JP3123271B2 - Underfloor air conditioning method - Google Patents

Underfloor air conditioning method

Info

Publication number
JP3123271B2
JP3123271B2 JP04335121A JP33512192A JP3123271B2 JP 3123271 B2 JP3123271 B2 JP 3123271B2 JP 04335121 A JP04335121 A JP 04335121A JP 33512192 A JP33512192 A JP 33512192A JP 3123271 B2 JP3123271 B2 JP 3123271B2
Authority
JP
Japan
Prior art keywords
air
conditioning method
underfloor
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04335121A
Other languages
Japanese (ja)
Other versions
JPH06159780A (en
Inventor
浩二 加藤
Original Assignee
日立プラント建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立プラント建設株式会社 filed Critical 日立プラント建設株式会社
Priority to JP04335121A priority Critical patent/JP3123271B2/en
Publication of JPH06159780A publication Critical patent/JPH06159780A/en
Application granted granted Critical
Publication of JP3123271B2 publication Critical patent/JP3123271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアンダーフロア空調方法
に関し、特に室内送風量を任意の周期で変化させる空調
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underfloor air-conditioning method, and more particularly to an air-conditioning method for changing the amount of air blown into a room at an arbitrary cycle.

【0002】[0002]

【従来の技術】一般事務所ビル、デパート、スーパー等
では、ほぼ室内が空調されており、近年では、製造工場
の一部でも空調されるようになってきた。この製造工場
の空調は作業者の快適性よりも製品の品質向上に重点を
おいているところもあるが、一般事務所ビルでは作業者
(在室者)の快適性と部屋の機能性を重視している。
2. Description of the Related Art In general office buildings, department stores, supermarkets and the like, the interior of a room is almost air-conditioned, and recently, a part of a manufacturing plant has been air-conditioned. In some cases, the air conditioning in this manufacturing plant focuses on improving the quality of products rather than the comfort of workers, but in general office buildings, the focus is on the comfort of workers (occupants) and the functionality of the room. are doing.

【0003】快適性については、温度、湿度、気流速度
等で制御されることが多く、これらを組み合わせたとき
の最適環境については、永年の経験や研究により明らか
にされ既に熟知されている。また、前記要因の他に快適
性に影響する要因としては炭酸ガス濃度、照度、騒音等
があるが、これらはビル管理法等で法的規則を受けてい
るものが多く、各々適正環境に制御されている。
[0003] Comfort is often controlled by temperature, humidity, air velocity and the like, and the optimal environment when these are combined has been clarified by many years of experience and research and is already well known. In addition to the above factors, there are other factors that affect comfort, such as carbon dioxide concentration, illuminance, and noise, which are often subject to legal regulations under the Building Management Law, etc. Have been.

【0004】人間の温熱感に関して、空調の快適性に最
も影響がある室内温度は今まで一定値制御、すなわち任
意の設定温度に、バラツキなく如何にしてコントロール
するかが問題となり、PID制御等の制御技術を駆使し
てコントロールしてきた。
[0004] Regarding the thermal sensation of humans, the room temperature that most affects the comfort of air conditioning has been controlled to a constant value, that is, how to control the temperature to an arbitrary set temperature without variation has been a problem. It has been controlled using control technology.

【0005】しかし、近年世間全般の価値観の多様化に
より、空調のより一層の快適性向上を追及する機運が広
がりつつあり、その一つに森林等のさわやかな雰囲気
を、一般事務所ビル内に実現させるために、森林の樹木
が発散するフィトンチッドを空調機に供給することが行
われている。また、気流速度についても、一定流速より
も”草原のそよ風”、”海辺のそよ風”等自然な風が吹
いている状態(いわゆる”1/fゆらぎ”といわれる)
にすることが試みられている。
[0005] However, in recent years, with the diversification of values in the general world, there has been an increasing trend to further improve the comfort of air conditioning, and one of them is to create a refreshing atmosphere such as forests in general office buildings. In order to achieve this, phytoncides that emanate from forest trees are supplied to air conditioners. As for the airflow velocity, natural winds such as "grassland breezes" and "seaside breezes" are blowing more than a certain velocity (so-called "1 / f fluctuation").
It has been attempted to.

【0006】一方、部屋の機能性については、近年のイ
ンテリジェントビルに見られるように、OA機器が所せ
ましとフロアーに設置され高機能化しており、これらO
A機器の配置、特に配線に対するフレキシブルな対応と
して床下に配線のための空間を形成する、いわゆるフリ
ーアクセスフロアが用いられている。さらに、空調方式
もこのフリーアクセスフロアの床下空間を有効に利用す
るため、ここに暖気あるいは冷気を通気し、床面に形成
した吹出し口から吐出し、空調を行うアンダーフロア空
調が実施されてきている。
On the other hand, with regard to the functionality of a room, as seen in recent intelligent buildings, OA equipment has been installed on the floor and has become highly functional.
A so-called free access floor, which forms a space for wiring under the floor, is used as a flexible measure for the arrangement of the A devices, particularly for wiring. Furthermore, underfloor air-conditioning has been implemented in which the air-conditioning system also utilizes the under-floor space of the free access floor, in which warm or cool air is ventilated, discharged from outlets formed in the floor surface, and air-conditioned. I have.

【0007】この空調システムを図5、図6に示す。す
なわち、図5に示すように、室内空間は居住域1と非居
住域2に分けられ、該居住域1にはOA機器3やこれら
OA機器電源4、コピー機5が設置されている。特にO
A機器電源4やコピー機5は発熱源であり、非居住域2
にある照明6を含め室内熱負荷増大の大きな要因になっ
ている。空調空気は空調機7により外気と換気を混合
し、冷却コイル8により冷却除湿され、加熱コイル9に
より任意の温度に加熱コントロールされ、次いで加湿器
10により湿度コントロールされるようになっている。
任意の温度及び湿度にコントロールされた空調空気は、
送風機11により床下チャンバ12に送られ、床に設置
された吹出し口13から室内に供給されている。
This air conditioning system is shown in FIGS. That is, as shown in FIG. 5, the indoor space is divided into a living area 1 and a non-living area 2, and in the living area 1, an OA device 3, an OA device power supply 4, and a copying machine 5 are installed. Especially O
A equipment power supply 4 and copy machine 5 are heat sources, and
The lighting 6 includes a large factor in increasing the indoor heat load. The conditioned air mixes outside air and ventilation with an air conditioner 7, is cooled and dehumidified by a cooling coil 8, is heated and controlled to an arbitrary temperature by a heating coil 9, and is then humidity controlled by a humidifier 10.
Air-conditioned air controlled to any temperature and humidity
The air is sent to the underfloor chamber 12 by the blower 11, and is supplied into the room from the outlet 13 provided on the floor.

【0008】供給された空調空気は、居住域1から非居
住域2に向かって上昇するが、このときOA機器電源4
やコピー機5から発生する熱14を巻き込みながら上昇
する。次にこの空気は、天井に設置された吸込み口15
から吸い込まれ、さらに天井チャンバ16に導かれ還気
ダクト17によって一部は室外に放出され、残りは空調
機7に戻される。このときの室内空間の高さ方向の温度
分布は図6に示すようになり、床面からの高さ1800
mm以下の居住域1までは23〜24°Cとなっている
が、1800mm以上の非居住域2ではOA機器電源4や
コピー機5の熱発生のため温度は上昇し、25°C以上
になっている。
The supplied conditioned air rises from the living area 1 to the non-living area 2, and at this time, the OA equipment power supply 4
And the heat 14 generated from the copying machine 5 is involved. Next, this air is supplied to the suction port 15 installed on the ceiling.
The air is further drawn into the ceiling chamber 16 and partly discharged outside the room by the return air duct 17, and the rest is returned to the air conditioner 7. At this time, the temperature distribution in the height direction of the indoor space is as shown in FIG.
In the non-living area 2 of 1800 mm or more, the temperature rises due to the heat generated by the OA equipment power supply 4 and the copying machine 5 and reaches 25 ° C. or higher. Has become.

【0009】[0009]

【発明が解決しようとする課題】しかるに、最近の事務
用ビルは発熱源となるOA機器等の設置密度が増加し、
高機能化が進んでおり、これに伴い空調における室内顕
熱も格段に増加して年間を通じて冷房が実施されるとこ
ろが増えてきている。さらに、空調空気トータルの循環
量も増大しているため、送風機動力も上昇し、エネルギ
ー消費が飛躍的に大きくなっており、昨今の地球環境問
題にも関係し大きな問題となっている。
However, in recent office buildings, the installation density of OA equipment, etc., which is a heat source, has increased.
With the advancement of advanced functions, the indoor sensible heat in air conditioning has also increased remarkably, and the number of places where cooling is performed throughout the year is increasing. Furthermore, since the total circulation amount of the conditioned air is also increasing, the power of the blower is also increasing, and the energy consumption is dramatically increasing. This is a serious problem related to the recent global environmental problems.

【0010】本発明の目的は上述した問題に鑑みなされ
たもので、冷房時の省エネルギーを可能としたアンダー
フロア空調方法を提供するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an underfloor air-conditioning method capable of saving energy during cooling .

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、床面
から空調空気を吹き出し、天井面から還気を吸い込むア
ンダーフロア空調方法において、冷房時の室内送風量を
1時間程度のサイクルで周期的に変化させることを特徴
とする。
Means for Solving the Problems of claims 1 invention, balloon conditioned air from the floor, the underfloor air conditioning method for drawing return air from the ceiling surface, the room air volume of the cooling
It is characterized in that it is changed periodically in a cycle of about one hour .

【0012】請求項2の発明は、前記周期的に変化させ
る室内送風量が少風量、最多風量、中間風量の順に同じ
パターンを繰り返すとともに、前記少風量の時間帯を最
長にしたことを特徴とする。
According to a second aspect of the present invention , there is provided the method of
Indoor air flow is the same in the order of small air volume, maximum air volume, and intermediate air volume
While repeating the pattern,
It is characterized by having been lengthened .

【0013】[0013]

【作用】このように本発明によれば、従来空気送風量が
一定だったのに対し空気送風量を周期的に変化させるこ
とにより、吹出し温度を高く、かつ送風量を少なくでき
るので、省エネルギー可能なアンダーフロア空調方法を
実現でき、快適な居住環境を創出することができる。
As described above, according to the present invention, while the air blowing amount is conventionally constant, the blowing temperature can be increased and the blowing amount can be reduced by periodically changing the air blowing amount, so that energy can be saved. A simple underfloor air conditioning method can be realized, and a comfortable living environment can be created.

【0014】[0014]

【実施例】以下、図に示す実施例を用いて本発明の詳細
を説明する。図1は本発明のアンダーフロア空調方法の
運転状況のうち送風量を最少にしたときの室内概略構成
図で、図5と同一部分には同一符号を付してある。空調
空気の循環経路は図5及び図6と同じであるが、吹出し
口13から吹き出した空調空気は流速が小さく、わずか
に上昇気流となって天井に向かって移動する。このと
き、発熱源であるOA機器電源4やコピー機5の熱14
はこの気流に余り巻き込まれることなく上昇し、非居住
域2に滞留し、一部は吸込み口15から天井チャンバ1
6に吸い込まれ還気ダクト17に導かれる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the embodiments shown in the drawings. FIG. 1 is a schematic diagram of a room when the air flow rate is minimized in the operation status of the underfloor air conditioning method of the present invention, and the same parts as those in FIG. 5 are denoted by the same reference numerals. The circulation path of the conditioned air is the same as in FIGS. 5 and 6, but the conditioned air blown out from the outlet 13 has a small flow velocity, and moves toward the ceiling as a slightly ascending airflow. At this time, the heat 14 of the OA equipment power supply 4 and
Rises without being caught in this air current and stays in the non-living area 2, and a part thereof flows from the suction port 15 to the ceiling chamber 1.
6 is led to the return air duct 17.

【0015】一方、図2は送風量が最多になったときの
室内概略構成図を示し、図5と同一部分には同一符号を
付してある。吹出し口13から吹き出された空調空気は
流速が大きく、気流感をかなり感じるくらいの流速で一
気に天井に向かって移動する。このとき、空調空気は図
1で説明した送風量が少ないときの天井近傍を中心とし
た非居住域2に滞留していた熱と、発熱源であるOA機
器電源4やコピー機5の熱14を一気に巻き込みなが
ら、吸込み口15から天井チャンバ16へ導かれる。
On the other hand, FIG. 2 shows a schematic configuration diagram of the room when the amount of air blows is the maximum, and the same parts as those in FIG. 5 are denoted by the same reference numerals. The conditioned air blown out from the outlet 13 has a large flow velocity, and moves toward the ceiling at a stretch at a flow velocity at which a sense of air flow is considerably felt. At this time, the conditioned air is the heat that has stayed in the non-living area 2 centering on the vicinity of the ceiling when the air volume is small as described in FIG. Is drawn from the suction port 15 to the ceiling chamber 16 at a stretch.

【0016】今、このときの室内空間の高さ方向の温度
分布測定例を図3に示す。Aの線が従来の場合を示し、
B、Cの線がそれぞれ送風量小、送風量大の場合を示し
ている。吹出し温度は従来に比べ約1度高く設定してお
り、送風量が少ないときは従来と同じような温度分布パ
ターンとなっているが、熱滞留が増える分だけ天井に近
くなるにつれて温度上昇が大きい。一方、送風量が多い
ときは、滞留している熱は一気に廃熱されるため、高さ
方向に対する温度上昇率は小さくなる。したがって、送
風量を変化させることにより、以上のような温度分布を
交互に繰り返すことになる。
FIG. 3 shows an example of measuring the temperature distribution in the height direction of the indoor space at this time. The line A shows the conventional case,
Lines B and C show the case where the air volume is small and the air volume is large, respectively. The blowing temperature is set to about 1 degree higher than before, and when the amount of air blow is small, the temperature distribution pattern is the same as before, but the temperature rise increases as it approaches the ceiling as much as the heat retention increases . On the other hand, when the amount of air blow is large, the staying heat is wasted at once, and the rate of temperature rise in the height direction becomes small. Therefore, the above-described temperature distribution is alternately repeated by changing the air blowing amount.

【0017】今、このような運転時の吹出し速度の時間
経過の例を図4に示す。同図から明らかなように、25
分までは送風量は少なく、吹出し口13の風速は約0.
1m/sで、25〜30分の5分間で送風量を最多(こ
のときの風速は約0.8m/sである)にし、30〜3
5分の5分間はこの状態を保持する。この後、35〜4
0分の5分間で送風量を減少させ、40〜50分の10
分間は風速を約0.5m/sで維持し、50〜55分の
5分間で更に送風量を減少させ、55〜85分の30分
間は送風量を最少(このときの風速は約0.1m/sで
ある)に保持する。以後、このパターンを繰り返す。な
お、吹出し口13の風速を0.1m/sとした根拠は、
気流速度0.1m/sが気流を感じる知覚最低流速だか
らである。また、0.5m/sとしたのは、建築物の衛
生的環境の確保に関する法律に示された基準値(=0.
5m/s以下)を根拠にしている。さらに、0.8m/
sとしたのは、この流速が殆どの人が気流を感じる領域
の最低値だからである。
FIG. 4 shows an example of the lapse of time of the blowing speed during such an operation. As is apparent from FIG.
The air volume is small until the air flow reaches about 0.1 minute.
At 1 m / s, the air flow rate is maximized in 25 to 30 minutes (the wind speed at this time is about 0.8 m / s), and 30 to 3
This state is maintained for 5/5 minutes. After this, 35-4
Reduce the air volume in 5/0 minutes, and reduce
The air flow is maintained at about 0.5 m / s for 5 minutes, the air flow is further reduced in 5 to 50/55 minutes, and the air flow is minimized for 55 to 85/30 minutes. 1 m / s). Thereafter, this pattern is repeated. The basis for setting the wind speed of the outlet 13 to 0.1 m / s is as follows.
This is because the airflow velocity of 0.1 m / s is the minimum perceived flow velocity at which the airflow is felt. Further, the value of 0.5 m / s is set to the standard value (= 0.
5 m / s or less). In addition, 0.8m /
The reason for setting s is that this flow velocity is the lowest value in a region where most people can sense the airflow.

【0018】以上のように、送風量を周期的に変化さ
せ、送風量が少ないときは熱をエアーリフトの要領で非
居住域に移動、滞留させて室内温度が不快感を感じ始め
るぎりぎりの温度までこの運転を続け、次に送風量を最
多にしてこれらの熱を一気に排気させる。次に、この吹
出し風速を0.5m/s程度の気流感を感じる送風量ま
で減少させる。この気流感を感じることで、吹出し温度
を約1度高くしても温熱的な不快感を感じないで、より
快適感を感じ続けることができる。
As described above, the amount of air is periodically changed, and when the amount of air is small, heat is transferred to a non-living area in the manner of an air lift and stays there, so that the room temperature starts to feel unpleasant. This operation is continued until then, and the heat is exhausted at a stretch by maximizing the air volume. Next, the blowing wind speed is reduced to a blowing amount of about 0.5 m / s at which a sense of airflow is felt. By feeling this airflow feeling, even if the blowing temperature is increased by about 1 degree, the user can continue to feel more comfortable without feeling thermal discomfort.

【0019】このようにアンダーフロア空調方法によれ
ば、送風量を周期的に変化させることで、より快適にし
かも吹出し温度を高く、かつ送風量を少なくできるの
で、省エネルギーを可能にしたアンダーフロア空調方法
を実現することができる。
As described above, according to the underfloor air-conditioning method, by periodically changing the amount of air blow, it is possible to more comfortably increase the blow-out temperature and reduce the amount of air blow. The method can be realized.

【0020】なお、上述した実施例においては、床吹出
し−天井吸込みの居室内空調方法において吹出し温度が
従来の温度設定値よりも1度高くした例について説明し
たが、この温度設定値は任意に選定してよい。
In the above-described embodiment, an example has been described in which the outlet temperature is set to be one degree higher than the conventional temperature set value in the indoor air conditioning method of floor discharge and ceiling suction, but this temperature set value may be arbitrarily set. You may choose.

【0021】以上説明したように本発明によれば、床面
から空調空気を吹き出し、天井面から還気を吸い込むア
ンダーフロア空調方法において、冷房時の室内送風量を
1時間程度のサイクルで周期的に変化させるよう構成し
たことにより、従来に比べて送風量を少なくできるよう
になったので、省エネルギー化を可能にしたアンダーフ
ロア空調方法を実現できる。
As described above, according to the present invention, in an underfloor air-conditioning method in which conditioned air is blown out from the floor surface and return air is sucked in from the ceiling surface, the amount of indoor air blown during cooling is reduced.
Since the air flow rate can be periodically changed in a cycle of about one hour, the amount of air to be blown can be reduced as compared with the related art, so that an underfloor air conditioning method that can save energy can be realized .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のアンダーフロア空調方法の運転状況の
うち送風量を最少にしたときの室内概略構成図である。
FIG. 1 is a schematic configuration diagram of a room when an air flow rate is minimized in an operation state of an underfloor air conditioning method of the present invention.

【図2】本発明のアンダーフロア空調方法の運転状況の
うち送風量を最多にしたときの室内概略構成図である。
FIG. 2 is a schematic configuration diagram of a room when the amount of air blow is maximized in the operation status of the underfloor air-conditioning method of the present invention.

【図3】本発明に係わるアンダーフロア空調方法におけ
る室内空間の高さ方向の温度設定例を示す図である。
FIG. 3 is a diagram showing an example of setting the temperature in the height direction of the indoor space in the underfloor air-conditioning method according to the present invention.

【図4】本発明に係わるアンダーフロア空調方法運転時
の吹出し風速の測定例を示す図である。
FIG. 4 is a diagram showing a measurement example of a blown wind speed during operation of an underfloor air conditioning method according to the present invention.

【図5】従来のアンダーフロア空調方法の室内概略構成
図である。
FIG. 5 is a schematic diagram of the interior of a conventional underfloor air conditioning method.

【図6】従来のアンダーフロア空調方法における室内空
間の高さ方向の温度測定例を示す図である。
FIG. 6 is a diagram showing an example of temperature measurement in the height direction of an indoor space in a conventional underfloor air conditioning method.

【符号の説明】[Explanation of symbols]

13 吹出し口 15 吸込み口 16 天井チャンバ 17 還気ダクト 13 Outlet 15 Inlet 16 Ceiling chamber 17 Return air duct

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】床面から空調空気を吹き出し、天井面から
還気を吸い込むアンダーフロア空調方法において、冷房
時の室内送風量を1時間程度のサイクルで周期的に変化
させることを特徴とするアンダーフロア空調方法。
1. A blowing conditioned air from the floor, the underfloor air conditioning method for drawing return air from the ceiling surface, cooling
An underfloor air-conditioning method characterized by periodically changing the amount of indoor air blown at a cycle of about one hour .
【請求項2】前記周期的に変化させる室内送風量が少風
量、最多風量、中間風量の順に同じパターンを繰り返す
とともに、前記少風量の時間帯を最長にしたことを特徴
とする請求項1のアンダーフロア空調方法。
2. The method according to claim 2, wherein said periodically changing indoor air flow rate is small.
Repeat the same pattern in the order of air volume, maximum air volume, intermediate air volume
The underfloor air-conditioning method according to claim 1 , wherein the time period of the small air volume is set to be the longest .
JP04335121A 1992-11-20 1992-11-20 Underfloor air conditioning method Expired - Fee Related JP3123271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04335121A JP3123271B2 (en) 1992-11-20 1992-11-20 Underfloor air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04335121A JP3123271B2 (en) 1992-11-20 1992-11-20 Underfloor air conditioning method

Publications (2)

Publication Number Publication Date
JPH06159780A JPH06159780A (en) 1994-06-07
JP3123271B2 true JP3123271B2 (en) 2001-01-09

Family

ID=18285010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04335121A Expired - Fee Related JP3123271B2 (en) 1992-11-20 1992-11-20 Underfloor air conditioning method

Country Status (1)

Country Link
JP (1) JP3123271B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737661A (en) * 1993-07-22 1995-02-07 Nec Corp Ic socket

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4244482B2 (en) * 2000-01-31 2009-03-25 三菱電機株式会社 Store energy equipment operation system
WO2009131157A1 (en) * 2008-04-23 2009-10-29 日本たばこ産業株式会社 Smoking room
JP6749073B2 (en) * 2014-12-26 2020-09-02 国立大学法人千葉大学 Blower sheet
WO2016117088A1 (en) * 2015-01-22 2016-07-28 三菱電機株式会社 Indoor unit for air conditioner, air conditioner, and airflow control method
JP7332290B2 (en) * 2018-12-27 2023-08-23 高砂熱学工業株式会社 Clean room system and air exhaust method
JP7332289B2 (en) * 2018-12-27 2023-08-23 高砂熱学工業株式会社 Clean room system and air exhaust method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737661A (en) * 1993-07-22 1995-02-07 Nec Corp Ic socket

Also Published As

Publication number Publication date
JPH06159780A (en) 1994-06-07

Similar Documents

Publication Publication Date Title
US20050277381A1 (en) System to control environmental conditions in a living space
US6916239B2 (en) Air quality control system based on occupancy
AU2002365546B2 (en) Energy-efficient variable-air volume (VAV) system with zonal ventilation control
US20220128256A1 (en) Air conditioning system controller
JP7361247B2 (en) Air conditioning system, air conditioned room
JP3123271B2 (en) Underfloor air conditioning method
JPH11141954A (en) Central air-conditioning system
JP7352780B2 (en) Air conditioning system, air conditioning system controller
JPH08193743A (en) Air conditioner
KR100386703B1 (en) Control method of thermal comfort and carbon dioxide density for fresh air conditioning system
JPH08254329A (en) Outside air supplying structure for building
WO2021166405A1 (en) Air-conditioning system and air-conditioning system controller
JP2008089786A (en) Ventilation sensing equipment, and coolness comparing and sensing equipment
JPH0748016B2 (en) Underfloor air conditioning system
JP2020008246A (en) Air conditioning system, model selection method of air conditioning system, model selection device of air conditioning system, and model selection system of air conditioning system
JP7383101B1 (en) Air conditioning control method
JP7437552B2 (en) Ventilation systems and methods
JPH09250801A (en) Air quantity regulating apparatus for air-conditioning equipment blowing air from floor
JPH06249463A (en) Air conditioner operated under control of air layer
JP3407158B2 (en) Temperature control device for air-conditioning system with floor floor
Momoi et al. Thermal Environment of Textile Based Ventilation Combined with Chilled Ceiling
JPS6115477Y2 (en)
KR20240037729A (en) Individual air conditioning system automatically controlled by smart watch
JP3427314B2 (en) Air conditioner temperature controller
JPH05256505A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees