JPH1181994A - Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine - Google Patents
Diagnosing device for catalyst for purifying exhaust gas from internal combustion engineInfo
- Publication number
- JPH1181994A JPH1181994A JP9237901A JP23790197A JPH1181994A JP H1181994 A JPH1181994 A JP H1181994A JP 9237901 A JP9237901 A JP 9237901A JP 23790197 A JP23790197 A JP 23790197A JP H1181994 A JPH1181994 A JP H1181994A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- trace substance
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N11/00—Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/02—Catalytic activity of catalytic converters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2550/00—Monitoring or diagnosing the deterioration of exhaust systems
- F01N2550/03—Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、排ガス浄化用の触
媒の状態を診断する内燃機関の排ガス浄化用触媒の診断
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diagnostic device for an exhaust gas purifying catalyst of an internal combustion engine for diagnosing the state of the exhaust gas purifying catalyst.
【0002】[0002]
【従来の技術】自動車の排ガス浄化触媒としては、ガソ
リンエンジン車に用いる三元触媒、ディーゼルエンジン
車に用いるNOx触媒が知られている。三元触媒は、ガ
ソリンエンジン車の排ガス中の還元性のガス成分(C
O,HC)と酸化性のガス成分(O2 ,NOx)との間
で酸化還元反応を起こさせて排ガスを浄化するものであ
る。また、NOx触媒を用いるディーゼルエンジンで
は、排ガス中のNOxを浄化するのに必要な量のHCが
排ガス中に含まれていないため、排ガスに燃料等のHC
を添加することにより、排ガス中のNOxをHCで還元
浄化するようにしている。2. Description of the Related Art As exhaust gas purifying catalysts for automobiles, three-way catalysts used for gasoline engine vehicles and NOx catalysts used for diesel engine vehicles are known. The three-way catalyst is used for reducing gas components (C
The exhaust gas is purified by causing an oxidation-reduction reaction between the oxidizing gas components (O 2 , NOx) and the oxidizing gas components (O 2 , NOx). Further, in a diesel engine using a NOx catalyst, the amount of HC necessary for purifying NOx in the exhaust gas is not contained in the exhaust gas.
Is added to reduce and purify NOx in exhaust gas with HC.
【0003】これらの触媒は、実際の使用条件によって
排ガス浄化性能が低下することがある。具体的には、三
元触媒は、表面にコーティングされた活性金属が排ガス
熱によって徐々に凝集してその表面積が減少すること
で、触媒劣化が生じる。また、NOx触媒は、HCが触
媒表面に徐々に吸着してその表面積が減少することによ
りNOx浄化性能が低下する。従来より、触媒の劣化状
況を把握するために、いくつかの方法が実施あるいは提
案されている。[0003] The exhaust gas purification performance of these catalysts may be reduced depending on the actual use conditions. Specifically, in the three-way catalyst, the active metal coated on the surface gradually agglomerates due to the heat of the exhaust gas to reduce the surface area, thereby causing catalyst deterioration. Further, in the NOx catalyst, the NOx purification performance is reduced because HC is gradually adsorbed on the catalyst surface and the surface area is reduced. Conventionally, several methods have been implemented or proposed in order to grasp the state of deterioration of the catalyst.
【0004】例えば、特開平9−4437号公報では、
触媒のHC吸着量を把握するためにエンジン始動時から
のHCの吸着量と脱離量とを推定し、これらの値を追尾
することで、触媒のHC吸着量を推定する方法が提案さ
れている。For example, in Japanese Patent Application Laid-Open No. 9-4437,
A method for estimating the amount of HC adsorbed on the catalyst by estimating the amount of HC adsorbed and desorbed from the time of engine start to grasp the amount of HC adsorbed on the catalyst and tracking these values has been proposed. I have.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記公
報の技術は、過去の吸着や脱離の情報を積算して推定す
る間接的方法であるため、推定途中で誤差が累積してい
き、推定した吸着量と実際の吸着量が大幅に異なってし
まうおそれがある。However, since the technique disclosed in the above publication is an indirect method of integrating and estimating past adsorption and desorption information, errors accumulate in the middle of the estimation and the estimation is performed. The amount of adsorption and the actual amount of adsorption may be significantly different.
【0006】尚、触媒を自動車から取り外して、その全
部あるいは一部を試料として用い、種々の物理的あるい
は化学的分析手法を用う方法がある。その中には、講談
社発行の講談社サイエンティフィック触媒講座(触媒学
会編)基礎編3「固体触媒のキャラクタリゼーション」
の160ページに記述されているパルス法と呼ばれる方
法がある。この方法は、触媒に還元性ガスをパルス状に
供給する動作を、触媒の吸着量が飽和状態になるまで繰
り返し、触媒の吸着量を測定するものである。Incidentally, there is a method in which the catalyst is removed from an automobile, and all or a part of the catalyst is used as a sample, and various physical or chemical analysis techniques are used. Among them, Kodansha Scientific Catalyst Course (Catalysis Society of Japan) Basic Edition 3 “Characterization of solid catalyst” published by Kodansha
On page 160, there is a method called the pulse method. In this method, the operation of supplying the reducing gas to the catalyst in a pulsed manner is repeated until the amount of adsorption of the catalyst becomes saturated, and the amount of adsorption of the catalyst is measured.
【0007】しかし、この方法を用いるには、触媒を自
動車から取り外す必要があるため、走行中に触媒の吸着
量を測定することは不可能である。しかも、触媒が飽和
吸着状態になるまでガスの供給を繰り返すため、測定に
時間がかかるばかりか、触媒が飽和吸着状態になると、
触媒の回復が容易ではない。However, in order to use this method, it is necessary to remove the catalyst from the automobile, so that it is impossible to measure the amount of catalyst adsorbed during running. In addition, since the gas supply is repeated until the catalyst is in a saturated adsorption state, not only does it take a long time to measure, but also when the catalyst becomes in a saturated adsorption state,
It is not easy to recover the catalyst.
【0008】本発明はこのような事情を考慮してなされ
たものであり、従ってその目的は、車両運転中に触媒の
状態を直接的に短時間で精度良く測定できると共に、測
定による触媒の浄化性能の低下を回避できる内燃機関の
排ガス浄化用触媒の診断装置を提供することにある。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and therefore has as its object to directly and accurately measure the state of a catalyst during a vehicle operation in a short time and to purify the catalyst by measurement. It is an object of the present invention to provide an apparatus for diagnosing an exhaust gas purifying catalyst of an internal combustion engine, which can avoid a decrease in performance.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するため
に、本発明の内燃機関の排ガス浄化用触媒の診断装置
は、車両運転中に触媒診断条件が成立した時にトレース
物質供給手段から触媒にトレース物質を供給し、触媒を
すり抜けてくるトレース物質の濃度をトレース物質濃度
検出手段により検出した後、前記トレース物質供給手段
によるトレース物質の供給量と前記トレース物質濃度検
出手段の検出値との関係から触媒の状態を触媒診断手段
により診断する(請求項1)。つまり、触媒の浄化能力
が高くなるほど、触媒の内部で吸着されたり反応したり
するトレース物質の量が増加し、触媒をすり抜けてくる
トレース物質の濃度が低くなる。この関係から、トレー
ス物質の供給量と、触媒をすり抜けてくるトレース物質
の濃度との関係から触媒の状態を直接的に短時間で精度
良く診断することができる。しかも、この触媒状態の診
断を、触媒を車両に搭載したままの状態で、車両運転中
に行うことができると共に、触媒を飽和吸着状態にする
必要がなく、触媒の浄化性能の低下を回避できる。In order to achieve the above object, a diagnostic device for an exhaust gas purifying catalyst for an internal combustion engine according to the present invention is provided. After the trace substance is supplied and the concentration of the trace substance passing through the catalyst is detected by the trace substance concentration detection means, the relationship between the trace substance supply amount by the trace substance supply means and the detection value of the trace substance concentration detection means Then, the state of the catalyst is diagnosed by the catalyst diagnosis means (claim 1). That is, as the purification ability of the catalyst increases, the amount of the trace substance adsorbed or reacted inside the catalyst increases, and the concentration of the trace substance passing through the catalyst decreases. From this relationship, the state of the catalyst can be directly and accurately diagnosed in a short time from the relationship between the supply amount of the trace substance and the concentration of the trace substance passing through the catalyst. In addition, the diagnosis of the catalyst state can be performed during the operation of the vehicle while the catalyst is mounted on the vehicle, and it is not necessary to bring the catalyst into a saturated adsorption state, so that a reduction in the purification performance of the catalyst can be avoided. .
【0010】本発明をディーゼルエンジンに適用する場
合には、請求項2のように、触媒としてNOx触媒を用
い、トレース物質として炭化水素(HC)を用いて、N
Ox触媒のHC吸着量を推定するようにしても良い。つ
まり、NOx触媒にHCが多量に吸着されると、そのH
CによってNOx触媒が被毒を受けて元の状態に回復し
にくい状態となり、NOx浄化性能が著しく低下する。
従って、NOx触媒の炭化水素吸着量を推定すること
で、NOx触媒の被毒状態やNOx浄化性能を評価でき
る。When the present invention is applied to a diesel engine, a NOx catalyst is used as a catalyst, and a hydrocarbon (HC) is used as a trace substance.
The HC adsorption amount of the Ox catalyst may be estimated. That is, when a large amount of HC is adsorbed on the NOx catalyst, the H
The NOx catalyst is poisoned by C and becomes difficult to recover to the original state, and the NOx purification performance is significantly reduced.
Therefore, the poisoning state of the NOx catalyst and the NOx purification performance can be evaluated by estimating the hydrocarbon adsorption amount of the NOx catalyst.
【0011】この場合、請求項3のように、触媒診断時
以外の通常運転時に、トレース物質供給手段からNOx
触媒にNOxの還元剤としてHCを供給するようにして
も良い。このようにすれば、トレース物質供給手段を、
NOx触媒にHCを供給するHC供給手段として兼用で
き、構成を簡単化できる。In this case, during normal operation other than the time of catalyst diagnosis, NOx is supplied from the trace material supply means.
HC may be supplied to the catalyst as a NOx reducing agent. By doing so, the trace substance supply means can be
It can also be used as HC supply means for supplying HC to the NOx catalyst, and the configuration can be simplified.
【0012】一方、本発明をガソリンエンジンに適用す
る場合には、請求項4のように、トレース物質として一
酸化炭素(CO)を用い、触媒の一酸化炭素吸着量を推
定して触媒の活性金属の表面積を推定するようにすれば
良い。つまり、触媒の表面にコーティングされた活性金
属である白金、ロジウム、パラジウム等の貴金属表面に
は、COが当量的に吸着するという性質があり、また、
触媒の劣化は、活性金属が排ガス熱によって徐々に凝集
してその表面積が減少することにより発生する。従っ
て、触媒の一酸化炭素吸着量を推定することで、触媒の
活性金属の表面積を推定することが可能となり、この活
性金属の表面積から触媒の劣化度合を評価できる。On the other hand, when the present invention is applied to a gasoline engine, carbon monoxide (CO) is used as a trace substance and the amount of adsorbed carbon monoxide on the catalyst is estimated to determine the activity of the catalyst. The surface area of the metal may be estimated. In other words, the active metal coated on the surface of the catalyst, such as platinum, rhodium, palladium and other noble metal surfaces, has the property that CO is adsorbed equivalently,
The deterioration of the catalyst occurs when the active metal gradually aggregates due to the heat of the exhaust gas and the surface area decreases. Therefore, by estimating the amount of adsorbed carbon monoxide on the catalyst, the surface area of the active metal of the catalyst can be estimated, and the degree of deterioration of the catalyst can be evaluated from the surface area of the active metal.
【0013】また、請求項5のように、触媒診断条件を
判定する診断条件判定手段は、内燃機関の運転状態から
内燃機関が定常運転状態であることを検出したときに、
前記触媒診断条件が成立したとして前記トレース物質供
給手段に作動指令信号を出力するようにしても良い。こ
のようにして、内燃機関が定常運転状態である時に、触
媒の診断を実行することで、安定した触媒の診断が可能
となる。但し、本発明は、触媒診断条件として、内燃機
関が定常運転状態であること以外に、例えば、触媒が活
性温度にまで昇温したこと、運転領域が所定範囲内であ
ること(エンジン回転数が所定範囲内であること、吸気
管圧力が所定範囲内であること)、冷却水温が所定温度
以上であること等、を適宜追加するようにしても良い。According to a fifth aspect of the present invention, the diagnostic condition determining means for determining the catalyst diagnostic condition includes: when detecting that the internal combustion engine is in a steady operation state from the operation state of the internal combustion engine;
An operation command signal may be output to the trace material supply means assuming that the catalyst diagnosis condition has been satisfied. In this manner, when the internal combustion engine is in a steady operation state, the diagnosis of the catalyst is executed, so that a stable diagnosis of the catalyst can be performed. However, according to the present invention, as the catalyst diagnosis conditions, besides that the internal combustion engine is in a steady operation state, for example, that the temperature of the catalyst has risen to the activation temperature and that the operation region is within a predetermined range (when the engine speed is It may be appropriately added that the temperature is within a predetermined range, the intake pipe pressure is within a predetermined range, and that the cooling water temperature is equal to or higher than a predetermined temperature.
【0014】[0014]
[実施形態(1)]以下、本発明をディーゼルエンジン
の排ガス浄化システムに適用した実施形態(1)を図1
乃至図6に基づいて説明する。まず、図1に基づいてシ
ステム全体の構成を説明する。内燃機関であるディーゼ
ルエンジン11の排気管12(排ガス通路)の途中に
は、排ガス中のNOxを還元浄化するNOx触媒13が
設けられている。このNOx触媒13は、活性金属であ
る白金を多孔質ゼオライトの一種に担持させたものであ
り、このNOx触媒13の内部で排気中のNOxが還元
剤である炭化水素(HC)と反応して浄化される。この
NOx触媒13の入口部には、触媒温度を評価するため
に、NOx触媒13に流入する排ガスの温度を検出する
排ガス温度センサ14が設置されている。尚、排ガス温
度センサ14はNOx触媒13の出口部に設置しても良
く、この場合でも、NOx触媒13から流出する排ガス
の温度から触媒温度を評価することが可能である。[Embodiment (1)] FIG. 1 shows an embodiment (1) in which the present invention is applied to an exhaust gas purification system for a diesel engine.
This will be described with reference to FIGS. First, the configuration of the entire system will be described with reference to FIG. A NOx catalyst 13 that reduces and purifies NOx in exhaust gas is provided in the exhaust pipe 12 (exhaust gas passage) of a diesel engine 11 that is an internal combustion engine. The NOx catalyst 13 has platinum, which is an active metal, supported on a kind of porous zeolite. In the NOx catalyst 13, NOx in exhaust gas reacts with hydrocarbon (HC) as a reducing agent. Be purified. An exhaust gas temperature sensor 14 that detects the temperature of exhaust gas flowing into the NOx catalyst 13 is installed at the inlet of the NOx catalyst 13 to evaluate the catalyst temperature. Note that the exhaust gas temperature sensor 14 may be installed at the outlet of the NOx catalyst 13, and in this case, the catalyst temperature can be evaluated from the temperature of the exhaust gas flowing out of the NOx catalyst 13.
【0015】また、排気管12のうちのNOx触媒13
の上流側には、触媒診断時に軽油等の燃料をトレース物
質としてNOx触媒13に供給するHC供給ノズル15
(トレース物質供給手段)が設けられている。このHC
供給ノズル15は、触媒診断時以外の通常運転時には、
NOx触媒13にNOxの還元剤としてHC(燃料)を
供給するHC供給手段としても使用される。このHC供
給ノズル15には、燃料タンク(図示せず)から噴射ポ
ンプ16で汲み上げた燃料が供給される。HC供給ノズ
ル15から噴射するHCの量は、エンジン制御回路17
によって制御される。The NOx catalyst 13 in the exhaust pipe 12
Upstream of the HC supply nozzle 15 that supplies fuel such as light oil as a trace substance to the NOx catalyst 13 at the time of catalyst diagnosis.
(Trace substance supply means) is provided. This HC
At the time of normal operation other than the time of catalyst diagnosis, the supply nozzle 15
It is also used as HC supply means for supplying HC (fuel) as a NOx reducing agent to the NOx catalyst 13. Fuel pumped by an injection pump 16 from a fuel tank (not shown) is supplied to the HC supply nozzle 15. The amount of HC injected from the HC supply nozzle 15 is determined by the engine control circuit 17.
Is controlled by
【0016】一方、NOx触媒13の出口部には、NO
x触媒13から流出する排ガス中のHC濃度(トレース
物質の濃度)を検出するためのサンプリングパイプ18
が接続され、このサンプリングパイプ18の先端にHC
濃度センサ19(トレース物質濃度検出手段)が設けら
れている。このHC濃度センサ19の出力信号は、エン
ジン制御回路17に入力される。On the other hand, at the outlet of the NOx catalyst 13, NO
x Sampling pipe 18 for detecting HC concentration (concentration of trace substance) in exhaust gas flowing out of catalyst 13
Is connected to the tip of the sampling pipe 18.
A concentration sensor 19 (trace substance concentration detecting means) is provided. The output signal of the HC concentration sensor 19 is input to the engine control circuit 17.
【0017】エンジン制御回路17は、マイクロコンピ
ュータを主体として構成され、エンジン回転数センサ
(図示せず)等、エンジン運転条件を検出する各種セン
サの出力に基づいてディーゼルエンジン11の各気筒へ
の燃料噴射量を制御する。また、このエンジン制御回路
17は、ROM(記憶媒体)に記憶された図2の触媒診
断/制御プログラムを実行することで、NOx触媒13
のHC吸着量(被毒状態)を推定し、NOx触媒13の
HC吸着量が予め設定した被毒限界値を越えないように
HC供給量を制御する。The engine control circuit 17 is mainly composed of a microcomputer, and supplies fuel to each cylinder of the diesel engine 11 based on the output of various sensors for detecting engine operating conditions, such as an engine speed sensor (not shown). Control the injection volume. The engine control circuit 17 executes the catalyst diagnosis / control program shown in FIG. 2 stored in a ROM (storage medium), so that the NOx catalyst 13
Is estimated, and the HC supply amount is controlled so that the HC adsorption amount of the NOx catalyst 13 does not exceed a preset poisoning limit value.
【0018】以下、図2の触媒診断/制御プログラムの
処理内容を説明する。本プログラムの処理が開始される
と、まずステップ101で、エンジン運転条件を検出す
るために、エンジン回転数Ne、アクセル開度Ac、N
Ox触媒13の入口部の排ガス温度Texを読み込む。こ
の後、ステップ102で、触媒診断条件が成立している
か否かを判定する。ここで、触媒診断条件は、エンジン
運転状態が例えば過去2sec以上変化しないこと(定
常運転状態であること)であり、この条件が満たさなけ
れば、ステップ103〜107の触媒診断処理は実行さ
れず、後述するステップ108に進む。Hereinafter, the processing contents of the catalyst diagnosis / control program of FIG. 2 will be described. When the processing of this program is started, first, in step 101, in order to detect an engine operating condition, the engine speed Ne, the accelerator opening Ac, N
The exhaust gas temperature Tex at the inlet of the Ox catalyst 13 is read. Thereafter, in step 102, it is determined whether the catalyst diagnosis condition is satisfied. Here, the catalyst diagnosis condition is that the engine operation state does not change, for example, in the past 2 seconds or more (it is a steady operation state). If this condition is not satisfied, the catalyst diagnosis processing of steps 103 to 107 is not executed, The process proceeds to step 108 described later.
【0019】一方、触媒診断条件が成立している時(定
常運転時)には、ステップ102からステップ103に
進み、エンジン運転状態に応じてトレース物質(HC)
の供給量を算出する。この算出は、例えばエンジン回転
数Neをパラメータとして予め設定されたトレース物質
供給量マップ(図示せず)を用いる。On the other hand, when the catalyst diagnosis condition is satisfied (at the time of steady operation), the process proceeds from step 102 to step 103, where the trace substance (HC) is determined according to the engine operating state.
Is calculated. This calculation uses, for example, a trace substance supply amount map (not shown) preset using the engine speed Ne as a parameter.
【0020】ここで、トレース物質の供給量は、次の基
準で決定する。 トレース物質の供給量は、NOx触媒13のHC飽和
吸着量(被毒限界値)の50%を上限とし、望ましくは
10%以下とする。NOx触媒13のHC吸着量の増加
をできるだけ少なくするためである。 NOx触媒13から流出する排ガス中のトレース物質
の濃度をHC濃度センサ19で精度良く検出するため
に、トレース物質の濃度がHC濃度センサ19の検出精
度に対して少なくとも1桁以上高い濃度となるようにす
る。但し、排気エミッションの悪化を許容範囲以下とす
るために、トレース物質の濃度が10000ppm以下
の濃度となるようにする。 トレース物質の供給量は、エンジン回転数により変化
させ、単位時間に排出されるエミッション量の例えば5
%を上限とすることが望ましい。Here, the supply amount of the trace substance is determined based on the following criteria. The upper limit of the supply amount of the trace substance is 50% of the HC saturated adsorption amount (poisoning limit value) of the NOx catalyst 13, and preferably 10% or less. This is for minimizing the increase in the amount of HC adsorbed by the NOx catalyst 13. In order for the concentration of the trace substance in the exhaust gas flowing out of the NOx catalyst 13 to be accurately detected by the HC concentration sensor 19, the concentration of the trace substance should be at least one digit higher than the detection accuracy of the HC concentration sensor 19. To However, in order to keep the deterioration of the exhaust emission below the allowable range, the concentration of the trace substance is set to a concentration of 10000 ppm or less. The supply amount of the trace material is changed according to the engine speed, and the emission amount discharged per unit time is, for example, 5%.
% Is desirably the upper limit.
【0021】これら〜の条件を満たす一例を図3及
び図4に示す。図3は、トレース物質供給時間が長くな
るほど、トレース物質の濃度が低くなるように設定する
ことを示している。HC濃度センサ19の検出精度を考
慮してトレース物質供給時間は1secを上限とするこ
とが望ましい。一方、図4は、エンジン回転数が高くな
るほど、トレース物質供給速度(mol/sec)を高
く設定できることを示している。これは、エンジン回転
数が高くなるほど、排ガス量が増加するためである。An example satisfying the above conditions is shown in FIGS. FIG. 3 shows that the trace substance concentration is set to be lower as the trace substance supply time becomes longer. In consideration of the detection accuracy of the HC concentration sensor 19, the upper limit of the trace substance supply time is desirably 1 sec. On the other hand, FIG. 4 shows that the trace substance supply speed (mol / sec) can be set higher as the engine speed increases. This is because the exhaust gas amount increases as the engine speed increases.
【0022】以上のような基準でトレース物質の供給量
(供給時間,供給速度)を算出した後、ステップ104
に進み、HC供給ノズル15を駆動してトレース物質
(HC)を図5に示すようにパルス状にNOx触媒13
に供給する。そして、次のステップ105で、トレース
物質供給開始後のNOx触媒13下流の排ガス中のトレ
ース物質濃度をHC濃度センサ19で検出する。この時
のトレース物質濃度の変化の一例が図6に示されてい
る。トレース物質濃度の検出時間は、トレース物質の供
給時間よりも長い時間に設定され、トレース物質供給終
了後のトレース物質濃度の変化が最後まで検出できるよ
うに設定されている。After calculating the supply amount (supply time, supply speed) of the trace substance based on the above criteria, step 104
Then, the HC supply nozzle 15 is driven to trace the trace substance (HC) in a pulsed manner as shown in FIG.
To supply. Then, in the next step 105, the concentration of the trace substance in the exhaust gas downstream of the NOx catalyst 13 after the start of the supply of the trace substance is detected by the HC concentration sensor 19. An example of the change in the trace substance concentration at this time is shown in FIG. The detection time of the trace substance concentration is set to be longer than the supply time of the trace substance, and is set such that the change in the trace substance concentration after the end of the supply of the trace substance can be detected to the end.
【0023】トレース物質濃度の検出終了後、ステップ
106に進み、検出中にエンジン回転数が変化したか否
かを判定し、エンジン回転数が変化した場合には、排ガ
ス量が変化してNOx触媒13の被毒状態(HC吸着
量)を正確に推定できないので、被毒状態を推定せず
に、ステップ108に進む。After the end of the detection of the trace substance concentration, the routine proceeds to step 106, where it is determined whether or not the engine speed has changed during the detection. If the engine speed has changed, the exhaust gas amount changes and the NOx catalyst Since the poisoning state (HC adsorption amount) of No. 13 cannot be accurately estimated, the process proceeds to step 108 without estimating the poisoning state.
【0024】これに対し、トレース物質濃度の検出中、
エンジン回転数が変化しなかった場合には、ステップ1
07に進み、トレース物質の供給量とトレース物質濃度
との関係からNOx触媒13のHC吸着量(被毒状態)
を推定する。この推定は、例えばトレース物質濃度の検
出値を積分して、この積分値とエンジン回転数(排ガス
量)とに基づいて、NOx触媒13をすり抜けたトレー
ス物質のすり抜け量を推定し、トレース物質の供給量に
対するすり抜け量の割合からNOx触媒13のHC吸着
量を推定する。つまり、トレース物質のすり抜け量の割
合が大きくなるほど、NOx触媒13のHC吸着量が多
い(被毒が進んでいる)と推定する。このステップ10
7の処理が特許請求の範囲でいう触媒診断手段としての
役割を果たす。On the other hand, during the detection of the trace substance concentration,
If the engine speed has not changed, step 1
In step 07, the amount of HC adsorbed by the NOx catalyst 13 (poisoned state) is determined from the relationship between the trace substance supply amount and the trace substance concentration.
Is estimated. For this estimation, for example, the detected value of the trace substance concentration is integrated, and based on the integrated value and the engine speed (the amount of exhaust gas), the amount of the trace substance that has passed through the NOx catalyst 13 is estimated, and the amount of the trace substance is estimated. The HC adsorption amount of the NOx catalyst 13 is estimated from the ratio of the slip amount to the supply amount. In other words, it is estimated that the larger the ratio of the amount of trace material that passes through, the larger the amount of HC adsorbed by the NOx catalyst 13 (the poisoning is advanced). This step 10
The processing of 7 plays a role as catalyst diagnosis means in the claims.
【0025】この後、ステップ108に進んで、触媒診
断終了後にNOx触媒13に還元剤として供給するHC
の供給量を次のようにして算出する。まず、排ガス温度
Tex(触媒温度)とエンジン回転数Neとに応じて基本
HC供給量をマップ等から算出し、この基本HC供給量
を上記ステップ107で推定したNOx触媒13のHC
吸着量に応じて補正してHC供給量を求める。これによ
り、NOx触媒13のHC吸着量が多くなるほど、HC
供給量を少なく設定して、NOx触媒13のHC吸着量
が回復し得ない被毒限界値を越えることを防止する。
尚、ステップ102で「No」の場合、あるいは、ステ
ップ106で「Yes」の場合には、現時点のHC吸着
量が推定されないので、これらの場合は、前回までの処
理で推定した最も新しいHC吸着量を用いて、基本HC
供給量を補正してHC供給量を求める。Thereafter, the routine proceeds to step 108, where HC supplied as a reducing agent to the NOx catalyst 13 after the catalyst diagnosis is completed.
Is calculated as follows. First, a basic HC supply amount is calculated from a map or the like in accordance with the exhaust gas temperature Tex (catalyst temperature) and the engine speed Ne, and the basic HC supply amount is calculated based on the HC of the NOx catalyst 13 estimated in step 107.
The HC supply amount is obtained by making a correction according to the adsorption amount. As a result, as the HC adsorption amount of the NOx catalyst 13 increases, the HC
The supply amount is set small to prevent the HC adsorption amount of the NOx catalyst 13 from exceeding a poisoning limit value that cannot be recovered.
If “No” in step 102 or “Yes” in step 106, the current HC adsorption amount is not estimated. In these cases, the latest HC adsorption amount estimated in the previous process is used. Using the amount, the basic HC
The supply amount is corrected to determine the HC supply amount.
【0026】以上説明した実施形態(1)では、車両運
転中に触媒診断条件が成立した時にNOx触媒13にト
レース物質を供給し、NOx触媒13をすり抜けてくる
トレース物質の濃度を検出して、トレース物質の供給量
とトレース物質濃度の検出値との関係からNOx触媒1
3のHC吸着量(被毒状態)を推定するようにしたの
で、従来のように触媒のHC吸着量を過去の運転状態か
ら間接的に推定する場合と比較して、NOx触媒13の
HC吸着量を直接的に短時間で精度良く推定できる。し
かも、このHC吸着量の推定を、NOx触媒13を車両
に搭載したままの状態で、車両運転中に行うことができ
ると共に、NOx触媒13を飽和吸着状態にする必要が
なく、NOx触媒13の浄化性能の低下を回避できる。In the embodiment (1) described above, the trace substance is supplied to the NOx catalyst 13 when the catalyst diagnosis condition is satisfied during the operation of the vehicle, and the concentration of the trace substance passing through the NOx catalyst 13 is detected. The NOx catalyst 1 was determined based on the relationship between the supply amount of the trace substance and the detected value of the trace substance concentration.
Since the HC adsorption amount (poisoned state) of the NOx catalyst 13 is estimated in comparison with the conventional case where the HC adsorption amount of the catalyst is indirectly estimated from the past operation state as in the conventional case. The amount can be directly and accurately estimated in a short time. In addition, the HC adsorption amount can be estimated while the vehicle is operating with the NOx catalyst 13 mounted on the vehicle, and it is not necessary to bring the NOx catalyst 13 into a saturated adsorption state. A reduction in purification performance can be avoided.
【0027】尚、上記実施形態(1)では、定常運転時
であること触媒診断条件として、定常運転時にステップ
103以降の触媒診断処理を実行するようにしたが、ア
イドリング運転時であることを触媒診断条件として、ア
イドリング運転時にステップ103以降の触媒診断処理
を実行するようにしても良い。勿論、触媒診断条件とし
て、排ガス温度(触媒温度)等、他の条件を追加しても
良いことは言うまでもない。In the above embodiment (1), the catalyst diagnosis process of step 103 and later is executed during the steady operation as the catalyst diagnosis condition for the steady operation. As a diagnosis condition, the catalyst diagnosis processing after step 103 may be executed during the idling operation. Of course, it goes without saying that other conditions such as exhaust gas temperature (catalyst temperature) may be added as catalyst diagnosis conditions.
【0028】また、上記実施形態(1)では、NOx触
媒13にHC(トレース物質)を供給する手段(トレー
ス物質供給手段)として、排気管12にHC供給ノズル
15を設けたが、これに代え、燃料噴射ノズルからエン
ジンに燃料を噴射した後の膨張行程で、燃料噴射ノズル
から後噴射により少量の燃料を噴射し、これをNOx触
媒13に供給するようにしても良い。或は、HC供給ノ
ズル15をトレース物質を供給する時のみ使用し、NO
x触媒13への還元剤の供給を後噴射により行うように
しても良い。In the embodiment (1), the HC supply nozzle 15 is provided in the exhaust pipe 12 as a means (trace substance supply means) for supplying HC (trace substance) to the NOx catalyst 13. Alternatively, a small amount of fuel may be injected by post-injection from the fuel injection nozzle and supplied to the NOx catalyst 13 in an expansion stroke after the fuel is injected from the fuel injection nozzle to the engine. Alternatively, the HC supply nozzle 15 is used only when the trace material is supplied, and NO
The supply of the reducing agent to the x catalyst 13 may be performed by post-injection.
【0029】また、上記実施形態(1)では、NOx触
媒13に供給するHC(トレース物質)として燃料(軽
油)を用いたが、灯油等の液状のHCや、プロパン等の
ガス状のHCを用いるようにしても良い。In the above embodiment (1), fuel (light oil) is used as the HC (trace substance) supplied to the NOx catalyst 13. However, liquid HC such as kerosene or gaseous HC such as propane is used. It may be used.
【0030】[実施形態(2)]以下、本発明をガソリ
ンエンジンの排ガス浄化システムに適用した実施形態
(2)を図7乃至図9に基づいて説明する。まず、図7
に基づいてシステム全体の構成を説明する。内燃機関で
あるガソリンエンジン21の排気管22(排ガス通路)
の途中には、排ガス中のCO,HC,NOxを同時に浄
化する三元触媒23が設けられている。排気管22のう
ちの三元触媒23の上流側には、触媒診断時にトレース
物質としてCO(一酸化炭素)を三元触媒23に供給す
るCO供給ノズル24(トレース物質供給手段)が設け
られている。このCO供給ノズル24には、CO貯蔵タ
ンク25からCOが供給される。[Embodiment (2)] An embodiment (2) in which the present invention is applied to an exhaust gas purifying system for a gasoline engine will be described below with reference to FIGS. First, FIG.
The configuration of the entire system will be described based on the above. Exhaust pipe 22 (exhaust gas passage) of gasoline engine 21 which is an internal combustion engine
Is provided with a three-way catalyst 23 for simultaneously purifying CO, HC and NOx in the exhaust gas. On the upstream side of the three-way catalyst 23 in the exhaust pipe 22, a CO supply nozzle 24 (trace material supply means) for supplying CO (carbon monoxide) as a trace material to the three-way catalyst 23 at the time of catalyst diagnosis is provided. I have. The CO supply nozzle 24 is supplied with CO from a CO storage tank 25.
【0031】一方、三元触媒23の出口部には、三元触
媒23から流出する排ガス中のCO濃度(トレース物質
の濃度)を検出するためのサンプリングパイプ26が接
続され、このサンプリングパイプ26の先端にCO濃度
センサ27(トレース物質濃度検出手段)が設けられて
いる。このCO濃度センサ27の出力信号は、エンジン
制御回路28に入力される。On the other hand, a sampling pipe 26 for detecting the CO concentration (concentration of trace substance) in the exhaust gas flowing out of the three-way catalyst 23 is connected to the outlet of the three-way catalyst 23. A CO concentration sensor 27 (trace substance concentration detecting means) is provided at the tip. The output signal of the CO concentration sensor 27 is input to the engine control circuit 28.
【0032】エンジン制御回路28は、マイクロコンピ
ュータを主体として構成され、エンジン回転数センサ
(図示せず)等、エンジン運転条件を検出する各種セン
サの出力に基づいて燃料噴射制御や点火時期制御を行
う。The engine control circuit 28 is mainly composed of a microcomputer, and performs fuel injection control and ignition timing control based on outputs of various sensors for detecting engine operating conditions, such as an engine speed sensor (not shown). .
【0033】また、このエンジン制御回路28は、触媒
診断手段としても機能し、触媒診断条件が成立した時
(例えば定常運転時又はアイドリング運転時等)に、前
述した図2のステップ103〜105と同様の処理を行
う。すなわち、エンジン運転状態に応じてトレース物質
(CO)の供給量を算出した後、CO供給ノズル24を
駆動してトレース物質(CO)を図8に示すようにパル
ス状に三元触媒23に供給すると共に、トレース物質供
給開始後に三元触媒23の下流の排ガス中のトレース物
質濃度をCO濃度センサ27で検出する。この時のトレ
ース物質濃度の変化の一例が図9に示されている。トレ
ース物質濃度の検出時間は、トレース物質の供給時間よ
りも長い時間に設定され、トレース物質供給終了後のト
レース物質濃度の変化が最後まで検出できるように設定
されている。The engine control circuit 28 also functions as catalyst diagnosis means. When the catalyst diagnosis conditions are satisfied (for example, during steady operation or idling operation), the engine control circuit 28 performs the above-described steps 103 to 105 in FIG. The same processing is performed. That is, after the supply amount of the trace substance (CO) is calculated according to the engine operating state, the CO supply nozzle 24 is driven to supply the trace substance (CO) to the three-way catalyst 23 in a pulse form as shown in FIG. At the same time, after starting the supply of the trace substance, the trace substance concentration in the exhaust gas downstream of the three-way catalyst 23 is detected by the CO concentration sensor 27. An example of the change in the trace substance concentration at this time is shown in FIG. The detection time of the trace substance concentration is set to be longer than the supply time of the trace substance, and is set such that the change in the trace substance concentration after the end of the supply of the trace substance can be detected to the end.
【0034】トレース物質濃度の検出終了後に、トレー
ス物質の供給量とトレース物質濃度との関係から三元触
媒23のCO吸着量を推定して、三元触媒23の活性金
属の表面積(劣化度合)を推定する。この推定は、例え
ばトレース物質濃度の検出値を積分して、この積分値と
エンジン回転数(排ガス量)とに基づいて、三元触媒2
3をすり抜けたトレース物質のすり抜け量を推定し、ト
レース物質の供給量に対するすり抜け量の割合から三元
触媒23のCO吸着量を推定する。After the detection of the trace substance concentration is completed, the CO adsorption amount of the three-way catalyst 23 is estimated from the relationship between the trace substance supply amount and the trace substance concentration, and the surface area (degree of deterioration) of the active metal of the three-way catalyst 23 is determined. Is estimated. For this estimation, for example, the detected value of the trace substance concentration is integrated, and the three-way catalyst 2 is integrated based on the integrated value and the engine speed (exhaust gas amount).
The amount of trace material passing through 3 is estimated, and the amount of CO adsorbed on the three-way catalyst 23 is estimated from the ratio of the amount of trace material supplied to the amount of trace material supplied.
【0035】このようにすれば、ガソリンエンジン21
の排ガス浄化システムにおいても、三元触媒23の活性
金属の表面積(劣化度合)を直接的に短時間で精度良く
推定できる。By doing so, the gasoline engine 21
In the exhaust gas purification system described above, the surface area (degree of deterioration) of the active metal of the three-way catalyst 23 can be directly and accurately estimated in a short time.
【0036】尚、排ガスを浄化する触媒としては、三元
触媒に代えて、酸化触媒を用いるようにしても良い。As a catalyst for purifying exhaust gas, an oxidation catalyst may be used instead of the three-way catalyst.
【図1】本発明をディーゼルエンジンの排ガス浄化シス
テムに適用した実施形態(1)を示すシステム全体の概
略構成図FIG. 1 is a schematic configuration diagram of an entire system showing an embodiment (1) in which the present invention is applied to an exhaust gas purification system for a diesel engine.
【図2】触媒診断/制御プログラムの処理の流れを示す
フローチャートFIG. 2 is a flowchart showing a processing flow of a catalyst diagnosis / control program.
【図3】トレース物質(HC)供給時間と排ガス中のト
レース物質の濃度との関係を示す図FIG. 3 is a diagram showing a relationship between a trace substance (HC) supply time and a trace substance concentration in exhaust gas.
【図4】トレース物質(HC)供給速度とエンジン回転
数との関係を示す図FIG. 4 is a diagram showing a relationship between a trace material (HC) supply speed and an engine speed;
【図5】トレース物質(HC)供給動作の一例を示すタ
イミングチャートFIG. 5 is a timing chart showing an example of a trace substance (HC) supply operation;
【図6】トレース物質(HC)供給時のトレース物質濃
度の変化の一例を示すタイミングチャートFIG. 6 is a timing chart showing an example of a change in trace substance concentration when a trace substance (HC) is supplied.
【図7】本発明をガソリンエンジンの排ガス浄化システ
ムに適用した実施形態(2)を示すシステム全体の概略
構成図FIG. 7 is a schematic configuration diagram of an entire system showing an embodiment (2) in which the present invention is applied to an exhaust gas purification system for a gasoline engine.
【図8】トレース物質(CO)供給動作の一例を示すタ
イミングチャートFIG. 8 is a timing chart showing an example of a trace substance (CO) supply operation.
【図9】トレース物質(CO)供給時のトレース物質濃
度の変化の一例を示すタイミングチャートFIG. 9 is a timing chart showing an example of a change in trace substance concentration when a trace substance (CO) is supplied.
11…ディーゼルエンジン(内燃機関)、12…排気管
(排ガス通路)、13…NOx触媒、15…HC供給ノ
ズル(トレース物質供給手段)、17…エンジン制御回
路(触媒診断手段)、19…HC濃度センサ(トレース
物質濃度検出手段)、21…ガソリンエンジン(内燃機
関)、22…排気管(排ガス通路)、23…三元触媒、
24…CO供給ノズル(トレース物質供給手段)、25
…CO貯蔵タンク、27…CO濃度センサ(トレース物
質濃度検出手段)、28…エンジン制御回路(触媒診断
手段)。11: diesel engine (internal combustion engine), 12: exhaust pipe (exhaust gas passage), 13: NOx catalyst, 15: HC supply nozzle (trace substance supply means), 17: engine control circuit (catalyst diagnosis means), 19: HC concentration Sensor (trace substance concentration detecting means), 21: gasoline engine (internal combustion engine), 22: exhaust pipe (exhaust gas passage), 23: three-way catalyst,
24 ... CO supply nozzle (trace substance supply means), 25
... CO storage tank, 27 ... CO concentration sensor (trace substance concentration detection means), 28 ... engine control circuit (catalyst diagnosis means).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 大山 尚久 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 広田 信也 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Naohisa Oyama 14 Iwatani, Shimowasumi-cho, Nishio City, Aichi Prefecture Inside the Japan Automobile Parts Research Institute (72) Inventor Shinya Hirota 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Inside the corporation
Claims (5)
ス浄化用の触媒の状態を診断する内燃機関の排ガス浄化
用触媒の診断装置において、 車両運転中に触媒診断条件が成立した時に前記触媒に対
して上流側から還元性又は酸化性のトレース物質を供給
するトレース物質供給手段と、 前記触媒の下流側に設置され、該触媒をすり抜けてくる
トレース物質の濃度を検出するトレース物質濃度検出手
段と、 前記トレース物質供給手段によるトレース物質の供給量
と前記トレース物質濃度検出手段の検出値との関係から
前記触媒の状態を診断する触媒診断手段とを備えている
ことを特徴とする内燃機関の排ガス浄化用触媒の診断装
置。An apparatus for diagnosing an exhaust gas purifying catalyst for an internal combustion engine, which diagnoses a state of an exhaust gas purifying catalyst provided in an exhaust gas passage of the internal combustion engine, wherein the catalyst is diagnosed when a catalyst diagnosing condition is satisfied during vehicle operation. A trace substance supply means for supplying a reducing or oxidizing trace substance from an upstream side, and a trace substance concentration detecting means provided at a downstream side of the catalyst and detecting a concentration of the trace substance passing through the catalyst. Exhaust gas of an internal combustion engine, comprising: catalyst diagnosing means for diagnosing a state of the catalyst from a relationship between a trace substance supply amount by the trace substance supply means and a detection value of the trace substance concentration detecting means. Diagnosis device for purification catalyst.
り、前記触媒は、排ガス中の窒素酸化物を還元浄化する
NOx触媒であり、 前記トレース物質供給手段は、前記トレース物質として
炭化水素を前記NOx触媒に供給し、 前記触媒診断手段は、前記NOx触媒の炭化水素吸着量
を推定する手段を有することを特徴とする請求項1に記
載の内燃機関の排ガス浄化用触媒の診断装置。2. The internal combustion engine is a diesel engine, the catalyst is a NOx catalyst for reducing and purifying nitrogen oxides in exhaust gas, and the trace material supply means is configured to convert hydrocarbons as the trace material into the NOx catalyst. The catalyst diagnosing device for an exhaust gas purifying catalyst for an internal combustion engine according to claim 1, wherein the catalyst diagnosing means includes means for estimating a hydrocarbon adsorption amount of the NOx catalyst.
時以外の通常運転時に、前記NOx触媒に窒素酸化物の
還元剤として炭化水素を供給することを特徴とする請求
項2に記載の内燃機関の排ガス浄化用触媒の診断装置。3. The internal combustion engine according to claim 2, wherein the trace material supply unit supplies a hydrocarbon as a nitrogen oxide reducing agent to the NOx catalyst during a normal operation other than a catalyst diagnosis. Diagnostic device for exhaust gas purification catalyst.
り、 前記トレース物質供給手段は、前記トレース物質として
一酸化炭素を前記触媒に供給し、 前記触媒診断手段は、前記触媒の一酸化炭素吸着量を推
定して前記触媒の活性金属の表面積を推定する手段を有
することを特徴とする請求項1に記載の内燃機関の排ガ
ス浄化用触媒の診断装置。4. The internal combustion engine is a gasoline engine, the trace substance supply means supplies carbon monoxide as the trace substance to the catalyst, and the catalyst diagnosis means determines a carbon monoxide adsorption amount of the catalyst. The diagnostic device for an exhaust gas purifying catalyst for an internal combustion engine according to claim 1, further comprising a unit for estimating the surface area of the active metal of the catalyst.
関が定常運転状態であることを検出したときに、前記触
媒診断条件が成立したとして前記トレース物質供給手段
に作動指令信号を出力する診断条件判定手段を備えてい
ることを特徴とする請求項1乃至4のいずれかに記載の
内燃機関の排ガス浄化用触媒の診断装置。5. A diagnostic condition for outputting an operation command signal to said trace material supply means on the assumption that said catalyst diagnostic condition has been satisfied when detecting that said internal combustion engine is in a steady operation state from an operation state of said internal combustion engine. The diagnostic device for an exhaust gas purifying catalyst for an internal combustion engine according to any one of claims 1 to 4, further comprising a determination unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9237901A JPH1181994A (en) | 1997-09-03 | 1997-09-03 | Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9237901A JPH1181994A (en) | 1997-09-03 | 1997-09-03 | Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1181994A true JPH1181994A (en) | 1999-03-26 |
Family
ID=17022118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9237901A Pending JPH1181994A (en) | 1997-09-03 | 1997-09-03 | Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1181994A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001263048A (en) * | 2000-03-16 | 2001-09-26 | Mazda Motor Corp | Exhaust emission control device for engine |
US7673444B2 (en) | 2004-10-29 | 2010-03-09 | Nissan Diesel Motor Co., Ltd. | Exhaust gas purification apparatus |
JP2012149645A (en) * | 2011-01-14 | 2012-08-09 | Fev Gmbh | Method for diagnosing exhaust gas post treatment |
WO2013118254A1 (en) | 2012-02-07 | 2013-08-15 | トヨタ自動車株式会社 | Exhaust purification device for internal combustion engine |
US20150240733A1 (en) * | 2012-08-28 | 2015-08-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of spark ignition type internal combustion engine (as amended) |
US9623375B2 (en) | 2010-03-15 | 2017-04-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
JP2017089400A (en) * | 2015-11-03 | 2017-05-25 | 株式会社デンソー | Exhaust emission control system and purification control device |
KR102095045B1 (en) * | 2019-01-07 | 2020-03-30 | 주식회사 현대케피코 | Method and apparatus for controlling heating catalyst temperature based on prediction model of unburned hydrocarbon in heating catalyst |
WO2020109248A1 (en) * | 2018-11-26 | 2020-06-04 | Vitesco Technologies GmbH | Exhaust purification assembly and motor vehicle |
US20220186643A1 (en) * | 2020-12-14 | 2022-06-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
-
1997
- 1997-09-03 JP JP9237901A patent/JPH1181994A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001263048A (en) * | 2000-03-16 | 2001-09-26 | Mazda Motor Corp | Exhaust emission control device for engine |
JP4631123B2 (en) * | 2000-03-16 | 2011-02-16 | マツダ株式会社 | Engine exhaust purification system |
US7673444B2 (en) | 2004-10-29 | 2010-03-09 | Nissan Diesel Motor Co., Ltd. | Exhaust gas purification apparatus |
US9623375B2 (en) | 2010-03-15 | 2017-04-18 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
JP2012149645A (en) * | 2011-01-14 | 2012-08-09 | Fev Gmbh | Method for diagnosing exhaust gas post treatment |
WO2013118254A1 (en) | 2012-02-07 | 2013-08-15 | トヨタ自動車株式会社 | Exhaust purification device for internal combustion engine |
US9534552B2 (en) * | 2012-08-28 | 2017-01-03 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of spark ignition type internal combustion engine |
US20150240733A1 (en) * | 2012-08-28 | 2015-08-27 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of spark ignition type internal combustion engine (as amended) |
JP2017089400A (en) * | 2015-11-03 | 2017-05-25 | 株式会社デンソー | Exhaust emission control system and purification control device |
WO2020109248A1 (en) * | 2018-11-26 | 2020-06-04 | Vitesco Technologies GmbH | Exhaust purification assembly and motor vehicle |
KR102095045B1 (en) * | 2019-01-07 | 2020-03-30 | 주식회사 현대케피코 | Method and apparatus for controlling heating catalyst temperature based on prediction model of unburned hydrocarbon in heating catalyst |
US20220186643A1 (en) * | 2020-12-14 | 2022-06-16 | Toyota Jidosha Kabushiki Kaisha | Exhaust purification system of internal combustion engine |
CN114673579A (en) * | 2020-12-14 | 2022-06-28 | 丰田自动车株式会社 | Exhaust gas purification device for internal combustion engine |
CN114673579B (en) * | 2020-12-14 | 2024-08-09 | 丰田自动车株式会社 | Exhaust gas purifying device for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8156728B2 (en) | Method, device and computer program product for diagnosing of at least one exhaust emission control unit | |
JP4475271B2 (en) | NOx sensor abnormality diagnosis device and abnormality diagnosis method | |
US9416708B2 (en) | Method for determining HC-conversion efficiency of a catalyst, a diagnostic device configured to carry out the method as well as a motor vehicle having such a catalyst | |
EP2460999B1 (en) | Method for predicting SOx stored at DeNOx catalyst and exhaust system using the same | |
KR101251505B1 (en) | METHOD FOR PREDICTING NOx LOADING AT DeNOx CATALYST AND EXHAUST SYSTEM USING THE SAME | |
US8336293B2 (en) | Exhaust gas purification system of an internal combustion engine | |
JP6278005B2 (en) | Exhaust purification device deterioration diagnosis device | |
US8739615B2 (en) | Device and method of determining deterioration of catalyst | |
WO2009150752A1 (en) | APPARATUS FOR MAKING DIAGNOSIS OF ABNORMALITY OF NOx CATALYST AND METHOD FOR MAKING DIAGNOSIS OF ABNORMALITY | |
JP2008240577A (en) | Deterioration diagnosis device and deterioration diagnosis method for oxidation catalyst | |
US8549836B2 (en) | Method for operating an exhaust system, exhaust system and vehicle having an exhaust system | |
US20200182179A1 (en) | Three-way catalyst oxygen storage model | |
JP6102908B2 (en) | Exhaust purification device deterioration diagnosis device | |
JP2004156615A (en) | Emission aftertreatment system of internal combustion engine | |
JPH1181994A (en) | Diagnosing device for catalyst for purifying exhaust gas from internal combustion engine | |
EP3401522B1 (en) | Exhaust gas control system for internal combustion engine and method of controlling exhaust gas control system for internal combustion engine | |
JP4419150B2 (en) | NOx catalyst abnormality diagnosis device and abnormality diagnosis method | |
US20140147339A1 (en) | Diesel oxidation catalyst aging level determination using nox sensor no2 interference | |
JP2020041445A (en) | Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system | |
JP3712314B2 (en) | Hydrocarbon adsorption detector for exhaust gas purification catalyst | |
US10519840B2 (en) | Abnormality diagnosis system for exhaust gas purification apparatus | |
JP4211444B2 (en) | Exhaust gas purification catalyst low temperature operation function diagnostic device | |
JP2003293744A (en) | Exhaust emission control device for internal combustion engine | |
CN110886638A (en) | Catalyst deterioration diagnosis method and catalyst deterioration diagnosis system | |
JP2006125226A (en) | Method for diagnosing deterioration of three-way catalyst and exhaust gas purification device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050816 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051014 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20051205 |