JP4244482B2 - Store energy equipment operation system - Google Patents

Store energy equipment operation system Download PDF

Info

Publication number
JP4244482B2
JP4244482B2 JP2000023169A JP2000023169A JP4244482B2 JP 4244482 B2 JP4244482 B2 JP 4244482B2 JP 2000023169 A JP2000023169 A JP 2000023169A JP 2000023169 A JP2000023169 A JP 2000023169A JP 4244482 B2 JP4244482 B2 JP 4244482B2
Authority
JP
Japan
Prior art keywords
store
temperature
air
humidity
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000023169A
Other languages
Japanese (ja)
Other versions
JP2001218367A (en
Inventor
文雄 松岡
雅裕 井上
信正 天笠
裕一 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000023169A priority Critical patent/JP4244482B2/en
Publication of JP2001218367A publication Critical patent/JP2001218367A/en
Priority to JP2008020919A priority patent/JP4618304B2/en
Application granted granted Critical
Publication of JP4244482B2 publication Critical patent/JP4244482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/221General power management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/246Home appliances the system involving the remote operation of lamps or lighting equipment

Description

【0001】
【発明の属する技術分野】
この発明は、スーパーマーケットやコンビニエンスストアーなどの店舗用設備機器を総合的に管理、制御、運用、診断し、店舗用エネルギー機器を最適に運用する店舗用エネルギー機器運用システムに関する。
【0002】
【従来の技術】
従来、スーパーマーケットやコンビニエンスストアーなどの食品店舗では、空調機、冷凍機、照明、その他の電気機器が個別に各センサからの検出信号を用いて運転制御する運用システムが行われている。
または、特開平11−201523号公報に示すように、1つの食品店舗内で、オープンシーケースの負荷となる店舗温度を外気温度と空調機/冷蔵冷凍オープンシーケース(または冷凍機)の空冷負荷比率に応じて変化させ、消費電力を少なくする運用システムが行われている。
【0003】
【発明が解決しようとする課題】
上記のような従来の店舗の運用システムでは、設備機器システムを構成する各電気機器の総消費電力が省エネルギーの観点から総合的に管理されず、総ランニングコストが安く運用されていないという問題点があった。例えば、空調機と換気扇が別個に制御されており、冷房運転時に、空調機は店内目標温度に対して運転・停止を繰り返すだけであり、換気扇は換気量を確保するために常に一定の外気を導入するだけであった。
【0004】
また、顧客の快適性を考慮して店舗内の温湿度分布の管理がされていなかったり、さらに食品店舗の場合などオープンショーケース周りの店内の温湿度のショーケース内への侵入空気による食品鮮度維持について管理されていないという問題点があった。
さらに、同一系統のスーパーマーケットやコンビニエンスストアーへの一括省エネ、省コスト、運用アルゴリズムの配信や設備機器制御データの更新や、逆に1店舗から本店あるいはサービス会社への送信が考慮されておらず、情報通信に対応したシステムになっていないという問題点があった。
【0005】
この発明は、上述のような課題を解決するためになされたもので、店舗用設備機器を総合的に管理、制御、運用、診断し、省エネルギーでかつ省ランニングコストで快適でしかも食品鮮度維持に優れた店舗用エネルギー機器運用システムを得ることを目的とする。
【0006】
【課題を解決するための手段】
この発明に係る店舗用エネルギー機器運用システムにおいては、電力系統からの電力の供給を受けて、店舗内の空調、冷凍、照明等を行う複数の電気機器と、この各電気機器に応じた状態量を検出する複数のセンサと、この各センサからの検出信号を受けて電気機器運用アルゴリズムに基づき各電気機器間の状態量に一定の相関をとらせながら管理・制御する制御信号を各電気機器へ出力する管理・制御手段と、この管理・制御手段の電気機器運用アルゴリズムを更新する運用アルゴリズム更新手段とを備えたものである。
【0007】
また、前記管理・制御手段に、電話回線または電力線を介して管理・制御データまたは電気機器運用アルゴリズムを送受信する通信手段を備えたものである。
【0008】
さらに、前記管理・制御手段に、各電気機器に応じた状態量を検出する各センサの検出信号を受けて一括して管理するセンサ群管理手段を備えたものである。
【0009】
また、前記通信手段による通信用制御データとして、電力料金、外気温度、翌日の天気予報、翌日の外気温度予測値、翌日の空調負荷予測値、各電気機器の運用履歴データのいずれかを加工する通信用データ加工手段を備えたものである。
【0010】
また、前記通信用制御データ内の運用履歴データを、店舗用各設備機器の消費電力量、ランニングコスト、外気温度、店内温度、店内湿度のいずれかで構成する性能診断用データ加工手段を備えたものである。
【0011】
また、電力系統からの電力の供給を受けて、店舗用の空調を行う空調機および店舗内に外気を導入する換気扇と、外気の温度または湿度を検出する外気温湿度センサと、この外気温湿度センサからの検出信号を受けて、電気機器運用アルゴリズムに基づき前記空調機および前記換気扇の間の状態量に一定の相関をとらせながら管理・制御する制御信号を前記空調機および前記換気扇へ出力する管理・制御手段と、前記空調機による冷房運転時に、前記外気温湿度センサからの検出信号を受け、外気空気のエンタルピーと室内設定温度からあらかじめ決められた室内設定エンタルピーとの差、または外気空気のエンタルピーと室内空気エンタルピーの差が、設定ゾーン以下になった場合に、前記管理・制御手段から前記換気扇へ給気風量の低エンタルピー外気導入量指示を出力する低エンタルピー外気導入省エネ運用制御手段とを備えたものである。
【0015】
また、電力系統からの電力の供給を受けて稼動する店舗用の空調機および複数のショーケースと、この複数のショーケースの庫内温度を検出する複数の温度センサと、電気機器運用アルゴリズムに基づき電気機器の間の状態量に一定の相関をとらせながら前記冷凍機を管理・制御する制御信号を前記冷凍機へ出力する管理・制御手段と、前記複数の温度センサからの検出信号を受けて、前記空調機の店内温湿度の目標温湿度をあらかじめ設定したショーケース省エネ運用アルゴリズムに基づいて決定した制御信号を管理・制御手段から前記空調機へ出力する空調目標温湿度制御手段とを備えたものである。
【0016】
また、複数の電力系統からの電力の供給を受けて、店舗用電気機器に各々個別に設けられた分電盤と、複数の電力系統からの前記各分電盤の電力を検出する電力検出手段と、電気機器運用アルゴリズムに基づき電気機器の間の状態量に一定の相関をとらせながら電気機器を管理・制御する制御信号を前記電気機器へ出力する管理・制御手段と、前記電力検出手段からの検出信号を受けてその電力検出値があらかじめ設定された電力値ゾーンにある場合、あらかじめ設定された優先度に従って、他の電力系統の電力を使用する電力系統融通指示を前記管理・制御手段から出力する系統間電力融通手段とを備えたものである。
【0017】
【発明の実施の形態】
実施の形態1.
図1はこの発明の実施の形態1による店舗用エネルギー機器運用システムの構成図である。なお、この店舗用エネルギー機器運用システムは、複数の店舗、例えば店舗A〜Zが、電話回線を介して本部との間で、制御データと運用アルゴリズムの送受信を行い、設備機器の管理・制御を行うものであるが、図1では店舗Aにおける設備機器の構成を中心に示している。
【0018】
図において、管理・制御部1は、通信ポート2を介して空調機3、冷凍機4、ショーケース群5、屋外照明6、店内照明7、換気扇8、天井扇9、その他電気機器10、電力融通制御盤11を管理・制御する。なお、通信ポート2は小型設備サーバなどのデジタル通信ポートである。
【0019】
空調機3およびその分電盤、冷凍機4およびその分電盤、ショーケース群5およびその分電盤、屋外照明6およびその分電盤、店内照明7およびその分電盤、換気扇8およびその分電盤、天井扇9およびその分電盤、その他電気機器10およびその分電盤には、それぞれに対応する状態量を検出するセンサ3bおよびセンサ3c、センサ4bおよびセンサ4c、センサ5bおよびセンサ5c、センサ6bおよびセンサ6c、センサ7bおよびセンサ7c、センサ8bおよびセンサ8c、センサ9bおよびセンサ9c、センサ10bおよびセンサ10cが設けられ、各センサの検出信号がそれぞれインターフェース3a、インターフェース4a、インターフェース5a、インターフェース6a、インターフェース7a、インターフェース8a、インターフェース9a、インターフェース10aを介して通信ポート2とデータの送受信を行い、管理・制御部1が電気機器運用アルゴリズムに基づいて、各電気機器の状態量に一定の相関をとらせながら各電気機器を制御する。
【0020】
低圧電力動力盤系統制御盤12は、電力系統から店舗Aの低圧電力契約(例えば20kW)を超えたか否かを監視する。電灯系統制御盤13は、店舗Aの時間帯別電灯契約(例えば25kVA)を超えたが否かを監視する。低圧電力動力盤系統制御盤12に設けられたセンサ11bと電灯系統制御盤13に設けられたセンサ11cにより受電部の各々の電力量を検出して、インターフェース11aを介して通信ポート2とデータの送受信を行う。
なお、電力融通制御盤11はインターフェース11aを介して通信ポート2とデータの送受信を行う。
【0021】
店舗Aでは、管理・制御部1がモデムAを介して電話回線に接続され、本部では、モデムMを介して電話回線に接続される。そこで、店舗Aと本部の間では、電話回線を経由して制御データと電気機器運用アルゴリズムの送受信を行う。同様に店舗Zでは、モデムZを介して電話回線に接続され、本部との間で、制御データと電気機器運用アルゴリズムの送受信を行う。なお、図示していない他の店舗でも同様に本部との間で送受信を行う。
【0022】
本部と連帯したサービスセンターは、各店舗から受けたデータにより、予防保全、異常診断、故障診断を行い、メンテナンスを行うことができる。
また、エンジニアリングセンターは、電気機器運用アルゴリズムと更新された新しい制御データを本部と連帯して各店舗に送り、店舗用エネルギー機器の省エネルギー、省ランニングコストで快適でしかも食品鮮度維持が可能な最適運用システムを提供できる。
さらに、電力会社は、電気機器運用アルゴリズムと更新された新しい制御データを本部と連帯して各店舗に送り、店舗用エネルギー機器を制御する。例えば、電力需要が過大となり、ピークカットが必要な場合に、店舗用エネルギー機器のうち、停止可能な機器を停止する。
【0023】
各電気機器は、管理・制御部1からの指示に応じて運転・制御または停止する。そこで、
各電気機器について、以下に説明する。
空調機3は、冷房・暖房などの運転モードや風量を設定可能であり、リモコンにて温度設定と湿度設定を変更可能である。そのリモコンによる各種設定値は、管理・制御部1へも送られる。また、逆に、管理・制御部1内の運用アルゴリズムのうち空調機3に係わる空調目標温湿度制御手段に対する指示が通信ポート2を経由して空調機3へ送られる。
【0024】
冷凍機4は、通常連続運転を行うが、管理・制御部1が運転・停止指示を行い、かつ冷凍機4内の冷凍空調排熱回収手段に対する指示を行う。冷凍機4の設定温度もしくは庫内温度はセンサ4bの検出信号として通信ポート2を経由して管理・制御部1へ送られる。
【0025】
ショーケース群5は、冷凍ストッカー、リーチインショーケース、多段型冷蔵ショーケース、アイスショーケース、カウンター内冷蔵庫などから構成される。これらの冷蔵用ショーケースはケース内の温度を0〜10℃に設定され、冷凍用ショーケースは−20〜−40℃に設定される。これらのショーケース群の設定温度もしくは庫内温度はセンサ5bの検出信号として通信ポート2を経由して管理・制御部1へ送られる。
【0026】
屋外照明6は、サイン看板・駐車場照明と店頭看板用電源であり、管理・制御部1は室外の照度センサ6bからの信号を受けて、屋外照明6のオン・オフおよび照度の調光を制御する。また、管理・制御部1から運用アルゴリズムの中の屋外照明に係わる系統間電力融通手段に対する指示が、通信ポート2を経由して屋外照明6と電力融通制御盤11へ送られる。
【0027】
店内照明7は、売り場照明、カウンターバックヤード照明であり、管理・制御部1は店内の照度センサ7bからの信号を受けて、店内照明7のオン・オフおよび照度の調光を制御する。また、管理・制御部1から運用アルゴリズムのうち店内照明に係わる照度制御用タイマの設定に基づき省エネ調光制御手段に対する指示が、通信ポート2を経由して店内照明7へ送られる。
【0028】
換気扇8は、屋外の新鮮な外気を導入する給気用換気扇であり、外気温度、外気湿度、店内目標温湿度に応じて、管理・制御部1が運転・換気風量制御・停止を行う。ここで、外気温度・外気湿度は換気扇8対応のセンサ8bにより検出してもよく、また、他の電気機器である空調機3のセンサ3bや、冷凍機4のセンサ4bを用いてもよい。これらのセンサ3b、4b等はすべて通信ポート2を経由して管理・制御部1のセンサ群管理手段1aの中に検出信号が登録管理されている。また、店内目標温湿度も前記空調目標温湿度として管理・制御部1内に登録されている。
【0029】
天井扇9は、店内上下温度分布改善の為に、店内中央部に設置されており、店内上部温度と店内下部温度の温度差が一定以上ついた場合に、管理・制御部1からの指示が通信ポート2を経由して天井扇9へ送られる。店内上部温度は天井扇9に対応した温度センサ9bにより検出してもよいし、空調機3のセンサ3bでも良い。店内下部温度は空調機3のリモコン内温度センサ3b(図示せず)により検出してもよいし、ショーケース群5の店内温度センサ5bでもよい。また、管理・制御部1から運用アルゴリズムのうち、天井扇に係るサーキュレーション運用手段に係る指示が通信ポート2を経由して天井扇9へ送られる。
【0030】
その他の電気機器10は、上述の空調機3から天井扇9以外の電気機器であり、管理・制御部1がセンサ10bからの信号を受けて、運転・制御・停止を行う。また、管理・制御部1から運用アルゴリズムのうち、その他の電気機器10に係る指示が通信ポート2を経由してその他の電気機器10へ送られる。
【0031】
次に、店舗用エネルギー機器運用システムの管理・制御部1の構成、動作について説明する。
管理・制御部1は、センサ群管理手段1a、運用アルゴリズム1b、制御データ1c、通信用データ加工手段1d、性能診断用データ加工手段1e等から構成される。
まず、店舗用設備機器の状態量を各電気機器付属のセンサ3b〜11b、3c〜11cからの検出信号として通信ポート2を経由し管理・制御部1へ送信する。管理・制御部1では、送信されてきた運転モード及び温度、湿度、電流を受信し、制御データ1cに格納する。
【0032】
センサ群管理手段1aは、制御データ1cに格納された各電気機器の状態量を一括管理し、共通物理量と個別機器対応物理量と機器相関物理量とに分類管理し、また、センサ故障対応や他電気機器対応センサの共通利用を行う。
ここで、共通物理量とは、空調機3の外気温度センサ検出値(センサ3bの検出値のうちの1つ)と冷凍機4の外気温度センサ検出値(センサ4bの検出値のうちの1つ)ようなものである。個別機器対応物理量とは、冷凍機4の圧力のように冷凍機4のみの状態量特有のものである。機器相関物理量とは、店内温度のように空調機3のセンサ値と冷凍機4のセンサ値のように、冷凍空調両者に相関があり、最適運用アルゴリズムに関係する物理量のことである。
【0033】
このセンサ群管理手段1aにより、個別電気機器の固有のセンサが故障しても他の電気機器対応のセンサで代替することができる。また、各電気機器の空気温度センサにより店舗内空間温度分布を新しく追加することなく検知できる。さらに、低エンタルピー外気導入換気量制御に新しく外気センサを追加することなく、空調機3の外気センサ3bで転用できる。また、空調機3の暖房運転への状態の変化に応答して、冷凍機4の熱回収ができ、各電気機器間の状態量に一定の相関をとらせながら、管理・制御できる。
【0034】
運用アルゴリズム1bは、あらかじめ管理・制御部1内に構築しておいて、新規に追加する場合、あるいは削除する場合に、外部、すなわち、本部、サービスセンター、エンジニアリングセンター、電力会社等から電話回線を介して変更が可能となる。さらに、制御データ1cの一部も外部から電話回線を経由して電力料金の改定値などが管理・制御部1内へ送られてくる。
【0035】
通信用データ加工手段1dは、制御データ1cのうち外部へ送るデータと、逆に外部から受けるデータを加工して制御データ1cに渡す。このデータは、電力料金、外気温度、翌日の天気予報、翌日の外気温度予測値、翌日の空調負荷予測値、各電気機器の運用履歴データ等を示す。この通信用データ加工手段1dにより、電力会社の電気料金に応じ、最も安い電力系統の選択ができる。また、外気温度と各電気機器の運用履歴データの相関から性能診断と予防保全と故障診断と新しい省エネ運用アルゴリズムの開発ができる。さらに、翌日の天気予報などから前日の夜間蓄熱量予測ができる。
【0036】
性能診断用データ加工手段1eは、通信用データ加工手段1dのうち、電気機器単体の状態量から性能診断に必要なデータのみを取り出して外部へ送る。この性能診断用データ加工手段1eにより、初期の電気機器の性能と比較して、性能劣化や予防保全や寿命予測が行え、さらに省エネ運用アルゴリズムの構築が可能となり、電話回線を介して各店舗と本部またはサービスセンター(メンテナンス会社)、エンジニアリングセンターと送受信が可能となる。
【0037】
以上のように、管理・制御部1が構成され、運用アルゴリズム1bにより、各電気機器間の状態量に一定の相関を持たせながら管理・制御が行われる。
管理・制御部1の運用アルゴリズム1bによる管理・制御動作を、以下の各実施の形態により詳細に説明する。
【0038】
実施の形態2.
図2はこの発明の実施の形態2による店舗用エネルギー機器運用システムの構成図であり、外気導入運用アルゴリズムに基づくシステム構成を示し、図3はこの店舗用エネルギー機器運用システムの湿り空気線図であり、外気導入運用アルゴリズムの原理を示す。
図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、外気導入運用アルゴリズムに直接関係しない構成部分の図示を省略する。
【0039】
次に動作について説明する。
まず、空調機3のセンサ3bによる検出信号のうち少なくとも店内温度Ti、店内湿度φi、店内温度目標値Tm、店内湿度目標値φm、空調機の運転モードMode(冷房か暖房か)が通信ポート2を経由して管理・制御部1に送られてくる。
【0040】
その他の検出信号の外気温度Toと外気湿度φoが、空調機3のセンサ3bもしくは冷凍機4のセンサ4bもしくは換気扇8のセンサ8bから通信ポート2を経由して管理・制御部1に送られてくるか、あるいは本部からモデムM、電話回線、モデムAを経由して管理・制御部1の通信データ用加工手段1dに送られてくる。これらのTi、φi、Tm、φm、Mode、To、φoの7個のデータは制御データ1c内の機器相関物理量としてセンサ群管理手段1aによって整理格納される。
【0041】
運用アルゴリズム1bは、制御データ1c内の機器相関物理量のデータに基づき、外気導入運用アルゴリズムの指令値として再び管理・制御部1から通信ポート2を経由して換気扇8の低エンタルビ外気導入手段(図示せず)へ出力され、給気量の適正導入量指示を出力し、その指示に従い換気扇8は、ダンパ開度変更またはファンモータ回転数変更により給気風量を制御する。
【0042】
図3を用いて、外気導入運用アルゴリズムの原理を説明する。店内目標温湿度(Tm、φm)点をm、店内温湿度(Ti、φi)点をi、その時の外気温湿度(To、φo)点をOとし、各点の空気エンタルピーをim、ii、ioとする。ここで、空調機3の冷房運転時には、空調機3の室内交換器は蒸発器として機能しており、空気を冷却除湿する。その時の蒸発器の蒸発温度をET(℃)とすると、蒸発器に接触する空気の温度はET(℃)で飽和線上のl上のETに存在する。
【0043】
従って、蒸発器入口空気がK点であれば、出口空気はKとETを結ぶ線上に来ることになり、目標店内温湿度m点に向かうことになる。このK点は店内温湿度i点と外気温湿度o点を結ぶ直線をVo:Viに内分する点であり、店内空調機3の送風量がVi[m3/min]の時、新鮮外気取込量がVo[m3/min]であることを示す。しかも、店内温湿度i点から目標温湿度m点までのエンタルピー差Δii=ii−imよりもK点でのエンタルピーと目標温湿度m点までのエンタルピー差Δik=ik−imの方が小さいため、冷却除湿すべき負荷が小さくなり、省エネルギーとなる。ここで求まる換気風量Vo[m3/min]を管理・制御部1の外気導入運用アルゴリズム1bは通信ポート2を経由して換気扇8へ出力し、換気扇8を制御する。
以上ように、本店またはサービスセンターまたはエンジニアリングセンターから監視・診断ができる。各店舗は新しいデータに基づいて管理・制御ができる。
【0044】
実施の形態3.
図4はこの発明の実施の形態3による店舗用エネルギー機器運用システムの構成図であり、冷凍空調熱回収アルゴリズムに基づくシステム構成を示し、図5はこの店舗用エネルギー機器運用システムの熱回収機構を示す図である。
図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、冷凍空調熱回収アルゴリズムに直接関係しない構成部分の図示を省略する。
【0045】
次に、動作について説明する。
空調機3のセンサ3bによる検出信号のうち、運転モードModeが通信ポート2を経由して管理・制御部1に送られてくる。このデータModeは、センサ群管理手段1aによって制御データ1c内に機器相関物理量として整理格納されている。
【0046】
運用アルゴリズム1bは、制御データ1c内の機器相関物理量Modeが、暖房運転モードである場合、冷凍空調熱回収アルゴリズムの指定値として、管理・制御部1から通信ポート2を経由して冷凍機4の冷凍空調熱回収機構に熱回収開始の指示の出力を出す。熱回収の開始を指示された冷凍機4では、その指示に従い、冷凍機4の室外熱交換器の凝縮排熱を空調機の室外熱交換器の蒸発器に熱回収する。
【0047】
次に具体的な熱回収機構について、図5を用いて説明する。
図において、21は冷凍装置の圧縮機、22は凝縮器、23は膨張装置、24は店内に設置されたショーケース内の蒸発器である。25は空調機の圧縮機、26は冷房運転と暖房運転の切り替え用四方弁、27は室外熱交換器、28は膨張装置、29は店内にある室内熱交換器、30は熱回収ダンパである。
【0048】
冷凍装置では、圧縮機21で高温高湿に圧縮されたガス冷媒は、室外にある凝縮器22で凝縮液化し、外気に放熱し、膨張弁23で低圧ニ相冷媒となり、蒸発器24で蒸発ガス化し、ショーケース内空気を冷却した後、再び圧縮機21に戻る。冷凍装置側の冷媒順路は夏期冬期にかかわらず、一年中この冷媒流れであり、室外にある凝縮器22は常に放熱を続ける。
【0049】
一方、空調機3では、夏期冷房運転時、図中実線のごとく流れ、空調用圧縮機25を出た高圧高温のガス冷媒は、四方弁26を経由して室外熱交換器27で凝縮液化し、外気に放熱した高圧液冷媒は膨張装置28で低圧二相となり、室内熱交換器29で蒸発し店内を冷房して、四方弁26を経由して圧縮機25に戻る。この時熱回収ダンパ30は実線のごとく、冷凍機側凝縮器2の風路と空調機側室外熱交換器27の風路を遮断する。
【0050】
空調機3の冬期暖房運転時は、図中破線のごとく流れ、空調用圧縮機25を出た高圧高温のガス冷媒は四方弁26を経由して室内熱交換器29で凝縮液化し、室内に放熱暖房し、高圧液となって膨張装置28で減圧され、低圧二相冷媒となり、室外熱交換器27に至る。室外熱交換器27は蒸発器として機能し、外気より吸熱し、冷媒はガス化して四方弁26を経由して再び圧縮機25に戻る。この場合、熱回収ダンパ30は破線のごとく配置され、冷凍機側凝縮器22の放熱したエネルギーを空調機側室外熱交換器27で熱回収する。
【0051】
風路切り替え手段としてのダンパ30は、ダクトを配置し、冷凍機側凝縮器22の吹き出し方向を、空調機側室外熱交換器の吸い込み風路に誘導するかもしくは逆に空調機3から遠ざける構成とし、空調機3の冷房運転と暖房運転に連動して風路切り替えを実施してもよい。
【0052】
実施の形態4.
図6はこの発明の実施の形態4による店舗用エネルギー機器運用システムの構成図であり、サーキュレーション運用アルゴリズムに基づくシステム構成を示し、図7はこの店舗用エネルギー機器運用システムのサーキュレーション運転による店内上温度差分布をを示す図である。
図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、サーキュレーション運用アルゴリズムに直接関係しない構成部分の図示を省略する。
【0053】
次に、動作について説明する。
まず、空調機3のセンサ3bによる検出信号のうち、少なくとも店内上部に設置された室内側熱交換器29の吸い込み空気温度センサTiupによる検出信号が、通信ポート2を経由して管理・制御部1に送られてくる。更に、店内下部の温度を検出するセンサTidが、空調機3の室内のリモコン(図示せず)の検出信号、またはショーケース群5の中の結露センサ5bの検出信号として検出されて、通信ポート2を経由して、管理・制御部1に送られてくる。
【0054】
これらのデータは、センサ群管理手段1aによって、制御データ1c内に機器相関物理量として整理格納されている。運用アルゴリズム1bは、制御データ1c内の店内上部温度検出値Tiupと店内下部温度検出値Tidの差が、一定値以上になった場合、通信ポート2を経由して、天井扇9にサーキュレーション運転開始指示の出力を出す。上下温度差分布解消に為に、その指示を受けて、天井扇9が運転される。
【0055】
図7はサーキュレーション運転による店内上温度差分布改善のデータを示し、横軸は店内温度、縦軸は床からの高さを示し、冬季暖房運転時の店内上下温度分布の時間変化を示したものである。天井扇運転前は、上下温度差が10℃以上ついてるが、サーキュレーション運転開始の時間経過と共に、約3分後には上下温度分布差が1〜2℃程度に縮まっており、上部を無駄に暖房することなく、省エネルギーとなり、しかも対人位置レベルでは快適性が保たれている。一方、夏も同様で、特にオープンショース前の通路では、エアーカーテンからの冷気漏れにより、店内通路側温度が15℃程度に冷やされて、いわゆるコールドアイル問題があったが、これも本天井扇のサーキュレーション効果により、快適な温度が維持される。
【0056】
以上のように、店舗内上部の温度と店舗内下部の温度の温度差が一定値以上つくと、天井扇9が回る事により、店内上下温度差が縮まり均一な温度分布が実現できる。暖房時は天井近くに、温風が滞留することなく省エネルギーとなり、店舗内オープンショーケース前通路の冷気漏れによる、いわゆるコールドアイル問題も解消でき、顧客への快適性向上ができる。
【0057】
実施の形態5.
図8はこの発明の実施の形態5による店舗用エネルギー機器運用システムの構成図であり、省エネ調光制御アルゴリズムに基づくシステム構成を示し、図9はこの店舗用エネルギー機器運用システムの初期照度補正の原理を示す図である。図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、省エネ調光制御アルゴリズムに直接関係しない構成部分の図示を省略する。
【0058】
次に、動作について説明する。
屋外照明6の照度センサ6bおよび店内照明7の照度センサ7bによる検出信号が、通信ポート2を経由して、管理・制御部1に送くられてくる。または、本部より、各店舗に電話回線を経由して、管理・制御部1の通信用データ加工手段1dに従がい、制御データ1c内に、その日の暦と、日の出、日没時刻と、天気予報(晴・曇・雨など)などが送信されて機器相関物理量として格納されている。
【0059】
運用アルゴリズム1b中の省エネ調光制御アルゴリズムに基づき、屋外照明6と店内照明7の設置の初期には明る過ぎるため、初期照度を低下させる初期照度補正制御、日中に晴れて室外が一定以上に明るい場合は、店内照明の照度を低下させる昼光利用制御、暦と店外の明るさに基づく夜間の屋外照明の点灯・消灯の時刻制御の各制御信号が、照度制御用タイマーの指示に従って、通信ポート2を経由して、それぞれ屋外照明6と店内照明7へ送信される。屋外照明6と店内照明7は、この指示に従い省エネ調光制御を実施する。
なお、照度制御用タイマーは、通信ポートに設けられている。
【0060】
図9に初期照度補正の原理を示し、横軸は照明器具を据え付けて経過した時間、縦軸は照度を示す。照明器具を設置してから、初期のうちは、適正照度より明る過ぎるため、省エネルギーとして、タイマー機能による管理・制御部1からの省エネ調光制御アルゴリズムの指示により、照明入力を低減できる。
以上のように、あらかじめ設定された所定の時間は照明への電気入力が低減でき、省エネルギーとなり、視認性を損なわず、最適照明ができる。
【0061】
実施の形態6.
図10はこの発明の実施の形態6による店舗用エネルギー機器運用システムの構成図であり、ショーケース省エネ運用アルゴリズムに基づくシステム構成を示す。
図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、ショーケース省エネ運用アルゴリズムに直接関係しない構成部分の図示を省略する。
【0062】
次に、動作について説明する。
ショーケース省エネ運用アルゴリズムに基づく、店内の空調目標温湿度制御手段の手順についての店舗用エネルギー機器運用システムの流れを説明する。空調機3の分電盤のセンサ3cによる空調機消費電力Waと、冷凍機4の分電盤のセンサ4cによる冷凍機消費電力Wrとショーケース群5分電盤のセンサ5cによる消費電力量Wsを通信ポート2を介して、管理・制御部1に送信する。
【0063】
運用アルゴリズム1bでは、空調機消費電力Waと冷凍機消費電力Wrとショーケース群消費電力Wsの総和が最小となるように、店内目標温湿度の設定値Ts℃、φs%を、空調機3に通信ポート2を介して設定変更指示を出力する。この方法は、店内目標温湿度の設定値Ts℃、φs%を常に変更しフィードバックとして、総消費電力の最小値を試行錯誤して探索する方法である。
【0064】
次に、ショーケース省エネ運用アルゴリズムの別のアルゴリズムについて説明する。空調機3のセンサ3bによる検出値の一部の外気温度To℃と外気湿度φo%、または、冷凍機4のセンサ4bによる検出値の一部の外気温度To℃と外気湿度φo%を通信ポート2を経由して、管理・制御部1に送られてくる、または、本部より電話回線を経由して、管理・制御部1に送信されて来たデータを、管理・制御部1内の制御データ1c内に格納される。その外気空気条件に対し、店内温湿度の設定値Ts℃、φs%を空調機3と冷凍機4とショーケース5の入力を示すパフォーマンスデータに基づき、トータル入力が最小になる設定温湿度を算出し、通信ポート2を経由して、空調機3に店内目標温湿度設定値として出力する。
【0065】
以上のように、オープンショーケースの庫内温度の検出信号のうち、最高温度の冷蔵用オープンショーケースの露点温度以上に店舗内温湿度を維持しつつ、かつ対人快適性温度ゾーン中で最も低い温度を確保できる。しかも店舗内温湿度は空調機にとっても、冷凍機にとっても負荷の最大要因となり、最適な省エネ、鮮度維持、快適性確保の重要な媒体となり、空調・冷凍の最適な相関関係を維持できる。
【0066】
実施の形態7.
図11はこの発明の実施の形態7による店舗用エネルギー機器運用システムの構成図であり、系統間電力融通運用アルゴリズムに基づくシステム構成を示し、図12は電灯契約(時間帯別電灯)の値段と消費電力の実態を示す図である。
図において、上記実施の形態1と同一または相当部分には同一符号を付け、説明を省略し、また、系統間電力融通運用アルゴリズムに直接関係しない構成部分の図示を省略する。
【0067】
次に、動作について説明する。
電力会社の系統別電力の従量料金の最新データが本部より電話回線を経由して、各店舗の管理制御部1内の制御データ1cにcost1、cost2として格納されている。低圧電力動力盤12の電力量センサ11bの検出値W1と電灯系統動力盤13の電力量センサ11cの検出値W2がそれぞれ契約電力W1max、W2max以下であることを確認し、余裕電力量演算を実施し、安いコストに融通できる場合は、電力融通制御盤11に、系統間電力融通の切り換え指示を出力する。
【0068】
図12は電灯契約(時間帯別電灯)の値段と消費電力実態を示し、電灯の従量料金は昼間(7:00〜23:00)が32.25円/kWhであり、夜間(23:00〜7:00)が6.15円/kWhである。0時〜6時頃までは安い従量料金であり、屋外照明の分電盤2個(店頭看板とサイン看板、駐車場)も安価な電灯料金を使用できている。しかし、夕方17:00〜23:00は高い料金32.25円/kWhを使用していることになり、夕方17時以降での屋外照明は23:00まで高価になってしまう。
【0069】
一方、動力系統の夏季従量料金は図12に示すように24時間、いつでも11.55円/kWhとなっている。電灯従量料金(昼)32.25円/kWhよりも安いが、電灯従量料金(夜)6.15/kWhよりも高い従量料金11.55円/kWhとなっている。
【0070】
従って、最低電力料金の電力種を判定して異系統電力融通を実施すれば、図12のAの時間帯(19:00〜23:00)は、屋外照明用分電盤2個に、動力系統電力を投入すれば、従量料金の低減額が、4時間/1日×(32.25円/kWh−11.55円/kWh)×3kW×30日/月≒7000円/月となる。
【0071】
以上のように、複数の電力系統かつ電力の供給を受けて、店舗内設備機器に分電する場合、従量料金の安い系統の電力系統を選択できるようにしたので、ランニングコストの低減ができる。更に、各設備機器の分電盤の電力を検出しているので、系統毎の契約電力以内で、系統間電力融通が可能となり、トータル契約電力の低減ができる。
【0072】
なお、上記実施の形態1〜7では、電話回線を介して各店舗と本部の間の通信を行うものを示したが、各店舗と本部に電力線用モデムと設け、電力線を介して通信を行ってもよい。
【0073】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に示すような効果を奏する。
電力系統からの電力の供給を受けて、店舗内の空調、冷凍、照明等を行う複数の電気機器と、この各電気機器に応じた状態量を検出する複数のセンサと、この各センサからの検出信号を受けて電気機器運用アルゴリズムに基づき各電気機器間の状態量に一定の相関をとらせながら管理・制御する制御信号を各電気機器へ出力する管理・制御手段と、この管理・制御手段の電気機器運用アルゴリズムを更新する運用アルゴリズム更新手段とを備えたので、各電気機器に対応した状態量を検出して、相関する電気機器の設定状態を電気機器運用アルゴリズムに従ってお互いに連動させながら時々刻々管理・制御することにより、店舗用設備機器を総合的に効率良く最適に、省エネ、省コストで運用制御できる。
【0074】
また、前記管理・制御手段に、電話回線または電力線を介して管理・制御データまたは電気機器運用アルゴリズムを送受信する通信手段を備えたので、遠隔で、運転状況の診断、最適運用アルゴリズムの構築、最新データの送信ができ、既設アルゴリズムの修正・更新と新アルゴリズムの追加ができる。
【0075】
さらに、前記管理・制御手段に、各電気機器に応じた状態量を検出する各センサの検出信号を受けて一括して管理するセンサ群管理手段を備えたので、センサ故障対応、センサの共通利用、各電気機器間の状態量の相関把握ができる。
【0076】
また、前記通信手段による通信用制御データとして、電力料金、外気温度、翌日の天気予報、翌日の外気温度予測値、翌日の空調負荷予測値、各電気機器の運用履歴データのいずれかを加工する通信用データ加工手段を備えたので、遠隔で、機器の管理ができ、最新のデータを送ることができ、常に新データに基づく省エネルギーで省コストとなる運用ができる。
【0077】
また、前記通信用制御データ内の運用履歴データを、店舗用各設備機器の消費電力量、ランニングコスト、外気温度、店内温度、店内湿度のいずれかで構成する性能診断用データ加工手段を備えたので、予防保全、寿命予測、故障診断、性能診断ができ、メンテナンス費用削減効果がある。
【0078】
また、電力系統からの電力の供給を受けて、店舗用の空調を行う空調機および店舗内に外気を導入する換気扇と、外気の温度または湿度を検出する外気温湿度センサと、この外気温湿度センサからの検出信号を受けて、電気機器運用アルゴリズムに基づき前記空調機および前記換気扇の間の状態量に一定の相関をとらせながら管理・制御する制御信号を前記空調機および前記換気扇へ出力する管理・制御手段と、前記空調機による冷房運転時に、前記外気温湿度センサからの検出信号を受け、外気空気のエンタルピーと室内設定温度からあらかじめ決められた室内設定エンタルピーとの差、または外気空気のエンタルピーと室内空気エンタルピーの差が、設定ゾーン以下になった場合に、前記管理・制御手段から前記換気扇へ給気風量の低エンタルピー外気導入量指示を出力する低エンタルピー外気導入省エネ運用制御手段とを備えたので、夏季の夜間や中間期に外気導入により、空調冷房負荷低減となり省エネルギーとなり、しかも新鮮外気導入により、快適性が向上でき、かつ、店内が正圧となり、ゴミの侵入や虫などの侵入防止も可能となる。
【0082】
また、電力系統からの電力の供給を受けて稼動する店舗用の空調機および複数のショーケースと、この複数のショーケースの庫内温度を検出する複数の温度センサと、電気機器運用アルゴリズムに基づき電気機器の間の状態量に一定の相関をとらせながら前記冷凍機を管理・制御する制御信号を前記冷凍機へ出力する管理・制御手段と、前記複数の温度センサからの検出信号を受けて、前記空調機の店内温湿度の目標温湿度をあらかじめ設定したショーケース省エネ運用アルゴリズムに基づいて決定した制御信号を管理・制御手段から前記空調機へ出力する空調目標温湿度制御手段とを備えたので、ショーケースの入力と空調機の入力の総和を最小にする店内目標温湿度を設定するので、冷凍空調複合の入力が省エネとなり、快適性を維持しつつ、ショーケース内食品の鮮度維持が可能となる。
【0083】
また、複数の電力系統からの電力の供給を受けて、店舗用電気機器に各々個別に設けられた分電盤と、複数の電力系統からの前記各分電盤の電力を検出する電力検出手段と、電気機器運用アルゴリズムに基づき電気機器の間の状態量に一定の相関をとらせながら電気機器を管理・制御する制御信号を前記電気機器へ出力する管理・制御手段と、前記電力検出手段からの検出信号を受けてその電力検出値があらかじめ設定された電力値ゾーンにある場合、あらかじめ設定された優先度に従って、他の電力系統の電力を使用する電力系統融通指示を前記管理・制御手段から出力する系統間電力融通手段とを備えたので、ランニングコストの安い電力系統を選択でき、ランニングコストとトータル契約電力の低減ができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を示す店舗用エネルギー機器運用システムの構成図である。
【図2】 この発明の実施の形態2を示す店舗用エネルギー機器運用システムの構成図である。
【図3】 この発明の実施の形態2を示す店舗用エネルギー機器運用システムの湿り空気線図である。
【図4】 この発明の実施の形態3を示す店舗用エネルギー機器運用システムの構成図である。
【図5】 この発明の実施の形態3を示す店舗用エネルギー機器運用システムの熱回収機構を示す図である。
【図6】 この発明の実施の形態4を示す店舗用エネルギー機器運用システムの構成図である。
【図7】 この発明の実施の形態4を示す店舗用エネルギー機器運用システムのサーキュレーション運転による店内上温度差分布をを示す図である。
【図8】 この発明の実施の形態5を示す店舗用エネルギー機器運用システムの構成図である。
【図9】 この発明の実施の形態5を示す店舗用エネルギー機器運用システムの初期照度補正の原理を示す図である。
【図10】 この発明の実施の形態6を示す店舗用エネルギー機器運用システムの構成図である。
【図11】 この発明の実施の形態7を示す店舗用エネルギー機器運用システムの構成図である。
【図12】 この発明の実施の形態7を示す店舗用エネルギー機器運用システムの構成図である。
【符号の説明】
1 管理・制御部、 2 通信ポート、 3 空調機、 4 冷凍機、 5 ショーケース群、 6 屋外照明、 7 店内照明、 8 換気扇、 9 天井扇、 10その他電気機器、 11 電力融通制御盤、 12 低圧電力動力盤系統制御盤、 13 電灯系統制御盤、 21 圧縮機、 22 凝縮器、 23 膨張装置、 24 蒸発器、 25 圧縮機、 26 四方弁、 27 室外熱交換器、 28 膨張装置、 29 室内熱交換器、 30 熱回収ダンパ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a store energy device operation system that comprehensively manages, controls, operates, and diagnoses store facility devices such as supermarkets and convenience stores, and optimally uses store energy devices.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in food stores such as supermarkets and convenience stores, an operation system in which an air conditioner, a refrigerator, lighting, and other electric devices are individually controlled by using detection signals from respective sensors is performed.
Alternatively, as shown in Japanese Patent Laid-Open No. 11-201523, in one food store, the store temperature, which is the load of the open sea case, is set to the outside air temperature and the air cooling load of the air conditioner / refrigerated freezer open sea case (or refrigerator). There is an operation system in which power consumption is reduced by changing the ratio.
[0003]
[Problems to be solved by the invention]
In the conventional store operation system as described above, the total power consumption of each electrical device constituting the equipment system is not comprehensively managed from the viewpoint of energy saving, and the total running cost is not operated at a low cost. there were. For example, the air conditioner and the ventilation fan are controlled separately, and during the cooling operation, the air conditioner only repeats operation and stop at the target temperature in the store, and the ventilation fan always keeps constant outside air to ensure the ventilation volume. It was only introduced.
[0004]
In addition, the temperature and humidity distribution in the store has not been managed in consideration of customer comfort, and the food freshness due to air entering the showcase of the temperature and humidity in the store around the open showcase, such as in the case of food stores There was a problem that maintenance was not managed.
In addition, energy saving, cost saving, distribution of operation algorithms and update of equipment control data to the same supermarket and convenience store, and transmission from one store to the head office or service company are not considered. There was a problem that the system was not compatible with communication.
[0005]
This invention has been made to solve the above-mentioned problems, and comprehensively manages, controls, operates, and diagnoses store equipment, and is energy-saving and comfortable at a low running cost while maintaining food freshness. The purpose is to obtain an excellent store energy equipment operation system.
[0006]
[Means for Solving the Problems]
In the store energy equipment operation system according to the present invention, a plurality of electrical devices that receive power supplied from the power system and perform air conditioning, refrigeration, lighting, etc. in the store, and state quantities corresponding to the respective electrical devices And a control signal that is managed and controlled while receiving a detection signal from each sensor and taking a certain correlation with the state quantity between each electric device based on an electric device operation algorithm. The management / control means for outputting and the operation algorithm update means for updating the electric equipment operation algorithm of the management / control means are provided.
[0007]
Further, the management / control means includes communication means for transmitting / receiving management / control data or an electric equipment operation algorithm via a telephone line or a power line.
[0008]
Furthermore, the management / control means is provided with sensor group management means for receiving and detecting collectively the detection signals of the sensors for detecting the state quantities corresponding to the electric devices.
[0009]
Further, as the control data for communication by the communication means, any one of the power rate, the outside air temperature, the next day weather forecast, the next day outside air temperature predicted value, the next day air conditioning load predicted value, and the operation history data of each electric device is processed. Communication data processing means is provided.
[0010]
In addition, the data processing means for performance diagnosis is configured to configure the operation history data in the communication control data by any one of the power consumption, running cost, outside temperature, in-store temperature, in-store humidity of each equipment for the store. Is.
[0011]
In addition, an air conditioner for supplying air from the power system and performing air conditioning for the store, a ventilation fan for introducing outside air into the store, an outside air temperature / humidity sensor for detecting the temperature or humidity of the outside air, and the outside air temperature / humidity In response to a detection signal from the sensor, a control signal for managing and controlling the state quantity between the air conditioner and the ventilation fan based on an electric equipment operation algorithm while giving a certain correlation is output to the air conditioner and the ventilation fan. During the cooling operation by the management / control means and the air conditioner, the detection signal from the outside air temperature / humidity sensor is received, and the difference between the enthalpy of the outside air and the indoor set enthalpy determined in advance from the indoor set temperature, or the outside air When the difference between the enthalpy and the indoor air enthalpy falls below the set zone, a low air flow rate from the management / control means to the ventilation fan is reduced. Those having a low enthalpy air introduction energy saving operation control means for outputting a Tarupi outside air introduction amount indicated.
[0015]
In addition, based on the store air conditioner and multiple showcases that operate with power supplied from the power grid, multiple temperature sensors that detect the internal temperature of the multiple showcases, and an electric equipment operation algorithm Management / control means for outputting to the refrigerator a control signal for managing / controlling the refrigerator while taking a certain correlation between the state quantities between the electrical devices, and receiving detection signals from the plurality of temperature sensors And air conditioning target temperature / humidity control means for outputting a control signal determined based on a showcase energy saving operation algorithm in which a target temperature / humidity of the air conditioner's in-store temperature / humidity is preset to the air conditioner from the management / control means. Is.
[0016]
In addition, a distribution board that is individually provided in the electrical equipment for the store upon receiving power supply from a plurality of power systems, and a power detection means that detects the power of each of the distribution boards from the plurality of power systems And a management / control unit that outputs a control signal to the electrical device while managing and controlling the electrical device while maintaining a certain correlation between the state quantities between the electrical devices based on the electrical device operation algorithm, and the power detection unit. When the detected power signal is in a preset power value zone, a power system interchange instruction using power from another power system is issued from the management / control means according to a preset priority. And an inter-system power interchange means for outputting.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a store energy equipment operation system according to Embodiment 1 of the present invention. In this store energy system operation system, a plurality of stores, for example, stores A to Z, send and receive control data and operation algorithms to and from the headquarters via a telephone line to manage and control facility devices. As shown in FIG. 1, the configuration of equipment in the store A is mainly shown.
[0018]
In the figure, the management / control unit 1 includes an air conditioner 3, a refrigerator 4, a showcase group 5, an outdoor lighting 6, an in-store lighting 7, a ventilation fan 8, a ceiling fan 9, other electrical equipment 10, electric power via a communication port 2. Manage and control the accommodation control panel 11. The communication port 2 is a digital communication port such as a small equipment server.
[0019]
Air conditioner 3 and its distribution board, refrigerator 4 and its distribution board, showcase group 5 and its distribution board, outdoor lighting 6 and its distribution board, in-store lighting 7 and its distribution board, ventilation fan 8 and its The distribution board, ceiling fan 9 and its distribution board, and other electrical equipment 10 and its distribution board include sensor 3b and sensor 3c, sensor 4b and sensor 4c, sensor 5b and sensor for detecting the corresponding state quantities. 5c, a sensor 6b and a sensor 6c, a sensor 7b and a sensor 7c, a sensor 8b and a sensor 8c, a sensor 9b and a sensor 9c, a sensor 10b and a sensor 10c, and a detection signal of each sensor is an interface 3a, an interface 4a and an interface 5a, respectively. , Interface 6a, interface 7a, interface 8a, Each of the electrical devices transmits / receives data to / from the communication port 2 via the interface 9a and the interface 10a, and the management / control unit 1 makes a certain correlation with the state quantity of each electrical device based on the electrical device operation algorithm. To control.
[0020]
The low-voltage power board control panel 12 monitors whether or not the low-voltage power contract of the store A (for example, 20 kW) has been exceeded from the power system. The electric power system control panel 13 monitors whether or not the hourly electric light contract of the store A (for example, 25 kVA) has been exceeded. The sensor 11b provided on the low-voltage power board control panel 12 and the sensor 11c provided on the lamp system control board 13 detect the amount of power of each power receiving unit, and communicate with the communication port 2 via the interface 11a. Send and receive.
The power interchange control panel 11 transmits / receives data to / from the communication port 2 via the interface 11a.
[0021]
In the store A, the management / control unit 1 is connected to the telephone line via the modem A, and is connected to the telephone line via the modem M in the headquarters. Therefore, between the store A and the headquarters, control data and electrical device operation algorithms are transmitted and received via a telephone line. Similarly, the store Z is connected to the telephone line via the modem Z, and transmits and receives control data and electric device operation algorithms to and from the headquarters. Note that other stores that are not shown in the figure also perform transmission / reception with the headquarters.
[0022]
The service center associated with the headquarters can perform maintenance by performing preventive maintenance, abnormality diagnosis, and failure diagnosis based on data received from each store.
In addition, the Engineering Center sends the electrical equipment operation algorithm and updated new control data to each store jointly with the headquarters, optimal operation that can maintain energy freshness, running cost, and maintain food freshness of energy equipment for stores. Can provide a system.
In addition, the electric power company controls the energy equipment for the store by sending the electrical equipment operation algorithm and the updated new control data to each store jointly with the headquarters. For example, when power demand becomes excessive and peak cut is necessary, out of store energy devices, the devices that can be stopped are stopped.
[0023]
Each electric device is operated / controlled or stopped in accordance with an instruction from the management / control unit 1. Therefore,
Each electric device will be described below.
The air conditioner 3 can set the operation mode such as cooling and heating and the air volume, and can change the temperature setting and the humidity setting with a remote controller. Various setting values by the remote controller are also sent to the management / control unit 1. Conversely, an instruction to the air conditioning target temperature / humidity control means related to the air conditioner 3 in the operation algorithm in the management / control unit 1 is sent to the air conditioner 3 via the communication port 2.
[0024]
The refrigerator 4 normally performs continuous operation, but the management / control unit 1 issues an operation / stop instruction, and also instructs the refrigeration air conditioning exhaust heat recovery means in the refrigerator 4. The set temperature or internal temperature of the refrigerator 4 is sent to the management / control unit 1 via the communication port 2 as a detection signal of the sensor 4b.
[0025]
The showcase group 5 includes a frozen stocker, a reach-in showcase, a multi-stage refrigerated showcase, an ice showcase, a refrigerator in a counter, and the like. In these refrigerated showcases, the temperature in the case is set to 0 to 10 ° C, and in the refrigerated showcase, the temperature is set to -20 to -40 ° C. The set temperature or internal temperature of these showcase groups is sent to the management / control unit 1 via the communication port 2 as a detection signal of the sensor 5b.
[0026]
The outdoor lighting 6 is a signboard / parking lot lighting and a storefront power supply. The management / control unit 1 receives a signal from the outdoor illuminance sensor 6b, and controls on / off of the outdoor lighting 6 and illuminance dimming. Control. In addition, an instruction from the management / control unit 1 to the intersystem power interchange means related to the outdoor illumination in the operation algorithm is sent to the outdoor illumination 6 and the power interchange control panel 11 via the communication port 2.
[0027]
The in-store lighting 7 is sales floor lighting and counter-backyard lighting, and the management / control unit 1 receives a signal from the in-store illuminance sensor 7b and controls on / off of the in-store lighting 7 and dimming of the illuminance. An instruction to the energy saving dimming control means is sent from the management / control unit 1 to the store lighting 7 via the communication port 2 based on the setting of the illuminance control timer related to the store lighting in the operation algorithm.
[0028]
The ventilation fan 8 is an air supply ventilation fan that introduces fresh outdoor air outdoors, and the management / control unit 1 performs operation / ventilation air flow control / stop according to the outside air temperature, the outside air humidity, and the in-store target temperature / humidity. Here, the outside air temperature and the outside air humidity may be detected by the sensor 8b corresponding to the ventilation fan 8, or the sensor 3b of the air conditioner 3 and the sensor 4b of the refrigerator 4 which are other electric devices may be used. All of these sensors 3b, 4b, etc. have their detection signals registered and managed in the sensor group management means 1a of the management / control section 1 via the communication port 2. The in-store target temperature / humidity is also registered in the management / control unit 1 as the air conditioning target temperature / humidity.
[0029]
The ceiling fan 9 is installed in the center of the store to improve the vertical temperature distribution in the store. When the temperature difference between the store upper temperature and the store lower temperature exceeds a certain level, an instruction from the management / control unit 1 is given. It is sent to the ceiling fan 9 via the communication port 2. The in-store upper temperature may be detected by a temperature sensor 9b corresponding to the ceiling fan 9, or may be the sensor 3b of the air conditioner 3. The in-store lower temperature may be detected by a remote control temperature sensor 3b (not shown) of the air conditioner 3, or an in-store temperature sensor 5b of the showcase group 5. In addition, the management / control unit 1 sends an instruction related to the circulation operation means related to the ceiling fan among the operation algorithms to the ceiling fan 9 via the communication port 2.
[0030]
The other electrical devices 10 are electrical devices other than the above-described air conditioner 3 to the ceiling fan 9, and the management / control unit 1 receives a signal from the sensor 10b and performs operation / control / stop. In addition, the management / control unit 1 sends an instruction related to the other electrical device 10 among the operation algorithms to the other electrical device 10 via the communication port 2.
[0031]
Next, the configuration and operation of the management / control unit 1 of the store energy equipment operation system will be described.
The management / control unit 1 includes sensor group management means 1a, operation algorithm 1b, control data 1c, communication data processing means 1d, performance diagnosis data processing means 1e, and the like.
First, the state quantity of the store equipment is transmitted to the management / control unit 1 via the communication port 2 as detection signals from the sensors 3b to 11b and 3c to 11c attached to the electric devices. The management / control unit 1 receives the transmitted operation mode, temperature, humidity, and current, and stores them in the control data 1c.
[0032]
The sensor group management means 1a collectively manages the state quantities of each electric device stored in the control data 1c, classifies and manages them into common physical quantities, individual apparatus-corresponding physical quantities, and apparatus-correlated physical quantities. Common use of device-compatible sensors.
Here, the common physical quantity is an outside air temperature sensor detection value of the air conditioner 3 (one of the detection values of the sensor 3b) and an outside air temperature sensor detection value of the refrigerator 4 (one of the detection values of the sensor 4b). ) The physical quantity corresponding to the individual device is specific to the state quantity of only the refrigerator 4 such as the pressure of the refrigerator 4. The equipment correlation physical quantity is a physical quantity related to the optimum operation algorithm, such as the sensor value of the air conditioner 3 and the sensor value of the refrigerator 4, such as the in-store temperature, which is correlated with both the refrigeration and air conditioning.
[0033]
With this sensor group management means 1a, even if a sensor unique to an individual electric device breaks down, it can be replaced with a sensor corresponding to another electric device. In addition, the air temperature sensor of each electric device can detect the in-store space temperature distribution without newly adding. Furthermore, the outside air sensor 3b of the air conditioner 3 can be diverted without newly adding an outside air sensor to the low enthalpy outside air introduction ventilation amount control. Further, in response to a change in the state of the air conditioner 3 to the heating operation, the heat recovery of the refrigerator 4 can be performed, and management and control can be performed while taking a certain correlation between the state quantities between the electric devices.
[0034]
The operation algorithm 1b is constructed in advance in the management / control unit 1, and when a new one is added or deleted, a telephone line is connected from the outside, that is, the headquarters, service center, engineering center, electric power company, etc. Can be changed. Further, a part of the control data 1c is also sent from the outside to the management / control unit 1 such as a revised value of the electric power charge via the telephone line.
[0035]
The communication data processing means 1d processes the data to be sent to the outside of the control data 1c, and conversely, the data received from the outside and passes it to the control data 1c. This data indicates a power rate, outside air temperature, next day weather forecast, next day outside air temperature predicted value, next day air conditioning load predicted value, operation history data of each electrical device, and the like. By this communication data processing means 1d, the cheapest power system can be selected according to the electricity bill of the power company. Moreover, performance diagnosis, preventive maintenance, failure diagnosis, and development of new energy-saving operation algorithms can be performed from the correlation between the outside air temperature and the operation history data of each electric device. Furthermore, the nighttime heat storage amount can be predicted from the next day's weather forecast.
[0036]
The performance diagnosis data processing means 1e extracts only the data necessary for performance diagnosis from the state quantity of the single electric device from the communication data processing means 1d and sends it to the outside. This performance diagnosis data processing means 1e can perform performance deterioration, preventive maintenance, and life prediction compared to the performance of the initial electrical equipment, and can construct an energy-saving operation algorithm. Sending and receiving is possible with the headquarters or service center (maintenance company) and engineering center.
[0037]
As described above, the management / control unit 1 is configured, and management / control is performed by the operation algorithm 1b while giving a certain correlation to the state quantities between the electrical devices.
The management / control operation by the operation algorithm 1b of the management / control unit 1 will be described in detail by the following embodiments.
[0038]
Embodiment 2. FIG.
FIG. 2 is a configuration diagram of a store energy equipment operation system according to Embodiment 2 of the present invention, showing a system configuration based on an outside air introduction operation algorithm, and FIG. 3 is a wet air diagram of this store energy equipment operation system. Yes, the principle of the outside air introduction operation algorithm is shown.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of components not directly related to the outside air introduction operation algorithm is omitted.
[0039]
Next, the operation will be described.
First, at least the in-store temperature Ti, the in-store humidity φi, the in-store temperature target value Tm, the in-store humidity target value φm, and the operation mode Mode of the air conditioner (cooling or heating) among the detection signals from the sensor 3b of the air conditioner 3 are the communication port 2. Is sent to the management / control unit 1 via.
[0040]
The outside temperature To and the outside air humidity φo of other detection signals are sent from the sensor 3b of the air conditioner 3 or the sensor 4b of the refrigerator 4 or the sensor 8b of the ventilation fan 8 to the management / control unit 1 via the communication port 2. Or sent from the headquarters via the modem M, telephone line, and modem A to the communication data processing means 1d of the management / control unit 1. These seven data of Ti, φi, Tm, φm, Mode, To, and φo are organized and stored by the sensor group management means 1a as device correlation physical quantities in the control data 1c.
[0041]
The operation algorithm 1b is based on the device correlation physical quantity data in the control data 1c, and again as a command value for the outside air introduction operation algorithm from the management / control unit 1 through the communication port 2 to the low enthalpy outside air introduction means (see FIG. (Not shown) and an instruction for properly introducing the amount of supply air is output. In accordance with the instruction, the ventilation fan 8 controls the amount of supply air by changing the damper opening or the fan motor speed.
[0042]
The principle of the outside air introduction operation algorithm will be described with reference to FIG. The target temperature and humidity (Tm, φm) point in the store is m, the store temperature and humidity (Ti, φi) point is i, the outside air temperature humidity (To, φo) point is O, and the air enthalpy at each point is im, ii, Let io. Here, during the cooling operation of the air conditioner 3, the indoor exchanger of the air conditioner 3 functions as an evaporator and cools and dehumidifies the air. Assuming that the evaporation temperature of the evaporator at that time is ET (° C.), the temperature of the air contacting the evaporator is ET (° C.) and exists in ET on l on the saturation line.
[0043]
Therefore, if the evaporator inlet air is at point K, the outlet air will be on the line connecting K and ET, and will go to the target store temperature and humidity m point. This point K is a point that divides the straight line connecting the store temperature / humidity i point and the outside temperature / humidity o point into Vo: Vi, and the air flow rate of the store air conditioner 3 is Vi [m. Three / Min], the fresh air intake amount is Vo [m Three / Min]. Moreover, since the enthalpy difference Δik = ik−im between the enthalpy at the K point and the target temperature / humidity m point is smaller than the enthalpy difference Δii = ii−im from the store temperature / humidity point i to the target temperature / humidity point m. The load to be cooled and dehumidified is reduced, and energy is saved. Ventilation air volume Vo [m found here Three / Min] is output to the ventilation fan 8 via the communication port 2 to control the ventilation fan 8.
As described above, monitoring and diagnosis can be performed from the head office, the service center, or the engineering center. Each store can be managed and controlled based on new data.
[0044]
Embodiment 3 FIG.
4 is a block diagram of a store energy equipment operating system according to Embodiment 3 of the present invention, showing a system configuration based on a refrigeration air-conditioning heat recovery algorithm, and FIG. 5 shows a heat recovery mechanism of the store energy equipment operating system. FIG.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and components not directly related to the refrigeration air conditioning heat recovery algorithm are not shown.
[0045]
Next, the operation will be described.
Of the detection signals from the sensor 3 b of the air conditioner 3, the operation mode Mode is sent to the management / control unit 1 via the communication port 2. This data mode is organized and stored as a device correlation physical quantity in the control data 1c by the sensor group management means 1a.
[0046]
When the device correlation physical quantity Mode in the control data 1c is in the heating operation mode, the operation algorithm 1b is a specified value of the refrigeration air-conditioning heat recovery algorithm from the management / control unit 1 via the communication port 2 and Outputs heat recovery start instruction to the refrigeration air conditioning heat recovery mechanism. In the refrigerator 4 that is instructed to start heat recovery, according to the instruction, the condensed exhaust heat of the outdoor heat exchanger of the refrigerator 4 is recovered by the evaporator of the outdoor heat exchanger of the air conditioner.
[0047]
Next, a specific heat recovery mechanism will be described with reference to FIG.
In the figure, 21 is a compressor of a refrigeration apparatus, 22 is a condenser, 23 is an expansion device, and 24 is an evaporator in a showcase installed in the store. 25 is a compressor of an air conditioner, 26 is a four-way valve for switching between cooling operation and heating operation, 27 is an outdoor heat exchanger, 28 is an expansion device, 29 is an indoor heat exchanger in the store, and 30 is a heat recovery damper. .
[0048]
In the refrigeration apparatus, the gas refrigerant compressed to high temperature and high humidity by the compressor 21 is condensed and liquefied by the condenser 22 outside the room, dissipated to the outside air, becomes a low-pressure two-phase refrigerant by the expansion valve 23, and evaporates by the evaporator 24. After gasifying and cooling the air in the showcase, it returns to the compressor 21 again. Regardless of the summer and winter season, the refrigerant path on the refrigeration apparatus side is this refrigerant flow throughout the year, and the condenser 22 outside the room always radiates heat.
[0049]
On the other hand, in the air conditioner 3, during the summer cooling operation, the high-pressure and high-temperature gas refrigerant that has flowed as indicated by the solid line in the figure and exits the air-conditioning compressor 25 is condensed and liquefied in the outdoor heat exchanger 27 via the four-way valve 26. The high-pressure liquid refrigerant that has radiated heat to the outside air becomes low-pressure two-phase in the expansion device 28, evaporates in the indoor heat exchanger 29, cools the inside of the store, and returns to the compressor 25 via the four-way valve 26. At this time, the heat recovery damper 30 blocks the air path of the refrigerator side condenser 2 and the air path of the air conditioner side outdoor heat exchanger 27 as indicated by the solid line.
[0050]
During the winter heating operation of the air conditioner 3, it flows as indicated by the broken line in the figure, and the high-pressure and high-temperature gas refrigerant exiting the air-conditioning compressor 25 is condensed and liquefied by the indoor heat exchanger 29 via the four-way valve 26. The heat is radiated and heated to become high-pressure liquid, which is decompressed by the expansion device 28, becomes a low-pressure two-phase refrigerant, and reaches the outdoor heat exchanger 27. The outdoor heat exchanger 27 functions as an evaporator, absorbs heat from the outside air, the refrigerant is gasified, and returns to the compressor 25 via the four-way valve 26 again. In this case, the heat recovery damper 30 is arranged as shown by a broken line, and the heat released from the refrigerator side condenser 22 is recovered by the air conditioner side outdoor heat exchanger 27.
[0051]
The damper 30 as the air path switching means has a configuration in which a duct is disposed and the blowing direction of the refrigerator side condenser 22 is guided to the suction air path of the air conditioner side outdoor heat exchanger or conversely away from the air conditioner 3. The air path may be switched in conjunction with the cooling operation and the heating operation of the air conditioner 3.
[0052]
Embodiment 4 FIG.
FIG. 6 is a block diagram of a store energy equipment operating system according to Embodiment 4 of the present invention, showing a system configuration based on a circulation operation algorithm, and FIG. 7 is a store interior by circulation operation of the store energy equipment operating system. It is a figure which shows upper temperature difference distribution.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of components not directly related to the circulation operation algorithm is omitted.
[0053]
Next, the operation will be described.
First, among the detection signals from the sensor 3 b of the air conditioner 3, at least the detection signal from the intake air temperature sensor Tiup of the indoor heat exchanger 29 installed in the upper part of the store is sent to the management / control unit 1 via the communication port 2. Will be sent to. Further, the sensor Tid for detecting the temperature in the lower part of the store is detected as a detection signal of a remote controller (not shown) in the room of the air conditioner 3 or a detection signal of the dew condensation sensor 5b in the showcase group 5, and the communication port 2 and sent to the management / control unit 1.
[0054]
These data are organized and stored as device correlation physical quantities in the control data 1c by the sensor group management means 1a. When the difference between the store upper temperature detection value Tiup and the store lower temperature detection value Tid in the control data 1c exceeds a certain value, the operation algorithm 1b performs a circulation operation on the ceiling fan 9 via the communication port 2. Output the start instruction. In order to eliminate the vertical temperature difference distribution, the ceiling fan 9 is operated in response to the instruction.
[0055]
FIG. 7 shows data for improving the temperature difference distribution in the store by the circulation operation, the horizontal axis indicates the store temperature, the vertical axis indicates the height from the floor, and the time variation of the vertical temperature distribution in the store during the winter heating operation is shown. Is. Before the ceiling fan operation, the temperature difference between the top and bottom is 10 ° C or more, but with the lapse of time of the circulation operation, the temperature distribution difference between the top and bottom is reduced to about 1 to 2 ° C after about 3 minutes. Energy savings, and comfort is maintained at the interpersonal position level. On the other hand, the same is true in the summer, especially in the passage before the open show, due to the cold air leak from the air curtain, the temperature in the store's passage was cooled to about 15 ° C, and there was a so-called cold aisle problem. A comfortable temperature is maintained by the circulation effect.
[0056]
As described above, when the temperature difference between the temperature at the upper part of the store and the temperature at the lower part of the store reaches a certain value or more, the ceiling fan 9 rotates, whereby the temperature difference between the upper and lower parts in the store is reduced and a uniform temperature distribution can be realized. During heating, energy is saved without hot air staying near the ceiling, so that the so-called cold aisle problem caused by cold air leaks in the passage in front of the store's open showcase can be solved, and customer comfort can be improved.
[0057]
Embodiment 5 FIG.
FIG. 8 is a configuration diagram of a store energy equipment operation system according to Embodiment 5 of the present invention, showing a system configuration based on an energy saving dimming control algorithm, and FIG. 9 is an initial illumination correction of the store energy equipment operation system. It is a figure which shows a principle. In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of components not directly related to the energy saving dimming control algorithm is omitted.
[0058]
Next, the operation will be described.
Detection signals from the illuminance sensor 6 b of the outdoor lighting 6 and the illuminance sensor 7 b of the in-store lighting 7 are sent to the management / control unit 1 via the communication port 2. Alternatively, the headquarters follows the communication data processing means 1d of the management / control unit 1 via a telephone line to each store, and the control data 1c includes the calendar of the day, sunrise, sunset time, and weather. Forecasts (sunny, cloudy, rain, etc.) are transmitted and stored as device correlation physical quantities.
[0059]
Based on the energy-saving dimming control algorithm in the operation algorithm 1b, it is too bright at the beginning of the installation of the outdoor lighting 6 and the in-store lighting 7, so that the initial illuminance correction control that lowers the initial illuminance, and the outdoor is more than a certain level during the day. When it is bright, the daylight usage control that reduces the illuminance of the in-store lighting, and the control signals for the time control of turning on / off the nighttime outdoor lighting based on the calendar and the brightness of the outside of the store, according to the instruction of the illuminance control timer, The data is transmitted to the outdoor lighting 6 and the store lighting 7 via the communication port 2. The outdoor lighting 6 and the in-store lighting 7 perform energy-saving dimming control according to this instruction.
The illuminance control timer is provided in the communication port.
[0060]
FIG. 9 shows the principle of initial illuminance correction, where the horizontal axis represents the time elapsed since the lighting fixture was installed, and the vertical axis represents the illuminance. Since it is too brighter than the appropriate illuminance in the initial stage after the lighting fixture is installed, the illumination input can be reduced as an energy saving by the instruction of the energy saving dimming control algorithm from the management / control unit 1 by the timer function.
As described above, electrical input to the illumination can be reduced for a predetermined time set in advance, energy saving can be achieved, and optimal illumination can be performed without impairing visibility.
[0061]
Embodiment 6 FIG.
FIG. 10 is a configuration diagram of a store energy equipment operation system according to Embodiment 6 of the present invention, and shows a system configuration based on a showcase energy saving operation algorithm.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of components not directly related to the showcase energy saving operation algorithm is omitted.
[0062]
Next, the operation will be described.
The flow of the store energy equipment operation system for the procedure of the air conditioning target temperature and humidity control means in the store based on the showcase energy saving operation algorithm will be described. The air conditioner power consumption Wa by the sensor 3c of the distribution board of the air conditioner 3, the refrigerator power consumption Wr by the sensor 4c of the distribution board of the refrigerator 4, and the power consumption Ws by the sensor 5c of the showcase group 5 distribution board Is transmitted to the management / control unit 1 via the communication port 2.
[0063]
In the operation algorithm 1b, the set values Ts ° C. and φs% of the target temperature and humidity in the store are set in the air conditioner 3 so that the sum of the air conditioner power consumption Wa, the refrigerator power consumption Wr, and the showcase group power consumption Ws is minimized. A setting change instruction is output via the communication port 2. This method is a method of searching for the minimum value of the total power consumption by trial and error by constantly changing the set values Ts ° C. and φs% of the in-store target temperature and humidity as feedback.
[0064]
Next, another algorithm of the showcase energy saving operation algorithm will be described. The communication port includes a part of the outside air temperature To ° C. and the outside air humidity φo% detected by the sensor 3b of the air conditioner 3, or a part of the outside air temperature To ° C. and the outside air humidity φo% detected by the sensor 4b of the refrigerator 4 2 is sent to the management / control unit 1 via the telephone line 2 or sent to the management / control unit 1 via the telephone line from the headquarters. It is stored in the data 1c. Based on the outdoor air conditions, the set temperature and humidity of the store are calculated based on the performance data indicating the inputs of the air conditioner 3, the refrigerator 4 and the showcase 5 based on the set values Ts ° C and φs% of the store temperature and humidity. Then, via the communication port 2, it is output to the air conditioner 3 as an in-store target temperature / humidity set value.
[0065]
As described above, among the detection signals of the open showcase chamber temperature, while maintaining the in-store temperature and humidity higher than the dew point temperature of the highest temperature open showcase for refrigeration, it is the lowest in the interpersonal comfort temperature zone The temperature can be secured. In addition, the temperature and humidity in the store are the greatest load factor for both air conditioners and refrigerators, and it is an important medium for optimal energy saving, freshness maintenance, and comfort, and can maintain the optimum correlation between air conditioning and freezing.
[0066]
Embodiment 7 FIG.
FIG. 11 is a configuration diagram of a store energy equipment operation system according to Embodiment 7 of the present invention, showing a system configuration based on an inter-system power interchange operation algorithm, and FIG. 12 shows the price of a light contract (light by time zone) and It is a figure which shows the actual condition of power consumption.
In the figure, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, description thereof is omitted, and illustration of constituent parts not directly related to the inter-system power interchange operation algorithm is omitted.
[0067]
Next, the operation will be described.
The latest data on the pay-per-use charges of the electric power company by system is stored as cost1 and cost2 in the control data 1c in the management control unit 1 of each store via the telephone line from the headquarters. Confirm that the detected value W1 of the electric energy sensor 11b of the low-voltage electric power panel 12 and the detected value W2 of the electric energy sensor 11c of the lamp system power panel 13 are equal to or less than the contract electric power W1max and W2max, respectively, and carry out margin electric energy calculation If it can be accommodated at a low cost, an instruction for switching the intersystem power interchange is output to the power interchange control panel 11.
[0068]
FIG. 12 shows the price and the actual power consumption of a light contract (light by time zone). The metered charge of the light is 32.25 yen / kWh in the daytime (7:00 to 23:00) and at night (23:00). ˜7: 00) is 6.15 yen / kWh. From 0 am to 6 am, the metered charge is cheap, and two outdoor lighting distribution boards (store signboards, signboards, and parking lots) can also be used at low prices. However, in the evening from 17:00 to 23:00, a high charge of 32.25 yen / kWh is used, and outdoor lighting after 17:00 in the evening becomes expensive until 23:00.
[0069]
On the other hand, the summer usage fee of the power system is always 11.55 yen / kWh for 24 hours as shown in FIG. It is cheaper than the electric charge usage fee (daytime) 32.25 yen / kWh, but is higher than the electric charge usage fee (night) 6.15 / kWh, which is a usage fee of 11.55 yen / kWh.
[0070]
Therefore, if the power type of the lowest power rate is determined and the interchange of different grid power is carried out, the time zone (19:00 to 23:00) in FIG. If the grid power is turned on, the reduction of the pay-as-you-go fee will be 4 hours / 1 day × (32.25 yen / kWh-11.55 yen / kWh) × 3 kW × 30 days / month≈7000 yen / month.
[0071]
As described above, when power is supplied to a plurality of power systems and distributed to facility equipment in the store, the power system of a system with a low metered charge can be selected, so that the running cost can be reduced. Furthermore, since the power of the distribution board of each equipment is detected, intersystem power interchange is possible within the contract power for each system, and the total contract power can be reduced.
[0072]
In the first to seventh embodiments, communication between each store and the headquarters is performed via a telephone line. However, a power line modem is provided at each store and the headquarters, and communication is performed via the power line. May be.
[0073]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
In response to the supply of electric power from the power system, a plurality of electrical devices that perform air conditioning, freezing, lighting, etc. in the store, a plurality of sensors that detect a state quantity corresponding to each electrical device, and from each of these sensors Management / control means for receiving a detection signal and outputting a control signal to each electric device while maintaining a certain correlation with the state quantity between the electric devices based on an electric equipment operation algorithm, and the management / control means Operation algorithm update means for updating the electrical equipment operation algorithm of the system, so that the state quantity corresponding to each electrical equipment is detected, and the setting state of the correlated electrical equipment is interlocked with each other according to the electrical equipment operation algorithm. By managing and controlling every moment, it is possible to control the operation of equipment for stores in an optimal and efficient manner, with energy and cost savings.
[0074]
In addition, since the management / control means is equipped with a communication means for transmitting / receiving management / control data or electrical equipment operation algorithm via a telephone line or a power line, it is possible to remotely diagnose a driving situation, construct an optimum operation algorithm, Data can be transmitted, existing algorithms can be modified and updated, and new algorithms can be added.
[0075]
Furthermore, since the management / control means is provided with sensor group management means for receiving and detecting the detection signals of the respective sensors that detect the state quantities corresponding to the respective electric devices, it is possible to deal with sensor failures and to share the sensors. It is possible to grasp the correlation of the state quantity between each electric device.
[0076]
Further, as the control data for communication by the communication means, any one of the power rate, the outside air temperature, the next day weather forecast, the next day outside air temperature predicted value, the next day air conditioning load predicted value, and the operation history data of each electric device is processed. Since the communication data processing means is provided, the device can be managed remotely, the latest data can be sent, and the energy saving and cost saving operation based on the new data can always be performed.
[0077]
In addition, the data processing means for performance diagnosis is configured to configure the operation history data in the communication control data by any one of the power consumption, running cost, outside temperature, in-store temperature, in-store humidity of each equipment for the store. Therefore, preventive maintenance, life prediction, failure diagnosis, performance diagnosis can be performed, and maintenance costs can be reduced.
[0078]
In addition, an air conditioner for supplying air from the power system and performing air conditioning for the store, a ventilation fan for introducing outside air into the store, an outside air temperature / humidity sensor for detecting the temperature or humidity of the outside air, and the outside air temperature / humidity In response to a detection signal from the sensor, a control signal for managing and controlling the state quantity between the air conditioner and the ventilation fan based on an electric equipment operation algorithm while giving a certain correlation is output to the air conditioner and the ventilation fan. During the cooling operation by the management / control means and the air conditioner, the detection signal from the outside air temperature / humidity sensor is received, and the difference between the enthalpy of the outside air and the indoor set enthalpy determined in advance from the indoor set temperature, or the outside air When the difference between the enthalpy and the indoor air enthalpy falls below the set zone, a low air flow rate from the management / control means to the ventilation fan is reduced. With low enthalpy outside air introduction energy saving operation control means that outputs a Talpy outside air introduction amount instruction, introduction of outside air at night and in the middle of summer reduces air conditioning cooling load and saves energy, and introduction of fresh outside air improves comfort It can be improved and the inside of the store becomes a positive pressure, and it is possible to prevent invasion of garbage and insects.
[0082]
In addition, based on the store air conditioner and multiple showcases that operate with power supplied from the power grid, multiple temperature sensors that detect the internal temperature of the multiple showcases, and an electric equipment operation algorithm Management / control means for outputting to the refrigerator a control signal for managing / controlling the refrigerator while taking a certain correlation between the state quantities between the electrical devices, and receiving detection signals from the plurality of temperature sensors And air conditioning target temperature / humidity control means for outputting a control signal determined based on a showcase energy saving operation algorithm in which a target temperature / humidity of the air conditioner's in-store temperature / humidity is preset to the air conditioner from the management / control means. Therefore, the target temperature and humidity in the store is set to minimize the sum of the input of the showcase and the input of the air conditioner, so the input of the combined refrigeration and air-conditioning system saves energy and maintains comfort. One, it is possible to maintain freshness of the showcase in the food.
[0083]
In addition, a distribution board that is individually provided in the electrical equipment for the store upon receiving power supply from a plurality of power systems, and a power detection means that detects the power of each of the distribution boards from the plurality of power systems And a management / control unit that outputs a control signal to the electrical device while managing and controlling the electrical device while maintaining a certain correlation between the state quantities between the electrical devices based on the electrical device operation algorithm, and the power detection unit. When the detected power signal is in a preset power value zone, a power system interchange instruction using power from another power system is issued from the management / control means according to a preset priority. Since the power interchange means for outputting power between systems is provided, a power system with a low running cost can be selected, and the running cost and the total contract power can be reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a store energy equipment operation system showing Embodiment 1 of the present invention;
FIG. 2 is a configuration diagram of a store energy equipment operation system showing Embodiment 2 of the present invention;
FIG. 3 is a wet air diagram of a store energy equipment operation system showing Embodiment 2 of the present invention.
FIG. 4 is a configuration diagram of a store energy equipment operation system showing Embodiment 3 of the present invention.
FIG. 5 is a diagram showing a heat recovery mechanism of a store energy equipment operation system according to Embodiment 3 of the present invention.
FIG. 6 is a configuration diagram of a store energy equipment operation system showing Embodiment 4 of the present invention;
FIG. 7 is a diagram showing an in-store temperature difference distribution due to circulation operation of the store energy equipment operation system showing Embodiment 4 of the present invention;
FIG. 8 is a configuration diagram of a store energy equipment operation system showing Embodiment 5 of the present invention;
FIG. 9 is a diagram showing the principle of initial illuminance correction of the store energy equipment operation system showing Embodiment 5 of the present invention;
FIG. 10 is a configuration diagram of a store energy equipment operation system showing Embodiment 6 of the present invention;
FIG. 11 is a configuration diagram of a store energy equipment operation system showing Embodiment 7 of the present invention;
FIG. 12 is a configuration diagram of a store energy equipment operation system showing Embodiment 7 of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Management / control part, 2 Communication port, 3 Air conditioner, 4 Refrigerator, 5 Showcase group, 6 Outdoor lighting, 7 In-store lighting, 8 Ventilation fan, 9 Ceiling fan, 10 Other electric equipment, 11 Electric power interchange control panel, 12 Low-voltage power panel control panel, 13 Electric light system control panel, 21 Compressor, 22 Condenser, 23 Expansion device, 24 Evaporator, 25 Compressor, 26 Four-way valve, 27 Outdoor heat exchanger, 28 Expansion device, 29 Indoor Heat exchanger, 30 heat recovery damper.

Claims (7)

店舗内の空調を行う空調機、店舗内に設けられ食品を冷蔵・冷凍する複数のショーケース、および店舗内に外気を導入する換気扇、等の複数の電気機器が配置された店舗内空気温湿度を計測する店舗内温湿度センサと、外気温湿度を検出する外気温湿度センサと、店舗内空気を空調機消費電力と冷凍機消費電力とショーケース群消費電力の総和を小さくするように常に変更して設定された店内目標温湿度に基づき冷却除湿する前記空調機の室内熱交換器と、前記室内熱交換器冷却除湿時に計測される前記店舗内空気温湿度と前記外気温湿度及び前記室内熱交換器の蒸発温度と前記店内目標温湿度により空気温湿度の特性を用いて相関する前記空調機の室内送風量と前記換気扇の新鮮外気取り込み量を演算し前記空調機と前記換気扇へ制御信号を出力する管理・制御手段と、前記複数のショーケースの庫内温度を検出する複数の温度センサと、を備え、前記管理・制御手段は、前記複数の温度センサからの検出信号を受けて、前記店内目標温湿度を最高温度のショーケースの露点温度以上に設定することを特徴とする店舗用エネルギー機器運用システム。In-store air temperature and humidity where multiple electrical devices such as air conditioners that air-condition the store, multiple showcases installed in the store to refrigerate and freeze food, and ventilating fans that introduce outside air into the store The temperature and humidity sensor in the store that measures the air temperature, the outside air temperature and humidity sensor that detects the outside air temperature and humidity, and the air in the store are constantly changed to reduce the sum of the air conditioner power consumption, refrigerator power consumption, and showcase group power consumption. The indoor heat exchanger of the air conditioner that performs cooling and dehumidification based on the set target temperature and humidity in the store, the air temperature and humidity in the store, the outdoor temperature and humidity, and the indoor heat that are measured when the indoor heat exchanger is cooled and dehumidified A control signal to the air conditioner and the ventilation fan is calculated by calculating the indoor air flow rate of the air conditioner and the fresh outside air intake amount of the ventilation fan, which are correlated using the characteristics of the air temperature and humidity by the evaporation temperature of the exchanger and the target temperature and humidity in the store. Comprising a management and control means for outputting a plurality of temperature sensors for detecting the internal temperature of the plurality of showcases, and the management and control means receives the detection signal from the plurality of temperature sensors, wherein An energy equipment operation system for stores characterized by setting the target temperature and humidity in the store above the dew point temperature of the highest temperature showcase . 前記管理・制御手段にて、前記外気温湿度から得られる外気空気エンタルピーと前記店内目標温湿度から得られる目標空気エンタルピーとの差、または前記外気温湿度から得られる外気空気エンタルピーと前記店舗内空気温湿度から得られる店舗内空気エンタルピーの差が、設定ゾーン以下になった場合に、前記管理・制御手段から前記換気扇へ給気風量の低エンタルピー外気導入量指示を出力する低エンタルピー外気導入省エネ運用制御手段とを備えたことを特徴とする請求項1記載の店舗用エネルギー機器運用システム。  In the management / control means, a difference between an outside air enthalpy obtained from the outside air temperature humidity and a target air enthalpy obtained from the in-store target temperature / humidity, or an outside air air enthalpy obtained from the outside air temperature / humidity and the air in the store Low enthalpy outside air introduction energy-saving operation that outputs a low enthalpy outside air introduction amount instruction of the supply air amount from the management / control means to the ventilation fan when the difference in air enthalpy in the store obtained from temperature and humidity falls below the set zone The store energy equipment operation system according to claim 1, further comprising a control unit. 前記管理・制御手段に、電話回線または電力線を介して管理・制御データまたは電気機器運用アルゴリズムを送受信する通信手段を備えたことを特徴とする請求項1又は2記載の店舗用エネルギー機器運用システム。  The store energy equipment operation system according to claim 1 or 2, wherein the management / control means includes a communication means for transmitting / receiving management / control data or an electric equipment operation algorithm via a telephone line or a power line. 前記管理・制御手段に、各電気機器に応じた状態量を検出する各センサの検出信号を受けて一括して管理するセンサ群管理手段を備えたことを特徴とする請求項1又は2又は3記載の店舗用エネルギー機器運用システム。  The sensor / control means includes a sensor group management means for receiving and collectively managing a detection signal of each sensor for detecting a state quantity corresponding to each electric device. The store energy equipment operation system described. 前記通信手段による通信用制御データとして、電力料金、外気温度、翌日の天気予報、翌日の外気温度予測値、翌日の空調負荷予測値、各電気機器の運用履歴データのいずれかを加工する通信用データ加工手段を備えたことを特徴とする請求項3記載の店舗用エネルギー機器運用システム。  As communication control data by the communication means, for processing the power rate, outside temperature, next day weather forecast, next day outside temperature predicted value, next day air conditioning load predicted value, operation history data of each electric device The store energy equipment operation system according to claim 3, further comprising data processing means. 前記通信用制御データ内の運用履歴データを、店舗用各設備機器の消費電力量、ランニングコスト、外気温度、店内温度、店内湿度のいずれかで構成する性能診断用データ加工手段を備えたことを特徴とする請求項1乃至5のいずれかに記載の店舗用エネルギー機器運用システム。  It is provided with performance diagnosis data processing means for configuring the operation history data in the communication control data by any one of power consumption, running cost, outside air temperature, in-store temperature, in-store humidity of each equipment for the store. The store energy equipment operation system according to any one of claims 1 to 5. 前記複数の電気機器に応じて設けられた電力系統の個別の電力を検出する電力検出手段と、前記電力検出手段からの検出信号を受けてその電力検出値があらかじめ設定された電力値ゾーンにある場合、あらかじめ設定された優先度に従って、他の電気機器の電力を使用する電力系統融通指示を前記管理・制御手段から出力する系統間電力融通手段とを備えたことを特徴とする請求項1記載の店舗用エネルギー機器運用システム。 A power detection means for detecting individual power of an electric power system provided according to the plurality of electric devices, and a power detection value in a preset power value zone upon receiving a detection signal from the power detection means 2. An intersystem power interchange means for outputting a power system interchange instruction using power from another electric device from the management / control means in accordance with a preset priority. Store energy equipment operation system.
JP2000023169A 2000-01-31 2000-01-31 Store energy equipment operation system Expired - Fee Related JP4244482B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000023169A JP4244482B2 (en) 2000-01-31 2000-01-31 Store energy equipment operation system
JP2008020919A JP4618304B2 (en) 2000-01-31 2008-01-31 Store energy equipment operation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000023169A JP4244482B2 (en) 2000-01-31 2000-01-31 Store energy equipment operation system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008020919A Division JP4618304B2 (en) 2000-01-31 2008-01-31 Store energy equipment operation system

Publications (2)

Publication Number Publication Date
JP2001218367A JP2001218367A (en) 2001-08-10
JP4244482B2 true JP4244482B2 (en) 2009-03-25

Family

ID=18549370

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2000023169A Expired - Fee Related JP4244482B2 (en) 2000-01-31 2000-01-31 Store energy equipment operation system
JP2008020919A Expired - Lifetime JP4618304B2 (en) 2000-01-31 2008-01-31 Store energy equipment operation system

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2008020919A Expired - Lifetime JP4618304B2 (en) 2000-01-31 2008-01-31 Store energy equipment operation system

Country Status (1)

Country Link
JP (2) JP4244482B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161490A (en) * 2001-11-21 2003-06-06 Daikin Ind Ltd Set temperature control method and apparatus for air conditioner
JP2006190145A (en) * 2005-01-07 2006-07-20 Omron Corp Store management system, store controller, store control method, management server, management method and program
JP4650254B2 (en) * 2005-12-20 2011-03-16 ダイキン工業株式会社 Temperature control device for equipment, temperature control system, temperature control method, and temperature control program
JP2008025908A (en) * 2006-07-20 2008-02-07 Hitachi Plant Technologies Ltd Optimization control support system
TWI334068B (en) * 2007-07-06 2010-12-01 Chunghwa Telecom Co Ltd Network-based lighting equipment remote monitoring and management system
JP5493814B2 (en) * 2009-12-16 2014-05-14 マツダ株式会社 Control method and apparatus for coating air conditioner
WO2011148647A1 (en) * 2010-05-28 2011-12-01 パトックス.ジャパン株式会社 Control management system for energy conversion device
JP2011257072A (en) * 2010-06-09 2011-12-22 Panasonic Electric Works Co Ltd Energy management apparatus
JP2012063113A (en) * 2010-09-17 2012-03-29 Mitsubishi Heavy Ind Ltd Air conditioner
JP5478446B2 (en) * 2010-09-22 2014-04-23 アズビル株式会社 Energy saving margin calculating device, energy saving total margin calculating device and method
JP5318059B2 (en) * 2010-09-28 2013-10-16 三菱電機株式会社 Control device for air conditioning system and air conditioning system provided with the control device
JP5325918B2 (en) * 2011-03-24 2013-10-23 日比谷総合設備株式会社 Outside air cooling diagnostic method for reducing energy consumption in buildings
JP5906835B2 (en) * 2012-03-09 2016-04-20 富士通株式会社 Power control program, power control apparatus, and power control method
JP6136045B2 (en) 2012-07-05 2017-05-31 パナソニックIpマネジメント株式会社 Device control device, device control system, program
JP6305122B2 (en) * 2014-03-10 2018-04-04 三菱電機株式会社 Refrigerator and network system equipped with refrigerator
US10436468B2 (en) 2014-03-24 2019-10-08 Nec Corporation Monitoring device, monitoring system, monitoring method, and non-transitory storage medium
JP6567034B2 (en) * 2017-12-27 2019-08-28 三菱電機株式会社 Cooperation system and centralized controller
JP7113662B2 (en) * 2018-05-24 2022-08-05 三菱電機株式会社 Control system, server, control method, and program
CN110289687B (en) * 2019-06-27 2022-12-27 杨立帆 Switching station intelligent condensation control system based on image analysis

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5428023B2 (en) * 1974-11-08 1979-09-13
JPS5812293A (en) * 1981-07-15 1983-01-24 松下電工株式会社 Outdoor illumination controller
JPS63280369A (en) * 1987-05-13 1988-11-17 Mitsubishi Electric Corp On-line computer network device
JPH04344053A (en) * 1991-05-22 1992-11-30 Matsushita Seiko Co Ltd Ceiling fan interlocking type air conditioner
JPH05231699A (en) * 1992-02-18 1993-09-07 Nakano Reiki Kk Method and apparatus for air conditioning in store
JP3173843B2 (en) * 1992-02-24 2001-06-04 東芝キヤリア株式会社 Store system equipment
JP3123271B2 (en) * 1992-11-20 2001-01-09 日立プラント建設株式会社 Underfloor air conditioning method
JPH0712446A (en) * 1993-06-22 1995-01-17 Hitachi Plant Eng & Constr Co Ltd Method for discharging heat in show case having freezer therein
JPH07269983A (en) * 1994-03-30 1995-10-20 Sanyo Electric Co Ltd Air conditioner for shop
JPH07324794A (en) * 1994-05-30 1995-12-12 Matsushita Seiko Co Ltd Energy consumption predicting apparatus for air conditioner
JP3418009B2 (en) * 1994-08-12 2003-06-16 中野冷機株式会社 Method and apparatus for monitoring and managing refrigeration equipment
JPH09135541A (en) * 1995-11-06 1997-05-20 Hitachi Ltd Power feed system
JPH09152960A (en) * 1995-11-30 1997-06-10 Fujitsu Ltd Information processor and information processing system
JPH09196432A (en) * 1996-01-10 1997-07-31 Tokyo Electric Power Co Inc:The Air conditioner and method for controlling air conditioner
JPH1026389A (en) * 1996-07-10 1998-01-27 Sanyo Electric Co Ltd Method and device for controlling air-conditioning system
JPH10274425A (en) * 1997-03-31 1998-10-13 Daikin Ind Ltd Air conditioner with ventilating function and ventilation air conditioning system using air conditioner thereof
JP3922794B2 (en) * 1997-09-09 2007-05-30 大阪瓦斯株式会社 Cogeneration device and switch
JPH11206014A (en) * 1998-01-09 1999-07-30 Toshiba Corp Equipment managing system for shop
JP2000249454A (en) * 1999-03-01 2000-09-14 Okamura Corp Integrated control apparatus for store equipment

Also Published As

Publication number Publication date
JP2008175524A (en) 2008-07-31
JP2001218367A (en) 2001-08-10
JP4618304B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP4618304B2 (en) Store energy equipment operation system
CN1707190B (en) Equipment control system
JP3624288B2 (en) Store management system
JP4378864B2 (en) Composite device and method of operating composite device
US20120042672A1 (en) Air conditioner control apparatus, cooling system, and air conditioner control program
EP1536186B1 (en) Air conditioner
JP3173843B2 (en) Store system equipment
US5673567A (en) Refrigeration system with heat reclaim and method of operation
CN102901178A (en) Multi air conditioner and control method thereof
JP2009236484A (en) Composite apparatus and operating method thereof
CN105122570B (en) Electric power management system and refrigerator
JP6989812B2 (en) Air conditioning system, air conditioning control device, air conditioner, and air conditioning control method
JP3528633B2 (en) Air conditioner and control method thereof
JP4269324B2 (en) Thermal device arrangement method, air conditioner, thermal device apparatus and operation method thereof, air conditioning / illumination apparatus and operation method thereof, illumination apparatus and operation method thereof
KR101573363B1 (en) Air-conditioner and method
JP2001208421A (en) Method of arranging heat apparatus, and air conditioner and heat apparatus and their operation method, and air- conditioning and illuminating device and its operation method, and illuminator and its operation method
JPH11206014A (en) Equipment managing system for shop
CN111765546B (en) Air conditioning unit
JP2004092954A (en) Centralized control system for refrigeration facility and air conditioning facility
KR101303162B1 (en) Air conditioner, air condiioning system having the same, and lighting system
JP2001182995A (en) Method and apparatus for displaying operational conditions of refrigerator/air conditioner
JP2000088423A (en) Controller for low temperature showcase
WO2021156937A1 (en) Dehumidification device
JPH07133946A (en) Air-conditioning system
CA2163076C (en) Refrigeration system with heat reclaim and method of operation

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081229

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees