JP4244211B2 - Apparatus and method for measuring liquid reducing agent concentration - Google Patents

Apparatus and method for measuring liquid reducing agent concentration Download PDF

Info

Publication number
JP4244211B2
JP4244211B2 JP2004330075A JP2004330075A JP4244211B2 JP 4244211 B2 JP4244211 B2 JP 4244211B2 JP 2004330075 A JP2004330075 A JP 2004330075A JP 2004330075 A JP2004330075 A JP 2004330075A JP 4244211 B2 JP4244211 B2 JP 4244211B2
Authority
JP
Japan
Prior art keywords
reducing agent
liquid reducing
agent concentration
concentration
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004330075A
Other languages
Japanese (ja)
Other versions
JP2006138275A (en
Inventor
公信 平田
泰州 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2004330075A priority Critical patent/JP4244211B2/en
Priority to PCT/JP2005/020424 priority patent/WO2006051770A1/en
Publication of JP2006138275A publication Critical patent/JP2006138275A/en
Application granted granted Critical
Publication of JP4244211B2 publication Critical patent/JP4244211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

本発明は、ディーゼルやガソリンエンジン等の排気に含まれるNOxを除去する排気浄化装置に係り、特に、選択触媒還元(SCR)を採用した排気浄化装置における液体還元剤の濃度を測定する技術に関する。   The present invention relates to an exhaust purification device that removes NOx contained in exhaust gas from a diesel engine, a gasoline engine, or the like, and more particularly to a technique for measuring the concentration of a liquid reducing agent in an exhaust purification device that employs selective catalytic reduction (SCR).

エンジンの排気に含まれるNOxを除去する排気浄化装置として、特許文献1に開示されたようなSCRを採用した排気浄化装置が提案されている。この排気浄化装置は、排気系に還元触媒を配設し、該還元触媒の排気上流に還元剤を噴射供給することにより、排気中のNOxと還元剤とを触媒還元反応させて、NOxを無害成分に浄化処理するものである。還元剤は、常温において液体状態で貯蔵用のタンクに貯蔵され、エンジン運転状態に対応した必要量が噴射ノズルから噴射供給される。その還元反応は、NOxと反応性が良好なアンモニアを用いるものであり、このための還元剤としては、排気熱及び排気中の水蒸気により加水分解してアンモニアを容易に発生する尿素水溶液やアンモニア水溶液、又はHC系などの液体還元剤が用いられる。   As an exhaust purification device that removes NOx contained in engine exhaust, an exhaust purification device that employs an SCR as disclosed in Patent Document 1 has been proposed. In this exhaust purification device, a reduction catalyst is disposed in the exhaust system, and a reducing agent is injected and supplied upstream of the exhaust of the reducing catalyst to cause a catalytic reduction reaction between NOx in the exhaust and the reducing agent, thereby harming NOx. The component is purified. The reducing agent is stored in a storage tank in a liquid state at room temperature, and a necessary amount corresponding to the engine operating state is injected and supplied from the injection nozzle. The reduction reaction uses ammonia having good reactivity with NOx, and as a reducing agent therefor, an aqueous urea solution or aqueous ammonia solution that easily generates ammonia by hydrolysis with exhaust heat and water vapor in the exhaust. Alternatively, a liquid reducing agent such as HC is used.

このような液体還元剤を使用する排気浄化装置では、NOx排出量や排気温度等のエンジン運転状態に応じて液体還元剤の添加量をコントロールしているが、液体還元剤の濃度が規定値と異なる(水などの異種溶液やタンク内が空の場合を含む)と、触媒上での還元反応が不完全となり、NOx排出量の増加、アンモニアの過剰供給による未反応アンモニアの排出といった事態が予想される。そこで、タンク内に貯蔵されている液体還元剤の濃度(異種溶液判定及び空判定を含めて濃度という)を測定する濃度測定装置を設け、その測定結果に従い運転者への警告、添加量制御、システム停止等の異常対応をとるようにしている。   In such an exhaust purification device using a liquid reducing agent, the amount of liquid reducing agent added is controlled in accordance with the engine operating state such as the NOx emission amount and the exhaust temperature, but the concentration of the liquid reducing agent is a specified value. If different (including different solutions such as water and the case where the tank is empty), the reduction reaction on the catalyst will be incomplete, NOx emissions will increase, and unreacted ammonia will be discharged due to excessive supply of ammonia. Is done. Therefore, a concentration measuring device that measures the concentration of liquid reducing agent stored in the tank (referred to as concentration including different solution determination and empty determination) is provided, and a warning to the driver, addition amount control, We are trying to deal with abnormalities such as system shutdown.

この液体還元剤濃度測定装置には、液体還元剤のタンク内に設置され、離間した2点間の熱伝達特性により濃度を測定する感熱式の濃度センサが使用されている。
特開2000−027627
This liquid reducing agent concentration measuring apparatus uses a thermal concentration sensor that is installed in a tank of liquid reducing agent and measures the concentration based on heat transfer characteristics between two spaced points.
JP2000-027627

ところが、感熱式濃度センサを使用する場合、その測定原理の故に、走行による振動でタンク内の液体還元剤が揺れていると測定誤差が大きくなり、精度の高い検出が行えなくなるという課題がある。すなわち、揺れにより液体還元剤に対流が生じると、該還元剤を熱伝達媒体とした熱伝達特性が変化するので、熱伝達特性の変化に敏感な濃度測定の精度が低下する。そこで、液体還元剤が揺れていない状態での測定を実現するために、車両が停止していることを判別して濃度測定を実施することが考えられている。   However, when a thermal concentration sensor is used, there is a problem that due to the measurement principle, if the liquid reducing agent in the tank is shaken due to vibration caused by running, the measurement error becomes large and detection with high accuracy cannot be performed. That is, when convection is generated in the liquid reducing agent due to shaking, the heat transfer characteristic using the reducing agent as a heat transfer medium changes, so that the accuracy of concentration measurement sensitive to the change in the heat transfer characteristic decreases. Therefore, in order to realize measurement in a state where the liquid reducing agent is not shaken, it is considered that the concentration measurement is performed after determining that the vehicle is stopped.

本発明はこのような背景に基づき案出されたものであって、精度の高い濃度測定を行うべく、タンク内の液体還元剤に極力揺れがなく測定に最適な車両の停止状態を判別することのできる液体還元剤濃度測定方法と装置を提供する。   The present invention has been devised on the basis of such a background, and in order to perform highly accurate concentration measurement, the liquid reducing agent in the tank is as small as possible and the optimal vehicle stop state is determined. Provided are a liquid reducing agent concentration measuring method and apparatus capable of performing the same.

タンク内の液体還元剤に揺れがないと最も確実に言えるのは、駐車状態にある車両に運転者が乗り込んでイグニッションキーを回し、エンジンを始動させて車両が走り出すまでの間である。すなわち、信号待ちなど、走行から止まったばかりの停止状態では液体還元剤の揺れが確実に無いとは言えず、惰性で揺れが収まっていない可能性があるので、単純にタイヤが回っていないというだけの停止状態判別は十分ではない。つまり、車両停止後、ある程度の時間が経ってタンク内液体還元剤の揺れが収まっていることを考える必要があり、このことを確実に判断できるのが、駐車してあった車両に運転者が乗り込んで走り出すまでの間ということである。   The most reliable way to say that the liquid reducing agent in the tank is not shaken is when the driver gets into the parked vehicle, turns the ignition key, starts the engine, and starts running. In other words, it can not be said that the liquid reducing agent does not sway in a stopped state that has just stopped from running, such as waiting for a signal, and it is possible that the sway is not settled due to inertia, so the tire is not simply turning. It is not sufficient to determine the stop state. In other words, it is necessary to consider that the shaking of the liquid reducing agent in the tank has stopped after a certain period of time after the vehicle stops, and this can be determined with certainty by the driver on the parked vehicle. It is between getting in and running.

この知見に基づく本発明は、離間した2点間の熱伝達特性を計測する感熱式濃度センサによりタンク内の液体還元剤濃度を測定するようにした排気浄化装置の液体還元剤濃度測定方法において、その感熱式濃度センサによる測定を、車両に運転者が乗り込み、エンジンを始動させて車両が走り出すまでの間に実行することを特徴とする。運転者の乗り込みを感知する手法としては、ドアオープンの感知、シートの変位及び/又は荷重感知、車両がトラック等である場合は運転者の乗り込みで生じるキャブ(運転室)の変位感知をあげることができ、これらを感知して濃度の測定を開始するようにすれば、車両が動き出す前に濃度測定を完了することできる。   The present invention based on this finding is a liquid reductant concentration measuring method for an exhaust gas purification apparatus in which a liquid reductant concentration in a tank is measured by a thermal concentration sensor that measures heat transfer characteristics between two spaced points. The measurement by the thermal concentration sensor is performed until the driver gets into the vehicle, starts the engine, and starts running. Examples of methods for detecting the driver's entry include detection of door opening, seat displacement and / or load detection, and detection of cab (driver's cab) displacement caused by the driver's entry when the vehicle is a truck or the like. If these are detected and the concentration measurement is started, the concentration measurement can be completed before the vehicle starts to move.

このような測定方法を実施する装置として本発明によれば、タンク内の液体還元剤濃度を離間した2点間の熱伝達特性により測定する感熱式濃度センサを用いた液体還元剤濃度測定装置において、その感熱式濃度センサの制御手段が、エンジン停止状態で運転者の乗り込みを感知するステップと、これにより運転者の乗り込みが感知されると測定処理動作を開始して感熱式濃度センサによる液体還元剤濃度測定を実施するステップと、を実行することを特徴とする。   According to the present invention as an apparatus for carrying out such a measuring method, in a liquid reducing agent concentration measuring apparatus using a thermosensitive concentration sensor that measures a liquid reducing agent concentration in a tank by a heat transfer characteristic between two spaced points. The control means of the thermal concentration sensor senses the driver's boarding when the engine is stopped, and when the driver's boarding is sensed, the measurement processing operation is started and the liquid reduction by the thermal density sensor is performed. Performing an agent concentration measurement.

その運転者の乗り込みを感知するステップは、具体例をあげると、ドアオープンを感知するステップ、シートの変位を感知するステップ、シートへの荷重を感知するステップ、キャブの変位を感知するステップ、あるいは、これらの組み合わせとすることが可能である。
この場合、測定精度をより確実なものとするため、測定回数はできるだけ多い方が好ましい。そこで、振動が発生しない間、すなわちエンジンが始動されるまでの間に繰り返し濃度測定を行うようにしておくと良い。すなわち、液体還元剤濃度測定を実施するステップの後に、エンジンの始動を確認し、エンジンが始動されないうちは感熱式濃度センサによる液体還元剤濃度測定を繰り返すステップをさらに実行するようにしても良い。エンジンの始動は、イグニッションスイッチのオン等で感知することができる。
The step of detecting the driver's boarding includes, for example, a step of detecting door opening, a step of detecting displacement of the seat, a step of detecting load on the seat, a step of detecting displacement of the cab, or These can be combined.
In this case, in order to ensure measurement accuracy, it is preferable that the number of measurements is as large as possible. Therefore, it is preferable to repeatedly measure the concentration while no vibration is generated, that is, until the engine is started. That is, after the step of measuring the liquid reductant concentration, the engine start may be confirmed, and the step of repeating the liquid reductant concentration measurement by the thermal concentration sensor may be further executed while the engine is not started. The start of the engine can be detected by turning on an ignition switch or the like.

さらに、本発明の応用として、イグニッションスイッチのオフ等でエンジンが停止したときにそのエンジン停止時刻を記憶手段に書き込むステップと、感熱式濃度センサによる液体還元剤濃度測定を実施するステップの前に、直前のエンジン停止時刻を記憶手段から読み出すステップと、該読み出されたエンジン停止時刻から所定の時間経っていなければ液体還元剤濃度測定を行わず終了するステップと、読み出されたエンジン停止時刻から所定の時間以上経っていれば液体還元剤濃度測定を実施するステップと、を実行するようにしても良い。これによると、エンスト等で間隔をあけずにイグニッションキーの操作を繰り返すような場合には、無駄な濃度測定を行わないように対処することができる。   Furthermore, as an application of the present invention, before the step of writing the engine stop time in the storage means when the engine stops due to turning off the ignition switch or the like, and the step of measuring the liquid reducing agent concentration by the thermal concentration sensor, From the step of reading the immediately preceding engine stop time from the storage means, the step of ending without measuring the liquid reducing agent concentration if a predetermined time has not passed since the read engine stop time, and the read engine stop time The step of measuring the concentration of the liquid reducing agent may be performed if the predetermined time has elapsed. According to this, when the operation of the ignition key is repeated without leaving an interval due to an engine stall or the like, it is possible to cope with the unnecessary density measurement.

本発明では、駐車の状態から運転者が乗り込んで車両が動き出す前という、振動が与えられずタンク内の液体還元剤が確実に揺れていないと言える最適のタイミングで、感熱式濃度センサによる濃度測定を実行する。すなわち、ドアオープンやシート、キャブの変位等を感知し、運転者が乗り込んでこれから車両が使用されるであろうことを予測して、揺れが発生する前の静止時に濃度測定を行うようにしている。したがって、信頼性の高い測定結果が得られ、本来の排気浄化装置の性能を維持して、NOx排出抑制、アンモニア排出防止に貢献する。   In the present invention, the concentration measurement by the thermal concentration sensor is performed at an optimal timing that it can be said that the liquid reducing agent in the tank is not shaken without vibration and before the driver enters from the parking state and the vehicle starts to move. Execute. That is, it detects the opening of the door, the seat, the cab, etc., predicts that the driver will get in and the vehicle will be used from now on, and measure the concentration at rest before the shaking occurs Yes. Therefore, a highly reliable measurement result is obtained, and the performance of the original exhaust gas purification device is maintained, contributing to NOx emission suppression and ammonia emission prevention.

図1に、本発明に係る排気浄化装置の概略図を示している。図示の排気浄化装置は、排気系に介装された酸化触媒1、NOx浄化触媒2及びNHスリップ触媒3を備えている。そして、そのNOx浄化触媒2よりも上流側の排気中にノズル4から液体還元剤を噴射して添加する構成をもち、このノズル4へ適量の液体還元剤を供給するための添加装置5と、排気温センサ6,7による排気温やエンジンのECU8から得られるエンジン回転数等に応じて添加装置5の供給制御を行うECU(制御手段)9と、を備えている。 FIG. 1 shows a schematic diagram of an exhaust emission control device according to the present invention. The illustrated exhaust purification device includes an oxidation catalyst 1, a NOx purification catalyst 2, and an NH 3 slip catalyst 3 interposed in an exhaust system. An addition device 5 for supplying a suitable amount of the liquid reducing agent to the nozzle 4 has a configuration in which the liquid reducing agent is injected and added from the nozzle 4 into the exhaust gas upstream of the NOx purification catalyst 2. And an ECU (control means) 9 that controls supply of the adding device 5 in accordance with the exhaust temperature by the exhaust temperature sensors 6 and 7, the engine speed obtained from the engine ECU 8, and the like.

尿素水等の上述したような各種の液体還元剤は、タンク10に貯蔵されており、このタンク10内における測定に適した位置、本例ではタンク底面近傍に、液体還元剤濃度測定装置をなす感熱式濃度センサ11が垂下されている。この感熱式濃度センサ11は、タンク10の上面外側に基部が設置され、ここからセンサのある先端がタンク底面近くまで垂下されており、その基部から配線されて制御手段となるECU9へ測定信号SSを送信する。   Various liquid reducing agents such as urea water as described above are stored in the tank 10, and a liquid reducing agent concentration measuring device is formed in a position suitable for measurement in the tank 10, in this example, near the bottom of the tank. A thermal density sensor 11 is suspended. The thermosensitive concentration sensor 11 has a base installed outside the upper surface of the tank 10, from which the tip of the sensor hangs down to the bottom of the tank, and is wired from the base to the ECU 9 serving as a control means, with a measurement signal SS. Send.

この濃度測定装置の制御手段となるECU9には、この他に、車両のドア12がオープン(ロック解除も含む)したことを知らせる感知信号S1、車両のシート13の上下左右への変位(又はシート13への荷重)を知らせる感知信号S2、さらに、キャブ14(本例ではキャブオーバー型が示されている)の変位を知らせる感知信号S3が入力される。これらの感知信号S1,S2,S3は、エンジン停止状態のときに感知されECU9に入力される。なお、これら感知信号S1,S2,S3はいずれか一つが設定されていればよく、全ての感知信号を設定しておく必要はない。ただし、たとえばドアオープンだけだと運転者が降りる際にも感知され得るので、ドアオープン感知後にシート変位感知を行うように組み合わせるような方式も可能である。あるいは、感知信号S1,S2,S3のいずれかを感知後、イグニッションスイッチがオンされるかどうかをチェックする方式とすることも可能である。この場合、イグニッションスイッチがオンされたときに、その前に計測し終えた濃度測定結果を記憶するようにしておけばよい。   In addition to this, the ECU 9 serving as a control means of the concentration measuring device also includes a sensing signal S1 for notifying that the vehicle door 12 is open (including unlocking), and the displacement of the vehicle seat 13 in the vertical and horizontal directions (or the seat). Sense signal S2 that informs the displacement of the cab 14 and a sensing signal S3 that informs the displacement of the cab 14 (cab over type is shown in this example). These sensing signals S1, S2, and S3 are sensed and input to the ECU 9 when the engine is stopped. Any one of the sensing signals S1, S2, and S3 may be set, and it is not necessary to set all the sensing signals. However, for example, when only the door is opened, it can be sensed when the driver gets off, so a system in which the seat displacement is sensed after the door is sensed is also possible. Alternatively, a method of checking whether the ignition switch is turned on after sensing any of the sensing signals S1, S2, S3 can be adopted. In this case, when the ignition switch is turned on, the concentration measurement result that has been measured before that may be stored.

ECU9は、エンジンECU8からの情報に従いエンジン停止とともにスイッチオフとなり、ファイナライズを行って内部タイマ等の必要最低限の電源供給のみで待機する。このエンジン停止状態において、運転者によるドアのオープン、キャブへの乗り込み、シートへの着座のいずれかの行為に応じ、当該車両に設定されたいずれかの感知信号S1,S2,S3がECU9へ入力され、これがトリガ信号となってECU9はスイッチオンし、イニシャライズ(初期化)を行う。   The ECU 9 is switched off when the engine is stopped according to the information from the engine ECU 8, performs finalization, and waits only with a minimum necessary power supply such as an internal timer. In this engine stop state, any of the detection signals S1, S2, S3 set for the vehicle is input to the ECU 9 in response to any action of the driver opening the door, getting into the cab, or sitting on the seat. This becomes a trigger signal and the ECU 9 is switched on to perform initialization (initialization).

この初期化でECU9は測定処理動作を開始し、図2に示す液体還元剤濃度測定のフローを実施する。
すなわち、初期化を行う開始ステップ20で感熱式濃度センサ11の初期化後、ステップ21へ進んで、感熱式濃度センサ11による液体還元剤の濃度測定を実施する。この濃度測定で測定信号SSが得られると、ROM等に予め記憶してある、測定信号SSと液体還元剤濃度のルックアップテーブルを参照するなどして、ステップ22で濃度測定結果を出力し、ステップ23でECU9又は添加装置5に備えられたDRAMやEEPROM等のメモリへ書き込む。
With this initialization, the ECU 9 starts the measurement processing operation, and executes the flow of the liquid reducing agent concentration measurement shown in FIG.
That is, after initialization of the thermal concentration sensor 11 at the start step 20 for initialization, the process proceeds to step 21 where the concentration of the liquid reducing agent is measured by the thermal concentration sensor 11. When the measurement signal SS is obtained by this concentration measurement, the concentration measurement result is output in step 22 by referring to the lookup table of the measurement signal SS and the liquid reducing agent concentration stored in advance in the ROM or the like. In step 23, the data is written in a memory such as a DRAM or an EEPROM provided in the ECU 9 or the adding device 5.

一方、本例では、より信頼性の高い濃度測定を行うために、エンジンが始動されないううちに濃度測定を所定の回数繰り返すようにしている。このために、濃度測定結果を出力してメモリへ書き込んだステップ23の後、ステップ24で、イグニッションスイッチのオンをチェックする。そして、イグニッションスイッチがオンになっているときはエンジンが始動されているので、測定を繰り返さずに終了する。このステップ24では、エンジン回転数や燃料噴射信号を検出することでエンジン始動判断としてもよい。   On the other hand, in this example, in order to perform concentration measurement with higher reliability, concentration measurement is repeated a predetermined number of times while the engine is not started. For this purpose, after step 23 in which the density measurement result is output and written to the memory, in step 24, it is checked whether the ignition switch is on. When the ignition switch is on, the engine has been started, and the process ends without repeating the measurement. In step 24, the engine start may be determined by detecting the engine speed and the fuel injection signal.

イグニッションスイッチがオンになっていなければ、続けてステップ25で、必要以上の測定回数を繰り返さないように測定回数のチェックを行う。このチェックにより、予め設定されている回数の測定が行われていなければ、濃度測定のステップ21へ戻り、設定回数に達していればステップ26へ進んで終了となる。ステップ21へ戻った場合は、これにより繰り返し測定される2回目、3回目・・・の濃度測定結果をステップ22で出力し、ステップ23でメモリへ累積していく。そして、最終的にその平均をとるなどして最終測定結果を出すことができる。   If the ignition switch is not turned on, in step 25, the number of measurements is checked so as not to repeat the number of measurements more than necessary. As a result of this check, if the preset number of times has not been measured, the process returns to step 21 for density measurement, and if the set number has been reached, the process proceeds to step 26 and ends. When the process returns to step 21, the second, third,... Density measurement results that are repeatedly measured are output in step 22 and accumulated in the memory in step 23. Then, the final measurement result can be obtained by finally taking the average.

以上が基本的な例であるが、たとえば、ドアオープンだけを感知して濃度測定を実施する方式にしてある場合、運転を終えて運転者が車両から降りるときのドアオープンにも反応して濃度測定を実施してしまうことが考えられる。そこで、エンジン停止時刻を記憶しておいて、エンジン停止後直ぐにドアオープンの感知信号S1が入力されるときには濃度測定を実施しない方式とすることもできる。この処理フローにつき図3に示している。   The above is a basic example. For example, in the case where the concentration measurement is performed by detecting only door opening, the concentration also reacts to the door opening when the driver gets off the vehicle after driving. It may be possible to carry out the measurement. In view of this, it is possible to store the engine stop time so that the concentration measurement is not performed when the door open detection signal S1 is input immediately after the engine is stopped. This processing flow is shown in FIG.

図3の例では、まず、図3(A)に示すように、イグニッションキーのオフ動作に伴いステップ30でフローがスタートし、ステップ31へ進んで、記憶手段であるEEPROM等の不揮発性メモリにエンジン停止時刻である現在の時刻を書き込み、ステップ32で終了する。
この後、当該エンジン停止状態において、運転者のドアオープン、キャブ乗り込み、シート着座のいずれかに応じて感知信号S1,S2,S3がECU9へ入力されると、これによるトリガでECU9がスイッチオンして初期化を行い、図3(B)に示すステップ33で測定処理動作を開始する。継いで本例の場合、ステップ34において、先のステップ31で書き込まれた直前のエンジン停止時刻を読み出し、内部タイマによる今現在の時刻と比較することにより、ステップ35で、規定時間(たとえば10分以上や1時間以上)が経過しているかどうかチェックする。このチェックの結果、規定時間が経過していなければ測定を行わずにステップ36で終了する。
In the example of FIG. 3, first, as shown in FIG. 3A, the flow starts in step 30 with the ignition key OFF operation, and proceeds to step 31, in which a non-volatile memory such as an EEPROM as a storage means is stored. The current time that is the engine stop time is written, and the process ends at step 32.
Thereafter, in the engine stop state, when the detection signals S1, S2, and S3 are input to the ECU 9 according to any one of the driver's door open, cab entry, and seat seating, the ECU 9 is switched on by the trigger. The measurement processing operation is started in step 33 shown in FIG. In the case of this example, in step 34, the engine stop time immediately before written in the previous step 31 is read and compared with the current time by the internal timer. Or more than 1 hour). If the specified time has not elapsed as a result of this check, the measurement is not performed and the process ends at step 36.

一方、規定時間以上経っていれば、ステップ37へ進んで、感熱式濃度センサ11の初期化後、該感熱式濃度センサ11による液体還元剤の濃度測定を実施する。この濃度測定で測定信号SSが得られると、上記同様に、測定信号SSと液体還元剤濃度のルックアップテーブル参照などによりステップ38で濃度測定結果を出力し、ステップ39でメモリへ書き込む。そして、上記同様に、ステップ40でエンジン始動のチェックを行い、さらにステップ41で測定回数のチェックを行って、予め設定されている回数の測定が行われていなければ濃度測定のステップ37へ戻り、設定回数に達していればステップ42へ進んで終了する。   On the other hand, if the specified time has passed, the process proceeds to step 37, and after the thermal concentration sensor 11 is initialized, the concentration of the liquid reducing agent is measured by the thermal concentration sensor 11. When the measurement signal SS is obtained by this concentration measurement, the concentration measurement result is output in step 38 by referring to the lookup table of the measurement signal SS and the liquid reducing agent concentration, etc., and written in the memory in step 39 as described above. Then, in the same manner as described above, the engine start is checked in step 40, and the number of measurements is checked in step 41. If the preset number of times has not been measured, the process returns to the concentration measurement step 37, If the set number of times has been reached, the routine proceeds to step 42 and ends.

このように、エンジン停止時刻を記憶し、次に測定処理動作を開始するときに所定の時間以上経っているかどうかを確認するようにしたことにより、不必要な濃度測定を行わずにすむようにできる。   In this way, by storing the engine stop time and confirming whether or not a predetermined time has passed when the measurement processing operation is started next, it is possible to avoid unnecessary concentration measurement. .

本発明に係る排気浄化装置の概略図。1 is a schematic view of an exhaust purification device according to the present invention. 本発明に係る液体還元剤濃度測定過程の一例を説明するフローチャート。The flowchart explaining an example of the liquid reducing agent density | concentration measurement process which concerns on this invention. 本発明に係る液体還元剤濃度測定過程の他の例を説明するフローチャート。The flowchart explaining the other example of the liquid reducing agent density | concentration measurement process which concerns on this invention.

符号の説明Explanation of symbols

9 ECU(制御手段)
10 タンク
11 感熱式濃度センサ
12 ドア
13 シート
14 キャブ
SS 測定信号
S1,S2,S3 感知信号
9 ECU (control means)
10 Tank 11 Thermal concentration sensor 12 Door 13 Seat 14 Cab SS Measurement signal S1, S2, S3 Sensing signal

Claims (12)

タンク内の液体還元剤濃度を離間した2点間の熱伝達特性により測定する感熱式濃度センサを用いた液体還元剤濃度測定装置において、
前記感熱式濃度センサの制御手段が、
エンジン停止状態で運転者の乗り込みを感知するステップと、
これにより運転者の乗り込みが感知されると測定処理動作を開始して前記感熱式濃度センサによる液体還元剤濃度測定を実施するステップと、
を実行することを特徴とする液体還元剤濃度測定装置。
In a liquid reductant concentration measuring device using a thermal concentration sensor that measures the liquid reductant concentration in a tank by heat transfer characteristics between two spaced points,
The control means of the thermal density sensor is
Detecting the driver's boarding when the engine is stopped;
When the driver's boarding is sensed by this, the measurement processing operation is started and the liquid reducing agent concentration measurement by the thermal concentration sensor is performed,
The liquid reducing agent concentration measuring apparatus characterized by performing.
前記運転者の乗り込みを感知するステップがドアオープンを感知するステップであることを特徴とする請求項1記載の液体還元剤濃度測定装置。   2. The liquid reducing agent concentration measuring apparatus according to claim 1, wherein the step of detecting the driver's boarding is a step of detecting door opening. 前記運転者の乗り込みを感知するステップがシートの変位を感知するステップであることを特徴とする請求項1記載の液体還元剤濃度測定装置。   2. The liquid reducing agent concentration measuring apparatus according to claim 1, wherein the step of detecting the driver's boarding is a step of detecting a displacement of the seat. 前記運転者の乗り込みを感知するステップがシートへの荷重を感知するステップであることを特徴とする請求項1記載の液体還元剤濃度測定装置。   2. The liquid reducing agent concentration measuring apparatus according to claim 1, wherein the step of detecting the driver's boarding is a step of detecting a load on the seat. 前記運転者の乗り込みを感知するステップがキャブの変位を感知するステップであることを特徴とする請求項1記載の液体還元剤濃度測定装置。   2. The liquid reducing agent concentration measuring apparatus according to claim 1, wherein the step of detecting the driver's boarding is a step of detecting displacement of the cab. 前記液体還元剤濃度測定を実施するステップの後に、エンジンの始動を確認し、エンジンが始動されないうちは前記感熱式濃度センサによる液体還元剤濃度測定を繰り返すステップをさらに実行することを特徴とする請求項1〜5のいずれか1項に記載の液体還元剤濃度測定装置。   The step of confirming the start of the engine after the step of measuring the liquid reductant concentration, and further executing the step of repeating the liquid reductant concentration measurement by the thermal concentration sensor while the engine is not started is further performed. Item 6. The liquid reducing agent concentration measuring apparatus according to any one of Items 1 to 5. エンジンが停止したときにそのエンジン停止時刻を記憶手段に書き込むステップと、
前記感熱式濃度センサによる液体還元剤濃度測定を実施するステップの前に、直前の前記エンジン停止時刻を前記記憶手段から読み出すステップと、
該読み出されたエンジン停止時刻から所定の時間経っていなければ前記液体還元剤濃度測定を行わず終了するステップと、
前記読み出されたエンジン停止時刻から所定の時間以上経っていれば前記液体還元剤濃度測定を実施するステップと、
を実行することを特徴とする請求項1〜6のいずれか1項に記載の液体還元剤濃度測定装置。
Writing the engine stop time in the storage means when the engine is stopped;
Before the step of measuring the liquid reducing agent concentration by the thermosensitive concentration sensor, reading the previous engine stop time from the storage means;
A step of ending without measuring the liquid reducing agent concentration if a predetermined time has not passed since the read engine stop time; and
Carrying out the liquid reducing agent concentration measurement if a predetermined time or more has passed since the read engine stop time;
The liquid reducing agent concentration measuring apparatus according to any one of claims 1 to 6, wherein:
離間した2点間の熱伝達特性を計測する感熱式濃度センサによりタンク内の液体還元剤濃度を測定するようにした排気浄化装置の液体還元剤濃度測定方法において、
前記感熱式濃度センサによる測定を、車両に運転者が乗り込み、エンジンを始動させて車両が走り出すまでの間に実行することを特徴とする液体還元剤濃度測定方法。
In the method of measuring the liquid reducing agent concentration in the exhaust purification apparatus, wherein the concentration of the liquid reducing agent in the tank is measured by a thermal concentration sensor that measures the heat transfer characteristics between two spaced points.
The liquid reducing agent concentration measuring method, wherein the measurement by the thermal concentration sensor is executed during a period from when the driver gets into the vehicle to start the engine and the vehicle starts running.
車両に運転者が乗り込んだことをドアオープンにより感知して測定を開始することを特徴とする請求項8記載の液体還元剤濃度測定方法。   9. The liquid reducing agent concentration measuring method according to claim 8, wherein the measurement is started by detecting that the driver has entered the vehicle by opening the door. 車両に運転者が乗り込んだことをシートの変位により感知して測定を開始することを特徴とする請求項8又は請求項9記載の液体還元剤濃度測定方法。   10. The liquid reducing agent concentration measuring method according to claim 8, wherein the measurement is started by detecting that the driver has entered the vehicle by the displacement of the seat. 車両に運転者が乗り込んだことをシートへの荷重により感知して測定を開始することを特徴とする請求項8〜10のいずれか1項に記載の液体還元剤濃度測定方法。   The liquid reducing agent concentration measuring method according to any one of claims 8 to 10, wherein the measurement is started by sensing that the driver has entered the vehicle by a load on the seat. 車両に運転者が乗り込んだことをキャブの変位により感知して測定を開始することを特徴とする請求項8〜11のいずれか1項に記載の液体還元剤濃度測定方法。   The liquid reducing agent concentration measuring method according to any one of claims 8 to 11, wherein the measurement is started by sensing that the driver has entered the vehicle by displacement of the cab.
JP2004330075A 2004-11-15 2004-11-15 Apparatus and method for measuring liquid reducing agent concentration Expired - Fee Related JP4244211B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004330075A JP4244211B2 (en) 2004-11-15 2004-11-15 Apparatus and method for measuring liquid reducing agent concentration
PCT/JP2005/020424 WO2006051770A1 (en) 2004-11-15 2005-11-08 Concentration detection apparatus, and engine exhaust gas purifier provided with this apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004330075A JP4244211B2 (en) 2004-11-15 2004-11-15 Apparatus and method for measuring liquid reducing agent concentration

Publications (2)

Publication Number Publication Date
JP2006138275A JP2006138275A (en) 2006-06-01
JP4244211B2 true JP4244211B2 (en) 2009-03-25

Family

ID=36336449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004330075A Expired - Fee Related JP4244211B2 (en) 2004-11-15 2004-11-15 Apparatus and method for measuring liquid reducing agent concentration

Country Status (2)

Country Link
JP (1) JP4244211B2 (en)
WO (1) WO2006051770A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884270B2 (en) * 2007-03-26 2012-02-29 Udトラックス株式会社 Engine exhaust purification system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063350A (en) * 1997-04-02 2000-05-16 Clean Diesel Technologies, Inc. Reducing nox emissions from an engine by temperature-controlled urea injection for selective catalytic reduction
JP2001020724A (en) * 1999-07-07 2001-01-23 Isuzu Motors Ltd NOx PURIFICATION SYSTEM FOR DIESEL ENGINE
DE10047594A1 (en) * 2000-09-26 2002-04-18 Siemens Ag Method and device for determining the level of a liquid in a container
DE10102237A1 (en) * 2001-01-19 2002-08-08 Bosch Gmbh Robert Device for dosing a urea solution
JP4270428B2 (en) * 2001-06-13 2009-06-03 日産ディーゼル工業株式会社 Automatic compounding device for reducing agent solution

Also Published As

Publication number Publication date
WO2006051770A1 (en) 2006-05-18
JP2006138275A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP6080954B2 (en) Control device, exhaust purification device for internal combustion engine, and control method for exhaust purification device
US7499814B2 (en) Apparatus for detecting concentration and remaining amount of liquid reducing agent
JP3687916B2 (en) Engine exhaust purification system
JP3686672B1 (en) Engine exhaust purification system
US6408616B1 (en) Diesel OBD-II system for detection of degradation of catalyst activity
US7587288B2 (en) Condition discriminating apparatus for liquid reducing agent
US6990854B2 (en) Active lean NOx catalyst diagnostics
EP3124763B1 (en) Abnormality diagnosis apparatus for nox storage reduction catalyst
US20050103000A1 (en) Diagnosis of a urea scr catalytic system
US20190376433A1 (en) On-board diagnostic method for monitoring diesel oxidation catalyst function via brick temperature rise
KR101637758B1 (en) A fault diagnosis method of scr system and an apparatus thereof
JP5461057B2 (en) Reducing agent abnormality detection method
US9528422B2 (en) Particulate filter washcoat diagnosis based on exothermic substrate temperature
CN101535608A (en) Engine exhaust cleaner
US20120131905A1 (en) Exhaust gas post processing method
US10233811B2 (en) Soot model configurable correction block (CCB) control system
GB2520174A (en) An on-board diagnostics system for catalyzed substrate
KR101534714B1 (en) Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
JP4419150B2 (en) NOx catalyst abnormality diagnosis device and abnormality diagnosis method
JP4244211B2 (en) Apparatus and method for measuring liquid reducing agent concentration
JP4161614B2 (en) Exhaust gas purification device for internal combustion engine
JP2018189056A (en) Exhaust emission control device for internal combustion engine
JPH1181994A (en) Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine
JP4884270B2 (en) Engine exhaust purification system
RU2604656C2 (en) Optimized control over selective catalytic reduction catalyst (scr) by means of particles filter-trap periodic regeneration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

R150 Certificate of patent or registration of utility model

Ref document number: 4244211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

LAPS Cancellation because of no payment of annual fees