16c,16bとを設けている。第2のシール板12は、固定側部材である外方部材2との嵌合部に弾性部材16を抱持したものとしてある。すなわち、弾性部材16は、円筒部12aの内径面から先端部外径までを覆う先端覆い部16dを有するものとし、この先端覆い部16dが、第2のシール板12と外方部材2との嵌合部に介在する。
第2のシール板12の円筒部12aと第1のシール板である芯金11の他筒部11cとは僅かな径方向隙間をもって対峙させ、その隙間でラビリンスシール17を構成している。
The second seal plate 12 is a member constituting the seal member 9 (FIG. 3), and slides on the side lip 16a and the cylindrical portion 11a that are in sliding contact with the upright plate portion 11b of the core metal 11 that is the first seal plate. Radial lips 16b and 16c that are in contact with each other are integrally provided. The lips 16 a to 16 c are provided as a part of the elastic member 16 that is vulcanized and bonded to the second seal plate 12. The number of the lips 16a to 16c may be arbitrary, but in the example of FIG. 13, one side lip 16a and two radial lips 16c and 16b positioned inside and outside in the axial direction are provided. The second seal plate 12 is configured such that an elastic member 16 is held in a fitting portion with the outer member 2 that is a fixed side member. That is, the elastic member 16 has a tip cover portion 16d that covers from the inner diameter surface of the cylindrical portion 12a to the outer diameter of the tip portion, and this tip cover portion 16d is formed between the second seal plate 12 and the outer member 2. Intervenes in the fitting part.
The cylindrical portion 12a of the second seal plate 12 and the other cylinder portion 11c of the core metal 11 that is the first seal plate are opposed to each other with a slight radial gap, and the labyrinth seal 17 is configured by the gap.

この構成の車輪用軸受によると、車輪と共に回転する内方部材1の回転が、この内方部材1に取付けられた磁気エンコーダ10を介して、磁気センサ15で検出され、車輪回転速度が検出される。
磁気エンコーダ10は、シール装置5の構成要素としたため、部品点数を増やすことなく、車輪の回転を検出することができる。車輪用軸受は、一般に路面の環境下にさらされた状態となり、磁気エンコーダ10とこれに対面させる磁気センサ15との間に砂粒等の粒子が噛み込むことがあるが、上記のように磁気エンコーダ10の多極磁石14は焼結体からなるものであって硬質であるため、多極磁石14の表面の摩耗損傷は従来の弾性体製のものに比べて大幅に低減される。また車輪用軸受5における軸受端部の空間は、周辺に等速ジョイント7や軸受支持部材(図示せず)があって限られた狭い空間となるが、磁気エンコーダ10の多極磁石14が上記のように薄肉化できるため、回転検出装置20の配置が容易になる。
内外の部材1,2間のシールについては、第2のシール板12に設けられた各シールリップ16a〜16cの摺接と、第2のシール板12の円筒部12aに第1のシール板である芯金11の他筒部11cが僅かな径方向隙間で対峙することで構成されるラビリンスシール17とで得られる。
According to the wheel bearing of this configuration, the rotation of the inner member 1 rotating together with the wheel is detected by the magnetic sensor 15 via the magnetic encoder 10 attached to the inner member 1, and the wheel rotation speed is detected. The
Since the magnetic encoder 10 is a constituent element of the sealing device 5, the rotation of the wheel can be detected without increasing the number of parts. The wheel bearing is generally exposed to a road surface environment, and particles such as sand particles may be caught between the magnetic encoder 10 and the magnetic sensor 15 facing the magnetic encoder 10 as described above. Since the ten multipolar magnets 14 are made of a sintered body and are hard, wear damage on the surface of the multipolar magnets 14 is greatly reduced as compared with a conventional elastic body. Further, the space at the bearing end portion of the wheel bearing 5 is a narrow space limited by the constant velocity joint 7 and the bearing support member (not shown) in the periphery, but the multipolar magnet 14 of the magnetic encoder 10 is the above-described space. Therefore, the rotation detector 20 can be easily arranged.
As for the seal between the inner and outer members 1 and 2, the first seal plate is used for sliding contact of the seal lips 16 a to 16 c provided on the second seal plate 12 and the cylindrical portion 12 a of the second seal plate 12. It is obtained with the labyrinth seal 17 configured by the other cylindrical portion 11c of a certain core metal 11 facing each other with a slight radial gap.

なお、図12および図13に示す車輪用軸受では、磁気エンコーダ10の芯金11を、図1の形状のものとした場合について示しているが、磁気エンコーダ10として図6〜図11に示した各例のものを用いても良い。
また、磁気エンコーダ10を軸受のシール装置5の構成要素とする場合等において、多極磁石14を、上記各実施形態とは逆に軸受に対して内向きに設けても良い。すなわち、多極磁石14を芯金11の軸受内側の面に設けても良い。その場合、芯金11は非磁性体製のものとすることが好ましい。
In the wheel bearings shown in FIGS. 12 and 13, the core bar 11 of the magnetic encoder 10 is shown as having the shape of FIG. 1, but the magnetic encoder 10 is shown in FIGS. 6 to 11. Each example may be used.
Further, when the magnetic encoder 10 is used as a component of the bearing seal device 5, the multipolar magnet 14 may be provided inward with respect to the bearing, contrary to the above embodiments. That is, the multipolar magnet 14 may be provided on the inner surface of the bearing of the core metal 11. In that case, the cored bar 11 is preferably made of a non-magnetic material.

さらに、磁気エンコーダ10は、上記各実施形態のように多極磁石14を軸方向に向けたものに限らず、例えば図14に示すように、径方向に向けて設けても良い。同図の例は、シール装置5のスリンガとなるシール板である芯金11Aに、その立板部11bから軸方向の外側へ延びる第2の円筒部11dを設け、第2の円筒部11dの外周に多極磁石14を固定している。すなわち、第2の円筒部11dの先端には外径側へ延びる加締板部11eを一体に設け、この加締板部11eを加締ることで、多極磁石14に第2の円筒部11dの外周面に固定している。立板部11bは円筒部11aから外径側に延びている。すなわち、この例の芯金11Aは、円筒部11a、立板部11b、および第2の円筒部11dが順次続く断面概ね逆Z字状の部分に、その第2の円筒部11dの先端から加締板部11eが外径側へ一体に延びた形状のものとされている。磁気センサ15は、多極磁石14に対して径方向に対面配置する。   Furthermore, the magnetic encoder 10 is not limited to the one in which the multipolar magnets 14 are directed in the axial direction as in the above embodiments, and may be provided in the radial direction, for example, as shown in FIG. In the example shown in the drawing, a second cylindrical portion 11d extending outward in the axial direction from the standing plate portion 11b is provided on a core metal 11A which is a sealing plate serving as a slinger of the sealing device 5, and the second cylindrical portion 11d A multipolar magnet 14 is fixed to the outer periphery. That is, a crimping plate portion 11e extending to the outer diameter side is integrally provided at the tip of the second cylindrical portion 11d, and the second cylindrical portion is attached to the multipolar magnet 14 by crimping the crimping plate portion 11e. It is fixed to the outer peripheral surface of 11d. The upright plate portion 11b extends from the cylindrical portion 11a to the outer diameter side. That is, the metal core 11A in this example is added from the tip of the second cylindrical portion 11d to a substantially inverted Z-shaped section in which the cylindrical portion 11a, the standing plate portion 11b, and the second cylindrical portion 11d are successively connected. The fastening plate portion 11e has a shape extending integrally to the outer diameter side. The magnetic sensor 15 is disposed facing the multipolar magnet 14 in the radial direction.

図15は、磁気エンコーダ10の多極磁石14を径方向に向けて設けた他の実施形態を示す。図16は、図15の磁気エンコーダ10を同図の矢印A方向から見た半部を示す。この実施形態では、シール装置5のスリンガとなる第1のシール板である芯金11Bが、内方部材1の外径面に嵌合する円筒部11aと、その一端から外径側へ延びて内径側へ折り重ねられた二重の立板部11bbと、その立板部11bbから軸方向に延びる第2の円筒部11dとを有し、その円筒部11dの一端に周方向に分散形成した複数の下片状の爪部11fが設けられている。多極磁石14は、第2の円筒部11dの外径面に重なって配置され、上記爪部11fを加締めることで、第2の円筒部11dに固定されている。
また、この実施形態では、内方部材1の一端部外径面に、芯金11Bの円筒部11aを嵌合させる小径部1bが段差を持って形成され、この小径部1bに円筒部11aが嵌合させてある。これにより、内方部材1における小径部1bの段差面に円筒部11aの一端が当接して、磁気エンコーダ10が軸方向に位置決めされる。芯金11Bの第2の円筒部11dには、多極磁石14の配置を妨げない範囲で除肉部11daが形成され、磁気エンコーダ10の軽量化が図られている。除肉部11daは、円周方向の複数箇所に設けた開口からなる。多極磁石14の爪部11fで抑えられる面が傾斜面の凹み部14bとされていることは、図6の例と同様である。この実施形態におけるその他の構成は、図12,図13に示した実施形態と同じである。
FIG. 15 shows another embodiment in which the multipolar magnet 14 of the magnetic encoder 10 is provided in the radial direction. FIG. 16 shows a half of the magnetic encoder 10 of FIG. 15 as viewed from the direction of arrow A in FIG. In this embodiment, a cored bar 11B, which is a first seal plate serving as a slinger of the sealing device 5, extends from the cylindrical portion 11a fitted to the outer diameter surface of the inner member 1 to the outer diameter side from one end thereof. It has a double standing plate portion 11bb folded to the inner diameter side and a second cylindrical portion 11d extending in the axial direction from the standing plate portion 11bb, and is distributed in the circumferential direction at one end of the cylindrical portion 11d. A plurality of lower piece-like claw portions 11f are provided. The multipolar magnet 14 is disposed so as to overlap the outer diameter surface of the second cylindrical portion 11d, and is fixed to the second cylindrical portion 11d by caulking the claw portion 11f.
Moreover, in this embodiment, the small diameter part 1b which fits the cylindrical part 11a of the metal core 11B is formed in the outer diameter surface of the one end part of the inner member 1 with a level | step difference, and the cylindrical part 11a is formed in this small diameter part 1b. It is fitted. Thus, one end of the cylindrical portion 11a comes into contact with the step surface of the small diameter portion 1b in the inner member 1, and the magnetic encoder 10 is positioned in the axial direction. A thinned portion 11da is formed in the second cylindrical portion 11d of the core metal 11B within a range that does not hinder the arrangement of the multipolar magnets 14, thereby reducing the weight of the magnetic encoder 10. The thinning portion 11da is formed of openings provided at a plurality of locations in the circumferential direction. It is the same as that of the example of FIG. 6 that the surface suppressed by the claw part 11f of the multipolar magnet 14 is the inclined part 14b. Other configurations in this embodiment are the same as those in the embodiment shown in FIGS.

図17は、磁気エンコーダ10の多極磁石14を径方向に向けて設けたさらに他の実施形態を示す。この実施形態では、図15の実施形態において、芯金11Bの爪部11dと多極磁石14との間に緩衝部材21を介在させている。緩衝部材21は、ゴム材または合成樹脂材からなり、例えばリング状のものとされている。その他の構成は図15の実施形態と同じである。   FIG. 17 shows still another embodiment in which the multipolar magnet 14 of the magnetic encoder 10 is provided in the radial direction. In this embodiment, in the embodiment of FIG. 15, the buffer member 21 is interposed between the claw portion 11 d of the core metal 11 </ b> B and the multipolar magnet 14. The buffer member 21 is made of a rubber material or a synthetic resin material, and has, for example, a ring shape. Other configurations are the same as those of the embodiment of FIG.

なお、上記各実施形態の磁気エンコーダ10は、いずれも軸受のシール装置5の構成部品とした場合につき説明したが、これら各実施形態の磁気エンコーダ10は、シール装置5の構成部品とするものに限らず、単独で回転検出に利用することができる。例えば、図1の実施形態における磁気エンコーダ10を、シール装置5とは別に軸受に設けても良い。
また、図18に示すように、磁気エンコーダ10Aは、多極磁石14が径方向に向くように、円筒状の芯金11Cの外径面に多極磁石14を設けた構成のものとしても良い。その場合に、磁気エンコーダ10を、車輪用軸受における外方部材2Aの外径面に嵌合させて設けても良い。同図の車輪用軸受は、内方部材1Aおよび外方部材2Aのうちの外方部材2Aを回転側の部材とし、外方部材2Aに車輪取付フランジ26を設けたものである。シール装置5Aは、磁気エンコーダ10Aとは別に軸受に設けられる。外方部材2Aは一対の分割内輪18A,19Aからなる。
The magnetic encoder 10 in each of the above embodiments has been described as a component of the bearing seal device 5. However, the magnetic encoder 10 of each of the embodiments is a component of the seal device 5. Not limited to this, it can be used alone for rotation detection. For example, the magnetic encoder 10 in the embodiment of FIG. 1 may be provided in the bearing separately from the seal device 5.
As shown in FIG. 18, the magnetic encoder 10A may have a configuration in which the multipolar magnet 14 is provided on the outer diameter surface of the cylindrical metal core 11C so that the multipolar magnet 14 faces in the radial direction. . In this case, the magnetic encoder 10 may be provided by being fitted to the outer diameter surface of the outer member 2A in the wheel bearing. The wheel bearing shown in FIG. 2 is one in which the outer member 2A of the inner member 1A and the outer member 2A is a rotating side member, and the wheel mounting flange 26 is provided on the outer member 2A. The seal device 5A is provided on the bearing separately from the magnetic encoder 10A. The outer member 2A includes a pair of split inner rings 18A and 19A.

さらに、この発明の磁気エンコーダは、多極磁石の芯金への固定構造等として次のいずれかる構造(1) 〜(8) を採用したものとしても良い。これらの構造(1) 〜(8) は上記の各説明とは別の観点でまとめ直したものである。
(1) .芯金は、回転側部材(例えば転がり軸受の回転輪)へ圧入する圧入部と、多極磁石を取付ける部分とが、相互に離間している。(例えば図1の実施形態)
(2) .上記(1) において、多極磁石の芯金への固定を、芯金を加締めた加締部によって行う。この場合に、多極磁石は芯金の一部に重ね、断面における多極磁石の一端を、芯金の加締により行う。(例えば図1,図18の各実施形態)
(3) .上記(2) において、芯金の加締部が円周方向の複数箇所に別れている。(例えば図16の実施形態)
(4) .上記(2) において、多極磁石の芯金の加締部で固定される部分が、多極磁石の被検出面となる表面よりも凹む凹み部となっていて、芯金の加締部が上記多極磁石の被検出面となる表面から突出しないものとする。上記凹み部は、例えば、上記被検出面となる表面に対して傾斜した傾斜面または段差面からなる。(例えば図1、図16の各実施形態)
(5) .上記(2) において、芯金の多極磁石と接する面に、除肉部分を有する。(例えば図17の実施形態)
(6) .上記(2) において、芯金の加締部が円周方向に延びる円弧状または円環状の部分である。(例えば図1、図15の各実施形態)
(7).上記(2) において、多極磁石の上記加締部で固定される部分と反対側の端部を当接される当接部が芯金に設けられている。この当接部は、芯金を回転側部材(例えば転がり軸受の回転輪)に対して軸方向に位置決めする位置決め手段を兼ねている。(例えば図15の実施形態。その立板部11bbと円筒部11aとを併せた部分が、上記当接部となる。)
(8).上記(2) において、加締部で押えられる芯金表面部分と上記加締部との間に緩衝材が挿入されている。(例えば図17の実施形態)
この磁気エンコーダは、上記(1) 〜(8) などの新規の特徴を有する種々の多極磁石取付構成を可能とすることができ、そのため、応用範囲が広く、かつ高い信頼性を付与でき、非常に優れていると言える。
Furthermore, the magnetic encoder of the present invention may employ any of the following structures (1) to (8) as a structure for fixing the multipolar magnet to the core metal. These structures (1) to (8) have been rearranged from a viewpoint different from those described above.
(1). In the metal core, a press-fitting portion that is press-fitted into a rotation-side member (for example, a rotating wheel of a rolling bearing) and a portion to which a multipolar magnet is attached are separated from each other. (For example, the embodiment of FIG. 1)
(2). In the above (1), the multipolar magnet is fixed to the cored bar by a crimped portion in which the cored bar is crimped. In this case, the multipolar magnet is overlapped with a part of the core metal, and one end of the multipolar magnet in the cross section is formed by caulking the core metal. (For example, each embodiment of FIGS. 1 and 18)
(3). In the above (2), the crimping portion of the core metal is divided into a plurality of locations in the circumferential direction. (For example, the embodiment of FIG. 16)
(Four) . In the above (2), the portion fixed by the crimping portion of the core of the multipolar magnet is a recess that is recessed from the surface to be detected of the multipolar magnet, and the crimping portion of the core is not It is assumed that the multipolar magnet does not protrude from the surface to be detected. The said recessed part consists of an inclined surface or a level | step difference surface inclined with respect to the surface used as the said to-be-detected surface, for example. (For example, each embodiment of FIG. 1 and FIG. 16)
(Five) . In the above (2), the surface of the cored bar in contact with the multipolar magnet has a thinned portion. (For example, the embodiment of FIG. 17)
(6). In the above (2), the caulking portion of the core metal is an arc-shaped or annular portion extending in the circumferential direction. (For example, each embodiment of FIG. 1 and FIG. 15)
(7) In the above (2), the cored bar is provided with an abutting portion that abuts the end opposite to the portion fixed by the caulking portion of the multipolar magnet. The abutting portion also serves as a positioning means for positioning the cored bar in the axial direction with respect to the rotating side member (for example, a rotating wheel of a rolling bearing). (For example, the embodiment of FIG. 15. The portion combining the upright plate portion 11 bb and the cylindrical portion 11 a is the contact portion.)
(8) In the above (2), a cushioning material is inserted between the core metal surface portion pressed by the caulking portion and the caulking portion. (For example, the embodiment of FIG. 17)
This magnetic encoder can enable various multi-pole magnet mounting configurations having novel features such as the above (1) to (8), so that the application range is wide and high reliability can be imparted. It can be said that it is very excellent.

(A)はこの発明の第1の実施形態にかかる磁気エンコーダの部分斜視図、(B)は同磁気エンコーダの組立過程を示す部分斜視図である。(A) is a fragmentary perspective view of the magnetic encoder concerning the 1st Embodiment of this invention, (B) is a fragmentary perspective view which shows the assembly process of the magnetic encoder. 同磁気エンコーダを正面から示す磁極の説明図である。It is explanatory drawing of the magnetic pole which shows the same magnetic encoder from the front. 同磁気エンコーダを備えたシール装置と磁気センサとを示す部分破断正面図である。It is a partial fracture front view showing a sealing device provided with the magnetic encoder and a magnetic sensor. グリーン体を焼結体とする工程図である。It is process drawing which uses a green body as a sintered compact. この発明の他に実施形態にかかる磁気エンコーダの部分斜視図である。It is a fragmentary perspective view of the magnetic encoder concerning this embodiment other than this invention. この発明のさらに他に実施形態にかかる磁気エンコーダの部分斜視図である。It is a fragmentary perspective view of the magnetic encoder concerning other embodiment of this invention. 同磁気エンコーダの正面図である。It is a front view of the magnetic encoder. 芯金の変形例の部分断面図である。It is a fragmentary sectional view of the modification of a metal core. (A),(B)は、それぞれ芯金の他の変形例、およびその芯金を用いた磁気エンコーダの部分斜視図である。(A), (B) is another partial perspective view of the other modification of a metal core, and the magnetic encoder using the metal core, respectively. この発明のさらに他の実施形態にかかる磁気エンコーダの部分斜視図である。It is a fragmentary perspective view of the magnetic encoder concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる磁気エンコーダの部分斜視図である。It is a fragmentary perspective view of the magnetic encoder concerning further another embodiment of this invention. 第1の実施形態にかかる磁気エンコーダを備えた車輪用軸受の全体の断面図である。It is a sectional view of the whole wheel bearing provided with the magnetic encoder concerning a 1st embodiment. 同車輪用軸受の部分断面図である。It is a fragmentary sectional view of the bearing for the wheels. この発明のさらに他の実施形態にかかる車輪用軸受の磁気エンコーダ部分の断面図である。It is sectional drawing of the magnetic encoder part of the wheel bearing concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる車輪用軸受の磁気エンコーダ部分の断面図である。It is sectional drawing of the magnetic encoder part of the wheel bearing concerning further another embodiment of this invention. 同磁気エンコーダの部分正面図である。It is a partial front view of the magnetic encoder. この発明のさらに他の実施形態にかかる車輪用軸受の磁気エンコーダ部分の断面図である。It is sectional drawing of the magnetic encoder part of the wheel bearing concerning further another embodiment of this invention. この発明のさらに他の実施形態にかかる車輪用軸受の断面図である。It is sectional drawing of the wheel bearing concerning other embodiment of this invention.

符号の説明Explanation of symbols

1…内方部材
2…外方部材
1k,2k…端面
1A…内方部材
2A…外方部材
3…転動体
5…シール装置
10…磁気エンコーダ
11,11A,11B…芯金(第1のシール板)
11a…円筒部
11b…立板部
11c…他筒部
12…第2のシール板
14…多極磁石
15…磁気センサ
16a…サイドリップ
16b,16c…ラジアルリップ
20…回転検出装置
DESCRIPTION OF SYMBOLS 1 ... Inner member 2 ... Outer member 1k, 2k ... End surface 1A ... Inner member 2A ... Outer member 3 ... Rolling body 5 ... Sealing device 10 ... Magnetic encoder 11, 11A, 11B ... Core metal (1st seal | sticker) Board)
11a ... Cylindrical portion 11b ... Standing plate portion 11c ... Other cylindrical portion 12 ... Second seal plate 14 ... Multipolar magnet 15 ... Magnetic sensor 16a ... Side lips 16b, 16c ... Radial lip 20 ... Rotation detection device

Claims (3)

複列の軌道面を内周面に形成した外方部材と、この外方部材の軌道面と対向する軌道面を外周面に形成した内方部材と、これら両軌道面間に介在させた複列の転動体とを備え、車体に対して車輪を回転自在に支持する車輪用軸受であって、
前記内方部材と外方部材のうちの回転側部材に磁気エンコーダを取付け、この磁気エンコーダは、前記内方部材と外方部材間の空間における固定側部材の端面よりも内側に配置し、前記磁気エンコーダ、円周方向に交互に磁極を形成した多極磁石と、この多極磁石を支持する芯金とにより構成され、上記多極磁石が、磁性粉と非磁性金属粉との粉体同士のドライブレンドによる混合粉を焼結させた焼結体であり、前記混合粉が2種以上の磁性粉を含み、前記混合粉を加圧成形してなる圧粉体の空孔率が14〜19vol %であることを特徴とする車輪用軸受。
An outer member having a double-row raceway surface formed on the inner circumferential surface, an inner member having a raceway surface facing the raceway surface of the outer member on the outer circumferential surface, and a composite member interposed between the two raceway surfaces. A wheel bearing comprising a rolling element in a row and rotatably supporting the wheel with respect to the vehicle body,
A magnetic encoder is attached to the rotation side member of the inner member and the outer member, and the magnetic encoder is disposed on the inner side of the end surface of the fixed member in the space between the inner member and the outer member, The magnetic encoder is composed of a multipolar magnet having magnetic poles alternately formed in the circumferential direction, and a cored bar that supports the multipolar magnet. The multipolar magnet is a powder of magnetic powder and nonmagnetic metal powder. a sintered body obtained by sintering the mixed-powder by dry blending between the mixed powder comprises two or more magnetic powders, the porosity of the green compact formed by pressure-molding the mixed powder A wheel bearing characterized by being 14 to 19 vol%.
請求項1において、前記2種以上の磁性粉として、フェライト粉と希土類系磁性粉とを含む車輪用軸受。   The wheel bearing according to claim 1, wherein the two or more kinds of magnetic powders include ferrite powder and rare earth magnetic powder. 請求項1において、前記2種以上の磁性粉として、サマリウム鉄系磁性粉、ネオジウム鉄系磁性粉、およびマンガンアルミガスアトマイズ粉のいずれか2種以上を用いた車輪用軸受。   2. The wheel bearing according to claim 1, wherein any two or more of samarium iron-based magnetic powder, neodymium iron-based magnetic powder, and manganese aluminum gas atomized powder are used as the two or more types of magnetic powder.
JP2004359631A 2001-09-25 2004-12-13 Wheel bearing Expired - Fee Related JP4319135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004359631A JP4319135B2 (en) 2001-09-25 2004-12-13 Wheel bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001290300 2001-09-25
JP2004359631A JP4319135B2 (en) 2001-09-25 2004-12-13 Wheel bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003002672A Division JP2004037441A (en) 2003-01-08 2003-01-08 Magnetic encoder and wheel bearing using it

Publications (2)

Publication Number Publication Date
JP2005164602A JP2005164602A (en) 2005-06-23
JP4319135B2 true JP4319135B2 (en) 2009-08-26

Family

ID=34737424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004359631A Expired - Fee Related JP4319135B2 (en) 2001-09-25 2004-12-13 Wheel bearing

Country Status (1)

Country Link
JP (1) JP4319135B2 (en)

Also Published As

Publication number Publication date
JP2005164602A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
US6789948B2 (en) Magnetic encoder and wheel bearing assembly using the same
US20080226211A1 (en) Magnetic encoder and wheel support bearing assembly using the same
US7207723B2 (en) Wheel support bearing assembly with magnetic encoder
JP2004037441A (en) Magnetic encoder and wheel bearing using it
JP3967353B2 (en) Magnetic encoder and bearing provided with the same
JP4312149B2 (en) Bearing with magnetic encoder and wheel bearing
JP4361003B2 (en) Wheel bearing
JP4319135B2 (en) Wheel bearing
JP2004084925A (en) Magnetic encoder and wheel bearing provided with encoder
JP4408798B2 (en) Bearing with magnetic encoder and wheel bearing
JP4037406B2 (en) Magnetic encoder and bearing provided with the same
JP3881359B2 (en) Bearing seal device
JP2004085534A (en) Magnetic encoder and bearing for wheel equipped with the same
JP4498330B2 (en) Magnetic encoder and wheel bearing provided with the same
JP2005099042A (en) Bearing with magnetic encoder and bearing for wheel
JP2005106091A (en) Magnetic encoder and wheel bearing having this encoder
JP2005099041A (en) Bearing with magnetic encoder and bearing for wheel
JP2004085533A (en) Magnetic encoder and wheel bearing equipped with it
JP2004084926A (en) Bearing for wheel
JP2004085535A (en) Magnetic encoder and bearing for wheel equipped with the same
JP2005049359A (en) Bearing with magnetic encoder
JP2008107187A (en) Magnetic encoder, bearing for wheel equipped therewith, and magnet body for the magnetic encoder
JP2004085536A (en) Magnetic encoder and bearing for wheel equipped with the same
JP2006330005A (en) Magnetic encoder and bearing for wheel equipped with the same
JP2008083066A (en) Bearing for wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070921

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090527

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120605

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130605

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees