JP4243654B2 - Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate - Google Patents

Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate Download PDF

Info

Publication number
JP4243654B2
JP4243654B2 JP2003361177A JP2003361177A JP4243654B2 JP 4243654 B2 JP4243654 B2 JP 4243654B2 JP 2003361177 A JP2003361177 A JP 2003361177A JP 2003361177 A JP2003361177 A JP 2003361177A JP 4243654 B2 JP4243654 B2 JP 4243654B2
Authority
JP
Japan
Prior art keywords
plate
aluminum
brazing
cooling liquid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003361177A
Other languages
Japanese (ja)
Other versions
JP2005129599A (en
Inventor
親二 竹野
博 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2003361177A priority Critical patent/JP4243654B2/en
Publication of JP2005129599A publication Critical patent/JP2005129599A/en
Application granted granted Critical
Publication of JP4243654B2 publication Critical patent/JP4243654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えばパソコン、特に、携帯型パソコンのように、小型化、軽量化が要求される電子機器に適用して好適な電子機器部品の液体冷却板、液体冷却板の製造方法、並びに、前記液体冷却板が組み込まれた電子機器に関する。   The present invention is, for example, a liquid cooling plate for electronic device parts suitable for application to an electronic device that is required to be reduced in size and weight, such as a personal computer, particularly a portable personal computer, a method for manufacturing the liquid cooling plate, and The present invention relates to an electronic device in which the liquid cooling plate is incorporated.

パソコン等の電子機器におけるCPU(中央演算処理装置)等の電子部品を冷却するための手段として、従来から、冷却ファンによって強制空冷するものが広く採用されている。しかしながら、冷却ファンはサイズの小型化が難しいため、例えば、携帯型パソコンのように、小型化、軽量化が要求される電子機器に適用する場合、電子機器における電子部品の実装密度の高密度化の障害になったり、電子機器自体の小型化、軽量化にも影響するといった不都合があった。また、冷却ファンは騒音を発生するといった不満もあり、特に、近年の電子回路の高速化、CPU等の性能向上(例えば、数ギガヘルツの高周波数で駆動するCPU)に伴い、冷却効率が高い冷却ファンを採用するとなると、騒音の問題が一層大きくなる。   As means for cooling electronic components such as a CPU (Central Processing Unit) in an electronic device such as a personal computer, a device that is forcibly cooled by a cooling fan has been widely used. However, since it is difficult to reduce the size of the cooling fan, for example, when applied to an electronic device that is required to be smaller and lighter, such as a portable personal computer, the mounting density of electronic components in the electronic device is increased. There are inconveniences such as an obstacle to the above, and it also affects the downsizing and weight reduction of the electronic device itself. In addition, the cooling fan is also dissatisfied with generating noise, and in particular, cooling with high cooling efficiency due to recent high-speed electronic circuits and improved performance of CPUs (for example, CPUs driven at a high frequency of several gigahertz). When the fan is adopted, the problem of noise becomes even greater.

上述したような冷却ファンの問題に対応して、近年では、液冷方式の冷却装置の採用が普及しつつある。この液冷方式の冷却装置は、水等の冷却媒体(液。以下、冷却液体)を循環させる液通路を内蔵する金属製板状の液冷ヒートシンク(「コールドプレート」との名称で呼ばれる場合がある。以下、コールドプレートと称する場合がある)をCPU等の電子部品に接触させ、前記液通路内に通液した冷却液体によって、電子部品から発生した熱を、機器外部(あるいは機器の筐体や筐体近く)に設けられた放熱側ヒートシンクに搬送することで、電子部品を冷却するものである(例えば、特許文献1〜3参照)。
この液冷方式の冷却装置であれば、冷却ファンに比べて小型化が容易であり、電子機器における電子部品の実装密度の高密度化の障害になったり、電子機器自体の小型化、軽量化にも影響するといった不都合が生じにくい。また、騒音の問題も解消できる。
特開2003−050645号公報 特開2002−261480号公報 特開平7−142886号公報
In response to the problem of the cooling fan as described above, in recent years, the adoption of a liquid cooling type cooling device is becoming widespread. This liquid cooling type cooling device is sometimes referred to as a metal plate-like liquid cooling heat sink (“cold plate”) with a built-in liquid passage for circulating a cooling medium such as water (liquid; hereinafter referred to as cooling liquid). In the following, a cold plate) may be brought into contact with an electronic component such as a CPU, and the heat generated from the electronic component by the cooling liquid that has passed through the liquid passage is transferred to the outside of the device (or the housing of the device). The electronic component is cooled by being conveyed to a heat radiation side heat sink provided in the vicinity of the housing (see, for example, Patent Documents 1 to 3).
This liquid cooling type cooling device is easy to downsize compared to a cooling fan, hinders the increase in the mounting density of electronic components in electronic devices, and makes electronic devices themselves smaller and lighter. Inconvenience that affects the In addition, the problem of noise can be solved.
JP 2003-050645 A JP 2002-261480 A JP-A-7-142886

ところで、前述の液冷方式の冷却装置の場合、コールドプレートは、液通路を形成する金属管を一対の金属板の間に挟み込んで全体に板状に形成したものが広く採用されており、CPU等の電子部品に前記金属板を当接させることで、電子部品の熱を、金属板及び金属管を介して金属管内の冷却液体に伝達して冷却する構造になっている(前述の特許文献1の図2,特許文献2の図1、特許文献3の図5等を参照)。すなわち、2つの部材(金属板及び金属管)を介して、電子部品の熱が液通路内の冷却液体に伝達される構造であり、これが、冷却効率の向上の妨げになっているといった不満があった。また、前述の液冷方式の冷却装置を、例えば携帯型パソコンのように、電子部品の実装密度の高密度化が要求される電子機器に適用する場合、コールドプレートの小型化(特に厚さ寸法の縮小)が要求されるが、前述のように、金属管を一対の金属板の間に挟み込んだ構造のコールドプレートでは小型化(特に厚さ寸法の縮小)に限界があるため、これが、電子機器全体の厚さ寸法等のサイズの縮小に影響するといったケースが生じていた。   By the way, in the case of the above-described liquid cooling type cooling device, a cold plate is widely adopted in which a metal tube forming a liquid passage is sandwiched between a pair of metal plates and formed into a plate shape as a whole. By bringing the metal plate into contact with the electronic component, the heat of the electronic component is transmitted to the cooling liquid in the metal tube via the metal plate and the metal tube to be cooled (see Patent Document 1 described above). (Refer FIG. 2, FIG. 1 of patent document 2, FIG. 5 of patent document 3, etc.). That is, it is a structure in which the heat of the electronic component is transmitted to the cooling liquid in the liquid passage through two members (a metal plate and a metal tube), which is unsatisfactory that it hinders improvement in cooling efficiency. there were. In addition, when the above-described liquid cooling type cooling device is applied to an electronic device that requires a high mounting density of an electronic component, such as a portable personal computer, the cold plate is reduced in size (especially the thickness dimension). However, as described above, there is a limit to downsizing (especially the reduction in thickness) of a cold plate having a structure in which a metal tube is sandwiched between a pair of metal plates. There has been a case in which the reduction of the size such as the thickness dimension of the film is affected.

本発明は、前記課題に鑑みてなされたものであり、電子部品の冷却効率を向上でき、しかも、小型化(特に厚さ寸法の縮小)を容易に実現できる、電子機器部品の液体冷却板、その製造方法、並びに、液冷装置の提供を目的としている。   The present invention has been made in view of the above problems, and can improve the cooling efficiency of electronic components, and can easily realize downsizing (especially reduction in thickness dimension) of electronic device components, It aims at providing the manufacturing method and a liquid cooling device.

上記課題を解決するために、本発明では以下の構成を提供する。
本発明では、複数のアルミニウム板材が大気中無フラックス重ねろう付けされた金属板積層体であって、この金属板積層体内には、該金属板積層体内層の少なくとも一枚の前記アルミニウム板材の片面に形成された凹溝又は板厚方向に貫通された貫通穴によって前記アルミニウム板材の板面方向に蛇行延設された冷却液体流通路が形成されており、前記冷却液体流通路の一端及び他端は、それぞれ、金属板積層体の片面側のアルミニウム板材に穿設された貫通孔の該アルミニウム板材の外面側における開口部である冷却液体導入用開口部及び冷却液体排出用開口部に接続され、金属板積層体の片面側のアルミニウム板材には、アルミニウムあるいはその基合金からなる管である冷却液体導入口及び冷却液体排出口が、その断面角形の継ぎ口に穿設されている穴を、該アルミニウム板材の前記貫通孔と合致させて、それぞれ、前記継ぎ口を大気中無フラックス重ねろう付けによりろう付けして接合されており、前記アルミニウム板材同士の大気中無フラックス重ねろう付けが、前記金属板積層体を構成する複数のアルミニウム板材の重ね合わせ界面に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付け、冷却液体導入口及び冷却液体排出口のアルミニウム板材に対する大気中無フラックス重ねろう付けが、冷却液体導入口及び冷却液体排出口の前記継ぎ口と金属板積層体の片面側のアルミニウム板材との間に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けであって、前記アルミニウム薄合わせ板材が、融点600℃以下のろう材からなる芯材と、前記芯材より融点の高いアルミニウム合金からなる皮材とによって構成され、かつ前記芯材及び皮材のいずれか一つ以上にMgを0.1〜6%(mass%、以下同じ)あるいは更にBiを0.01〜1%添加してなる3層構造のもの、あるいは、芯材と、その両側の皮材との間に、融点が600℃以下のろう材からなる中間材が設けられており、芯材と両皮材とは、中間材より融点の高いアルミニウム合金からなり、しかも、芯材と皮材と中間材のいずれか一つ以上にMgを0.1〜6%あるいは更にBiを0.01〜1%添加してなる5層構造のものであり、冷却液体導入口及び冷却液体排出口、重ね合わせ板材全体を加圧密着した状態で、大気中にて、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない温度範囲に加熱して一括して重ねろう付けしてなるものであることを特徴とする電子機器部品の液体冷却板を提供する。
また、本発明では、アルミニウム又はその基合金からなるアルミニウム板材を大気中無フラックス重ねろう付けにより複数接合することで、前記アルミニウム板材の内の一つに形成されている凹溝又は前記アルミニウム板材の板厚方向に貫通されている貫通穴によって構成される冷却液体流通路を内蔵する金属板積層体を組み立てるとともに、金属板積層体の片面側のアルミニウム板材に、アルミニウムあるいはその基合金からなる管である冷却液体導入口及び冷却液体排出口を、その断面角形の継ぎ口に穿設されている穴を、前記金属板積層体の片面側のアルミニウム板材に穿設された貫通孔の該アルミニウム板材の外面側における開口部である冷却液体導入用開口部及び冷却液体排出用開口部と合致させて、それぞれ、前記継ぎ口を大気中無フラックス重ねろう付けによりろう付けして接合して、液体冷却板を組み立てる液体冷却板の製造方法であり、前記アルミニウム板材同士の大気中無フラックス重ねろう付けが、前記金属板積層体を構成する複数のアルミニウム板材の重ね合わせ界面に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付け、冷却液体導入口及び冷却液体排出口のアルミニウム板材に対する大気中無フラックス重ねろう付けが、冷却液体導入口及び冷却液体排出口の前記継ぎ口と金属板積層体の片面側のアルミニウム板材との間に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けであって、前記アルミニウム薄合わせ板材が、融点600℃以下のろう材からなる芯材と、前記芯材より融点の高いアルミニウム合金からなる皮材とによって構成され、かつ前記芯材及び皮材のいずれか一つ以上にMgを0.1〜6%(mass%、以下同じ)あるいは更にBiを0.01〜1%添加してなる3層構造のもの、あるいは、芯材と、その両側の皮材との間に、融点が600℃以下のろう材からなる中間材が設けられており、芯材と両皮材とは、中間材より融点の高いアルミニウム合金からなり、しかも、芯材と皮材と中間材のいずれか一つ以上にMgを0.1〜6%あるいは更にBiを0.01〜1%添加してなる5層構造のものであり、冷却液体導入口及び冷却液体排出口、重ね合わせ板材全体を加圧密着した状態で、大気中にて、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない温度範囲に加熱して一括して重ねろう付けすることを特徴とする液体冷却板の製造方法を提供する。
なお、本明細書で「ろう付け」とは大気中無フラックス高温ろう付けを指す総称である。
In order to solve the above problems, the present invention provides the following configuration.
In the present invention, there is provided a metal plate laminate in which a plurality of aluminum plates are brazed without flux in the atmosphere, and the metal plate laminate includes at least one surface of the aluminum plate in the metal plate laminate. A cooling liquid flow passage meanderingly extending in the plate surface direction of the aluminum plate material is formed by a recessed groove or a through hole penetrating in the plate thickness direction, and one end and the other end of the cooling liquid flow passage Are respectively connected to an opening for cooling liquid introduction and an opening for cooling liquid discharge, which are openings on the outer surface side of the aluminum plate material of the through holes formed in the aluminum plate material on one side of the metal plate laminate , The aluminum plate material on one side of the metal plate laminate has a cooling liquid inlet and a cooling liquid outlet, which are tubes made of aluminum or a base alloy thereof, at the joints having a square cross section. The holes formed are aligned with the through-holes of the aluminum plate material, and the joints are joined by brazing by non-flux lap brazing in the atmosphere. The flux lap brazing is performed by previously inserting an aluminum thin laminated plate material at the overlapping interface of a plurality of aluminum plate members constituting the metal plate laminate, and a cooling liquid inlet and a cooling liquid discharge port. Flux brazing in the air to the aluminum plate is performed by inserting an aluminum thin laminated plate in advance between the joint of the cooling liquid inlet and the cooling liquid outlet and the aluminum plate on one side of the metal plate laminate. Aluminum brazing performed, wherein the aluminum thin laminated plate has a melting point of 600 ° C. or lower And a core material made of an aluminum alloy having a higher melting point than the core material, and Mg is contained in one or more of the core material and the skin material in an amount of 0.1 to 6% (mass%, The same shall apply hereinafter) or a three-layer structure in which Bi is added in an amount of 0.01 to 1%, or an intermediate composed of a brazing material having a melting point of 600 ° C. or lower between the core material and the skin material on both sides thereof. The core material and the both skin materials are made of an aluminum alloy having a melting point higher than that of the intermediate material, and more than 0.1 Mg is added to any one or more of the core material, the skin material, and the intermediate material. It is a five-layer structure with 6% or 0.01 to 1% of Bi added, and in the atmosphere with the cooling liquid inlet, the cooling liquid outlet, and the entire laminated plate in pressure contact. More than the liquidus temperature of the brazing material and the solidus temperature of each member other than the brazing material Providing a liquid cold plate of electronic components which are heated to a temperature range, characterized in der Rukoto made brazed lap collectively not exceeding the minimum value of the.
Further, in the present invention, a plurality of aluminum plates made of aluminum or a base alloy thereof are joined by airless fluxless brazing, so that the grooves formed in one of the aluminum plates or the aluminum plate While assembling a metal plate laminate incorporating a cooling liquid flow path formed by through holes penetrating in the plate thickness direction, a pipe made of aluminum or a base alloy thereof is applied to the aluminum plate material on one side of the metal plate laminate. A cooling liquid introduction port and a cooling liquid discharge port are formed in the through hole formed in the aluminum plate material on one side of the metal plate laminate. Match the opening for cooling liquid introduction and the opening for cooling liquid discharge, which are openings on the outer surface side, respectively, and connect the joints to the atmosphere. And joined by brazing by fluxless superposed brazing, a method for producing a liquid cold plate assembly of the liquid cooling plate, atmosphere fluxless superposed brazing of the aluminum sheet material to each other, constituting the metal plate stack Aluminum laminating by inserting an aluminum thin laminated plate in advance at the overlapping interface of a plurality of aluminum plates, and flux-free brazing in the air against the aluminum plates at the cooling liquid inlet and the cooling liquid outlet are the cooling liquid. The aluminum thin brazing is performed by inserting an aluminum thin laminated plate in advance between the introduction port and the joint of the cooling liquid outlet and the aluminum plate on one side of the metal plate laminate. A core material made of a brazing material having a melting point of 600 ° C. or lower, and aluminum having a melting point higher than that of the core material And at least one of the core material and the skin material is 0.1 to 6% Mg (mass%, the same shall apply hereinafter), or 0.01 to 1% Bi. An intermediate material composed of a brazing material having a melting point of 600 ° C. or lower is provided between the added three-layer structure or between the core material and the skin material on both sides thereof, and the core material and both skin materials Is made of an aluminum alloy having a melting point higher than that of the intermediate material, and 0.1 to 6% of Mg or 0.01 to 1% of Bi is further added to at least one of the core material, the skin material, and the intermediate material. And a brazing filler metal having a temperature higher than the liquidus temperature of the brazing filler metal in the atmosphere in a state where the cooling liquid inlet, the cooling liquid outlet, and the entire laminated plate are in pressure contact with each other. Heat to a temperature range that does not exceed the minimum value of the solidus temperature of each member other than Overlapping Te to provide a manufacturing method of liquid cooling plates, characterized in Rukoto to be brazed.
In the present specification, “brazing” is a general term indicating high-temperature brazing without flux in the atmosphere.

本発明に係る電子機器部品の液体冷却板(以下、「液体冷却板」と略称する場合がある)において、冷却液体流通路の形成用のアルミニウム板材(以下、流路加工板とも言う)として、片面に凹溝が形成されたもの(以下、凹溝付き金属板とも言う)を採用する場合は、この凹溝付き金属板の凹溝が形成されている面に被着される金属板(金属板積層体を構成する金属板の一つ。以下、封止用金属板とも言う)と凹溝付き金属板との間に、前記凹溝によって冷却液体流通路が確保される。流路加工板として、板厚方向に貫通する貫通穴が形成されている金属板(以下、貫通穴付き金属板とも言う)を採用する場合は、この貫通穴付き金属板の両面に被着される金属板(金属板積層体を構成する金属板の一つ。以下、封止用金属板とも言う)と貫通穴付き金属板との間に、前記貫通穴によって冷却液体流通路が確保される。
封止用金属板は、平板に限定されず、例えば、凹溝付き金属板と同様の凹溝が形成されているものを採用して、冷却液体流通路の断面積を稼ぐようにすることも可能である。
なお、前述の「凹溝」とは、金属板(流路加工板)の一部を削除したような形状に形成された溝条の溝のことであり、例えば、プレス加工等によって金属板を曲げ加工して形成されるもの(曲げ加工の谷を凹溝とするもの)は含まない。また、貫通穴付き金属板の貫通穴は、ここでは、金属板(流路加工板)の板面方向に蛇行延設された長穴を指す。凹溝や貫通穴の形成手法としては、金属板の切削等の加工の他、金属板自体の成形時に形成することでも良い。
In the liquid cooling plate (hereinafter sometimes abbreviated as “liquid cooling plate”) of the electronic device component according to the present invention, as an aluminum plate material (hereinafter also referred to as a flow path processing plate) for forming a cooling liquid flow path, When adopting a groove having a groove on one side (hereinafter also referred to as a metal plate with a groove), a metal plate (metal) attached to the surface of the metal plate with the groove is formed. One of the metal plates constituting the plate laminate (hereinafter also referred to as a sealing metal plate) and a cooling liquid flow path is secured by the concave groove between the concave grooved metal plate. When a metal plate with a through hole penetrating in the plate thickness direction (hereinafter also referred to as a metal plate with a through hole) is adopted as the flow path processing plate, it is attached to both surfaces of the metal plate with the through hole. A cooling liquid flow path is secured by the through hole between the metal plate (one of the metal plates constituting the metal plate laminate; hereinafter also referred to as a metal plate for sealing) and the metal plate with the through hole. .
The metal plate for sealing is not limited to a flat plate. For example, a metal plate with a groove that is similar to a metal plate with a groove is formed to increase the cross-sectional area of the cooling liquid flow passage. Is possible.
The above-mentioned “concave groove” is a groove groove formed in a shape obtained by removing a part of a metal plate (flow-path processed plate). For example, the metal plate is formed by pressing or the like. It does not include those formed by bending (those having a trough in the bending process as a concave groove). Moreover, the through-hole of the metal plate with a through-hole refers here to the long hole meanderingly extended in the plate | board surface direction of the metal plate (flow-path processing board). As a method of forming the concave groove or the through hole, it may be formed at the time of forming the metal plate itself in addition to processing such as cutting of the metal plate.

冷却液体導入用開口部及び冷却液体排出用開口部の構造は、例えば、金属板積層体の側面に開口する冷却液体流通路の開口部に、断面角形の管体あるいは丸形管体を嵌合固定して構成した周知の継手構造の他、金属板積層体を構成する金属板の間に、冷却液体流通路の開口部に位置合わせした断面角形の管体を挟み込んで、積層体を構成する金属板と一体に重ねろう付けしたものを採用しない
発明者等は、種々の接続構造を試み、図1乃至図3に示す構造の継手が、製造容易、水密性良好であることを認めた。すなわち、図において、板厚方向の貫通穴8の下方にろう付け(図3中、符号12はろう付け用のアルミニウム薄合わせ板材)されるアルミニウム板材5に穿設された孔51、51と、その下方にろう付けされる断面角形のアルミニウム合金製継ぎ口6’、7’(冷却液体導入口6の継ぎ口6’、冷却液体排出口7の継ぎ口7’)に穿設されている穴6a、7aとを合致させ、孔51、51、穴6a、7aを介して、冷却液体導入口及び冷却液体排出口を積層体内の冷却液体流通路と連通させた構造である。
The structure of the cooling liquid introduction opening and the cooling liquid discharge opening is formed, for example, by fitting a square tube or a round tube to the opening of the cooling liquid flow passage that opens on the side surface of the metal plate laminate. In addition to the well-known joint structure that is fixedly configured, a metal plate that forms a laminate by sandwiching a tubular body having a square cross section aligned with the opening of the cooling liquid flow passage between the metal plates that constitute the metal plate laminate. Do not use what is brazed together.
The present inventors tried various connection structures and recognized that the joint having the structure shown in FIGS. 1 to 3 was easy to manufacture and had good water tightness. That is, in the figure, holes 51 and 51 drilled in an aluminum plate 5 to be brazed below the through-holes 8 in the plate thickness direction (in FIG. 3, reference numeral 12 is an aluminum thin laminated plate for brazing); Holes formed in aluminum alloy joints 6 'and 7' (joint 6 'of cooling liquid introduction port 6 and joint 7' of cooling liquid discharge port 7) having a square cross section to be brazed therebelow. 6a and 7a are matched, and the cooling liquid introduction port and the cooling liquid discharge port are communicated with the cooling liquid flow passage in the laminated body through the holes 51 and 51 and the holes 6a and 7a.

本発明によれば、複数のアルミニウム板材をろう付けにより接合することで、冷却液体流通路を内蔵する液体冷却板を組み立てる構成であり、液体冷却板の表裏いずれかの面を形成するアルミニウム板材を、電子機器の部品(例えば、電子部品等の発熱部品自体あるいは発熱部品によって加熱される部品。以下、機器部品とも言う)に当接させることで、機器部品の熱を、アルミニウム板材を介して、冷却液体流通路内の冷却液体に伝達して、機器部品を冷却できる。このため、例えば、機器部品に当接させる金属板と冷却液体流通路(「発明が解決しようとする課題」の欄で説明した液通路)を形成する金属管とを介して、機器部品の熱を冷却液体に伝達する従来構成の液体冷却板に比べて、機器部品の熱を冷却液体に導く経路を短縮でき、機器部品の冷却効率を向上できる。また、液体冷却板自体の小型化、軽量化も容易に実現できる。本発明では、従来技術に比べて、特に、液体冷却板の厚さ寸法の縮小が容易であり、これにより、この液体冷却板を組み込んだ電子機器の小型化、電子部品等の実装密度の高密度化等を容易に実現できる。
さらに、前述したように、前記ろう付けとして、複数のアルミニウム板材の重ね合わせ界面に予め3層構造あるいは5層構造のアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けを、重ね合わせ板材全体を加圧密着した状態で、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない範囲に加熱して行う大気中無フラックス重ねろう付けを採用すると、真空炉とか気密性の雰囲気炉といった高価な設備を用いることなく、また、フラックスとか不活性ガスを使用することなく、冷却液体流通路内を流れる冷却液体の漏れの原因となるピンホール等の欠陥の無い優れたろう付けを簡単に低コストで実現できる。また、無フラックスろう付けであるため、作業環境汚染を防止するための換気設備や、浄化設備(ハロゲン系ガス等が排出されないように排気を浄化処理するための設備)の設置等が不要であるといった利点もある。このろう付けであれば、真空炉とか雰囲気炉といった設備を用いる場合に比べて、工程が単純であり、また、短時間でろう付けを行えるため、低コストで高生産性を実現できるといった利点もある。さらに、前述の大気中無フラックス重ねろう付けは、大気中高温ろう付けのため、アルミニウム表面に緻密な酸化膜(厚さ数μm)が形成されるため、耐食性に優れたアルミニウム積層体が得られるといった利点もある。ろう付け工程にて、冷却液体流通路内面の耐食性を向上できるため、別途、耐食処理を行う必要が無い、といった利点がある。
According to the present invention, a plurality of aluminum plates are joined by brazing to assemble a liquid cooling plate having a built-in cooling liquid flow passage, and an aluminum plate that forms one of the front and back surfaces of the liquid cooling plate is provided. The heat of the electronic component is brought into contact with the component of the electronic device (for example, the heat-generating component itself such as the electronic component or the component heated by the heat-generating component. Equipment components can be cooled by transferring to the cooling liquid in the cooling liquid flow passage. For this reason, for example, the heat of the equipment component is brought about via a metal plate that contacts the equipment component and a metal pipe that forms a cooling liquid flow passage (the liquid passage described in the section “Problems to be solved by the invention”). Compared with the liquid cooling plate of the conventional configuration that transmits the heat to the cooling liquid, the path for guiding the heat of the device parts to the cooling liquid can be shortened, and the cooling efficiency of the device parts can be improved. Further, the liquid cooling plate itself can be easily reduced in size and weight. In the present invention, in particular, the thickness of the liquid cooling plate can be easily reduced as compared with the prior art, thereby reducing the size of electronic equipment incorporating the liquid cooling plate and increasing the mounting density of electronic components and the like. Densification and the like can be easily realized.
Furthermore, as described above, as the brazing, the aluminum laminated brazing is performed by inserting a three-layer or five-layer aluminum thin laminated plate in advance into the overlapping interface of a plurality of aluminum plates. In a state where the pressure is in close contact with each other, it is heated in the range above the liquidus temperature of the brazing material and not exceeding the minimum value of the solidus temperature of each member other than the brazing material. If this is used, pins that cause leakage of the cooling liquid flowing in the cooling liquid flow passage without using expensive equipment such as a vacuum furnace or an airtight atmosphere furnace, and without using flux or inert gas. Excellent brazing free from defects such as holes can be easily realized at low cost. In addition, since it is flux-free brazing, it is not necessary to install ventilation equipment to prevent work environment contamination and purification equipment (equipment for purifying exhaust gas so that halogen-based gas etc. is not discharged). There are also advantages. Compared to the use of equipment such as a vacuum furnace or an atmospheric furnace, this brazing has the advantage that the process is simple and brazing can be performed in a short time, so that high productivity can be realized at low cost. is there. Further, the above-mentioned airless flux lap brazing is a high temperature brazing in the atmosphere, and a dense oxide film (thickness of several μm) is formed on the aluminum surface, so that an aluminum laminate having excellent corrosion resistance can be obtained. There are also advantages. Since the corrosion resistance of the inner surface of the cooling liquid flow passage can be improved in the brazing step, there is an advantage that it is not necessary to separately perform the corrosion resistance treatment.

以下、本発明を実施した電子機器部品の液体冷却板(以下、「液体冷却板」と略称する場合がある)、並びに、この液体冷却板が組み込まれている電子機器について、図面を参照して説明する。   Hereinafter, a liquid cooling plate (hereinafter sometimes abbreviated as “liquid cooling plate”) of an electronic device component embodying the present invention and an electronic device in which the liquid cooling plate is incorporated will be described with reference to the drawings. explain.

図1〜図4は本発明に係る液体冷却板1を示す図であって、図1は全体斜視図、図2は分解斜視図、図3は図1の冷却液体導入口及び冷却液体排出口と冷却液流通路との関係を示す断面図、図4は図1の冷却液体流通路を横断して示した断面図である。また、図5は、液体冷却板1を組み込んだ電子機器2の一例として携帯型パソコンを示す部分破断斜視図である。
図1〜図4において、符号3は貫通穴付き金属板(流路加工板)、4,5は封止用金属板、6は冷却液体導入口、7は冷却液体排出口である。
貫通穴付き金属板3及び封止用金属板4,5は、アルミニウム又はその基合金からなるアルミニウム板材であり、貫通穴付き金属板3と封止用金属板4との間及び貫通穴付き金属板3と封止用金属板5との間は、ろう付けによって被着されている。ここで、アルミニウム板材(アルミニウム母材)の合金としては、組み合わせるろう材の融点より高い融点の合金でさえあれば良く、JIS A 1070、1050、1100、1200、3003、3203、3004、4003、4004、4104、4N04、5005、5N01、6061、6063、6N01、等の板および鋳物材のAC1A、AC1B,AC2A、AC2B,AC3A、AC4A、AC4B,AC4C,AC5A、AC8A、AC8B,AC8C等が好ましく使用できる。但し、液体冷却板1の表裏両側の封止用金属板4,5の内の一方(ここでは符号4の封止用金属板)は、電子機器2に搭載されている発熱部品としての電子部品21(ここではCPU。以下、発熱部品をCPUと称して説明する場合がある)に当接される当接用板材であり、この封止用金属板4としては、特に熱伝導率が高いものを採用することが好ましい。
1 to 4 are views showing a liquid cooling plate 1 according to the present invention, wherein FIG. 1 is an overall perspective view, FIG. 2 is an exploded perspective view, and FIG. 3 is a cooling liquid inlet and a cooling liquid outlet of FIG. 4 is a cross-sectional view showing the relationship between the cooling liquid flow passage and FIG. 4. FIG. 5 is a partially broken perspective view showing a portable personal computer as an example of the electronic device 2 in which the liquid cooling plate 1 is incorporated.
1 to 4, reference numeral 3 is a metal plate with through holes (flow path processing plate), 4 and 5 are metal plates for sealing, 6 is a cooling liquid inlet, and 7 is a cooling liquid outlet.
The metal plate 3 with a through hole and the metal plates 4 and 5 for sealing are aluminum plate materials which consist of aluminum or its base alloy, and between the metal plate 3 with a through hole and the metal plate 4 for sealing, and a metal with a through hole The plate 3 and the sealing metal plate 5 are attached by brazing. Here, as an alloy of the aluminum plate (aluminum base material), any alloy having a melting point higher than the melting point of the brazing filler to be combined may be used. JIS A 1070, 1050, 1100, 1200, 3003, 3203, 3004, 4003, 4004 4104, 4N04, 5005, 5N01, 6061, 6063, 6N01, and the like, and AC1A, AC1B, AC2A, AC2B, AC3A, AC4A, AC4B, AC4C, AC5A, AC8A, AC8B, AC8C, etc. can be preferably used. . However, one of the sealing metal plates 4 and 5 on the front and back sides of the liquid cooling plate 1 (here, the sealing metal plate 4) is an electronic component as a heat generating component mounted on the electronic device 2. 21 (herein referred to as a CPU; hereinafter, a heat-generating component may be referred to as a CPU) is a contact plate, and the sealing metal plate 4 has a particularly high thermal conductivity. Is preferably adopted.

貫通穴付き金属板3には、板厚方向に貫通する蛇行貫通穴31が形成されている。前記蛇行貫通穴31は、蛇行する1本の長穴であり、全体が、貫通穴付き金属板3の外周面32よりも内側に形成されている。すなわち、貫通穴付き金属板3の外周面32には、蛇行貫通穴31の開口部は存在しない。
封止用金属板4,5は、平板である。図では、封止用金属板4,5は、貫通穴付き金属板3と一致するサイズの長方形板であるが、封止用金属板4,5の外形サイズとしては、貫通穴付き金属板3に重ね合わせることで、蛇行貫通穴31を塞ぐことができる大きさであれば良く、必ずしも、貫通穴付き金属板3と一致する大きさである必要は無い。
A meandering through hole 31 penetrating in the thickness direction is formed in the metal plate 3 with a through hole. The meandering through hole 31 is a single meandering long hole, and is entirely formed inside the outer peripheral surface 32 of the metal plate 3 with a through hole. That is, there is no opening of the meandering through hole 31 on the outer peripheral surface 32 of the metal plate 3 with the through hole.
The metal plates 4 and 5 for sealing are flat plates. In the figure, the metal plates 4 and 5 for sealing are rectangular plates having the same size as the metal plate 3 with through-holes. However, as the outer size of the metal plates 4 and 5 for sealing, the metal plates 3 with through-holes are used. As long as the meandering through-holes 31 can be closed by overlapping, the size does not necessarily need to match the size of the metal plate 3 with through-holes.

液体冷却板1は、貫通穴付き金属板3に対して封止用金属板4,5を被着して一体化した構成の金属板積層体であり、前記貫通穴付き金属板3の蛇行貫通穴31によって形成された冷却液体流通路8を内蔵している。
CPU21に対する当接用板材(封止用金属板4)とは逆側の封止用金属板5(他方の封止用金属板)には、丁度、冷却液体流通路8の両端の位置で該封止用金属板5を貫通して冷却液体流通路8と連通する貫通孔51が穿設されている。2つの貫通孔51の、封止用金属板5の外面側(貫通穴付き金属板3に接合される面に対して逆側)における開口部の内、一方の貫通孔51の開口部が冷却液体導入用開口部、他方の貫通孔51の開口部が冷却液体排出用開口部として機能する。
前記冷却液体導入口6及び冷却液体排出口7は、ここでは短い管を採用している。この管は、具体的には、アルミニウムあるいはその基合金からなるものであり、封止用金属板5に対してろう付けによって取り付けられて、前記貫通孔51に対して通液可能に連通させて接続されている。
The liquid cooling plate 1 is a metal plate laminate in which the metal plates 4 and 5 for sealing are attached to and integrated with the metal plate 3 with through holes, and the meandering penetration of the metal plate 3 with the through holes. The cooling liquid flow path 8 formed by the hole 31 is incorporated.
The sealing metal plate 5 (the other sealing metal plate) opposite to the contact plate material (sealing metal plate 4) with respect to the CPU 21 is exactly the same at the positions of both ends of the cooling liquid flow passage 8. A through-hole 51 that penetrates the sealing metal plate 5 and communicates with the cooling liquid flow passage 8 is formed. Of the openings of the two through holes 51 on the outer surface side of the sealing metal plate 5 (the opposite side to the surface joined to the metal plate 3 with the through holes), the opening of one through hole 51 is cooled. The liquid introduction opening and the opening of the other through hole 51 function as a cooling liquid discharge opening.
The cooling liquid inlet 6 and the cooling liquid outlet 7 are short pipes here. Specifically, this pipe is made of aluminum or a base alloy thereof, and is attached to the sealing metal plate 5 by brazing, and is connected to the through hole 51 so as to allow liquid to pass therethrough. It is connected.

図5において、符号9は放熱側ヒートシンクユニット、10a、10bは液循環通路(ここでは管)である。放熱側ヒートシンクユニット9には液流路(図示略)が内蔵されており、2本の液循環通路10a、10bは、放熱側ヒートシンクユニット9内の液流路と、CPU21に対して封止用金属板4を重ね合わせるように固定されている液体冷却板1内の冷却液体流通路8とを接続しており、放熱側ヒートシンクユニット9内の液流路と、液体冷却板1内の冷却液体流通路8と、2本の液循環通路10a、10bとによって、液循環ループ回路11が構成されている。なお、2本の液循環通路10a、10bの内の一方(液循環通路10a)は、放熱側ヒートシンクユニット9内の液流路の一端と、液体冷却板1の冷却液体流通路8の冷却液体導入口6との間を接続し、他方の液循環通路10bは、放熱側ヒートシンクユニット9内の液流路の一端と、液体冷却板1の冷却液体流通路8の冷却液体導入口6との間を接続している。
冷却液体は、放熱側ヒートシンクユニット9に内蔵の循環ポンプ(図示略)によって、液循環ループ回路11を循環されるようになっており、液体冷却板1にて、CPU21から封止用金属板4等を介して伝達される熱を放熱側ヒートシンクユニット9に搬送し、放熱側ヒートシンクユニット9での熱交換によって冷却された後、再度、液体冷却板1内の冷却液体流通路8に送り込まれて、液体冷却板1を介してCPU21を冷却する。
In FIG. 5, reference numeral 9 denotes a heat radiation side heat sink unit, and 10a and 10b denote liquid circulation passages (here, pipes). The heat radiation side heat sink unit 9 has a built-in liquid flow path (not shown), and the two liquid circulation paths 10a and 10b are for sealing the liquid flow path in the heat radiation side heat sink unit 9 and the CPU 21. The cooling liquid flow path 8 in the liquid cooling plate 1 fixed so as to overlap the metal plate 4 is connected, the liquid flow path in the heat radiation side heat sink unit 9 and the cooling liquid in the liquid cooling plate 1 are connected. A liquid circulation loop circuit 11 is constituted by the flow path 8 and the two liquid circulation paths 10a and 10b. One of the two liquid circulation passages 10a and 10b (liquid circulation passage 10a) is one end of the liquid passage in the heat radiation side heat sink unit 9 and the cooling liquid in the cooling liquid flow passage 8 of the liquid cooling plate 1. The other liquid circulation passage 10b is connected between the introduction port 6 and one end of the liquid flow path in the heat radiation side heat sink unit 9 and the cooling liquid introduction port 6 of the cooling liquid flow passage 8 of the liquid cooling plate 1. Are connected.
The cooling liquid is circulated through the liquid circulation loop circuit 11 by a circulation pump (not shown) built in the heat radiation side heat sink unit 9, and the sealing metal plate 4 from the CPU 21 by the liquid cooling plate 1. After being transferred to the heat dissipation side heat sink unit 9 and cooled by heat exchange in the heat dissipation side heat sink unit 9, the heat is again sent to the cooling liquid flow passage 8 in the liquid cooling plate 1. The CPU 21 is cooled via the liquid cooling plate 1.

なお、放熱側ヒートシンクユニット9も、図10に示すように、本発明に係る液体冷却板1並びにその製造方法と同様に、複数のアルミニウム製の部材91、92を大気中無フラックス重ねろう付けによって接合して、内部に冷却液体流通路93を有するユニットに構成することができる。
図10中、符号91はヒートシンクであり、台板91aに多数のフィン91bを突設した構造であり、このヒートシンク91の内、少なくとも台板91aはアルミニウム製である。図10に示す放熱側ヒートシンクユニット9は、ヒートシンク91の台板91aと、アルミニウム板材92(アルミニウム母材)とを、台板91aとアルミニウム板材92との間にアルミニウム薄合わせ板材13を挿入してろう付けして一体化し、前記アルミニウム薄合わせ板材13(後述。図7参照)の厚みによって、台板91aとアルミニウム板材92との間に冷却液体流通路93を確保した構成である。台板91aとアルミニウム板材92との間隔は、アルミニウム薄合わせ板材13の芯材13aの厚さ等によって調整できる。冷却液体流通路93は、台板91aとアルミニウム板材92との間に配置されたアルミニウム薄合わせ板材13によって、蛇行した形状に形成される。この放熱側ヒートシンクユニット9によれば、アルミニウム薄合わせ板材13を用いた大気中無フラックス重ねろう付けにより、水密性の確保、低コスト化、製造容易等の、液体冷却板1の効果の他、ヒートシンクを構成する部材に直接、冷却液体流通路93が形成されていることにより放熱効率の向上、小型を実現できるといった利点もある。
なお、図10では、ヒートシンク91の台板91aに直接、アルミニウム板材92をろう付けした構成を例示したが、本発明はこれに限定されず、例えば、液体冷却板1と同様に複数のアルミニウム板材をろう付けして組み立てた液体流通路ユニットをヒートシンク91の台板91aに接合した構成等も採用できることは言うまでも無い。
As shown in FIG. 10, the heat-sink-side heat sink unit 9 also has a plurality of aluminum members 91 and 92 formed by flux-free brazing in the atmosphere in the same manner as the liquid cooling plate 1 and the manufacturing method thereof according to the present invention. It can be joined to form a unit having a cooling liquid flow passage 93 inside.
In FIG. 10, reference numeral 91 denotes a heat sink, which has a structure in which a large number of fins 91b project from a base plate 91a. At least the base plate 91a of the heat sink 91 is made of aluminum. The heat sink unit 9 shown in FIG. 10 includes a base plate 91 a of the heat sink 91 and an aluminum plate 92 (aluminum base material), and an aluminum thin laminated plate 13 is inserted between the base plate 91 a and the aluminum plate 92. The cooling liquid flow passage 93 is secured between the base plate 91a and the aluminum plate 92 by the thickness of the aluminum thin laminated plate 13 (described later, see FIG. 7). The distance between the base plate 91a and the aluminum plate member 92 can be adjusted by the thickness of the core member 13a of the aluminum thin laminated plate member 13 or the like. The cooling liquid flow passage 93 is formed in a meandering shape by the aluminum thin laminated plate material 13 disposed between the base plate 91 a and the aluminum plate material 92. According to the heat sink side heat sink unit 9, in addition to the effects of the liquid cooling plate 1, such as ensuring water tightness, cost reduction, easy manufacturing, etc., by flux-free brazing in the air using the aluminum thin laminated plate material 13, Since the cooling liquid flow passage 93 is formed directly on the member constituting the heat sink, there is an advantage that the heat radiation efficiency can be improved and the size can be reduced.
10 illustrates the configuration in which the aluminum plate 92 is brazed directly to the base plate 91a of the heat sink 91, the present invention is not limited to this. For example, a plurality of aluminum plates similar to the liquid cooling plate 1 may be used. Needless to say, it is possible to employ a configuration in which the liquid flow path unit assembled by brazing is joined to the base plate 91a of the heat sink 91.

貫通穴付き金属板3と封止用金属板4との間及び貫通穴付き金属板3と封止用金属板5との間のろう付けとしては、本発明者の一人である竹野親二が既に提案している特開2002−18570号「アルミニウム合金の大気中無フラックス重ねろう付け法」にて開示しているように、アルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けを好適に用いることができる。このろう付け法であれば、貫通穴付き金属板3と封止用金属板4、5との間に高い水密性を確保することが容易であり、しかも、ろう付けを、無フラックスで、安価かつ簡単に実現できる。   As brazing between the metal plate 3 with a through-hole and the metal plate 4 for sealing, and between the metal plate 3 with a through-hole and the metal plate 5 for sealing, Shinji Takeno, one of the inventors, As disclosed in Japanese Patent Laid-Open No. 2002-18570 “Flux brazing method without flux of aluminum alloy in the atmosphere” already proposed, aluminum brazing is preferably performed by inserting an aluminum thin laminated plate material. Can be used. With this brazing method, it is easy to ensure high water tightness between the metal plate 3 with through holes and the metal plates 4 and 5 for sealing, and brazing is non-fluxed and inexpensive. And it can be realized easily.

このろう付けは、図6に模式的に示すように、貫通穴付き金属板3と封止用金属板4との間、並びに、貫通穴付き金属板3と封止用金属板5との間に、前記アルミニウム薄合わせ板材12を挿入し、重ね合わせた部材全体を加圧密着した状態で加熱して、一体化する(図6では、貫通穴付き金属板3と封止用金属板4との間のろう付けを例示しているが、貫通穴付き金属板3と封止用金属板5との間のろう付けも同様である)。図6に示すアルミニウム薄合わせ板材12は3層構造であり、融点が600℃以下のろう材からなる芯材12aの両面に、該芯材12aより融点の高いアルミニウム合金からな皮材12b、12cが設けられている構造である。また、皮材と芯材のいずれか一つ以上には、Mgを0.1〜6%(mass%、以下同じ)あるいは更にBiを0.01〜1%添加してある。
なお、重ね合わせ部材全体を加圧密着する程度は通常0.001MPa以上の圧力が必要である。
As schematically shown in FIG. 6, this brazing is performed between the metal plate 3 with a through hole and the metal plate 4 for sealing, and between the metal plate 3 with a through hole and the metal plate 5 for sealing. The aluminum thin laminated plate material 12 is inserted and heated in a state where the whole overlapped member is pressed and adhered to be integrated (in FIG. 6, the metal plate 3 with a through hole and the metal plate for sealing 4 However, the brazing between the metal plate 3 with a through hole and the metal plate 5 for sealing is the same). 6 has a three-layer structure, and a skin material 12b, 12c made of an aluminum alloy having a melting point higher than that of the core material 12a is formed on both surfaces of a core material 12a made of a brazing material having a melting point of 600 ° C. or lower. Is provided. Further, at least one of the skin material and the core material contains 0.1 to 6% Mg (mass%, the same applies hereinafter) or 0.01 to 1% Bi.
In addition, the pressure of 0.001 MPa or more is usually required for the degree of pressure-contacting the entire overlapping member.

アルミニウム薄合わせ板材としては、3層構造のものに限定されず、例えば、図7に示すように、5層構造のもの(アルミニウム薄合わせ板材13)も採用可能である。
5層構造の薄合わせ板材13は、芯材13aと、その両側の皮材13b、13cとの間に、中間材13d,13eが設けられている構造である。中間材13d、13eは、融点が600℃以下のろう材からなり、芯材13aと両皮材13b、13cとは、中間材13d、13eより融点の高いアルミニウム合金からなり、しかも、芯材13aと皮材13b、13cと中間材13d、13eのいずれか一つ以上にMgを0.1〜6%あるいは更にBiを0.01〜1%添加してある。
The aluminum laminated plate material is not limited to a three-layer structure, and for example, as shown in FIG. 7, a five-layer structure (aluminum thin laminated plate material 13) can also be employed.
The thin laminated plate 13 having a five-layer structure has a structure in which intermediate members 13d and 13e are provided between a core member 13a and skin members 13b and 13c on both sides thereof. The intermediate materials 13d and 13e are made of a brazing material having a melting point of 600 ° C. or less, and the core material 13a and the both skin materials 13b and 13c are made of an aluminum alloy having a melting point higher than those of the intermediate materials 13d and 13e. Further, Mg is added in an amount of 0.1 to 6% or Bi is further added in an amount of 0.01 to 1% to any one or more of the skin materials 13b and 13c and the intermediate materials 13d and 13e.

アルミニウム薄合わせ板材12、13のろう材(アルミニウム薄合わせ板材12の芯材12a、アルミニウム薄合わせ板材13の中間材13d、13e)としては、前述したように、融点が600℃以下のものを用いるが、この条件を満たすろう材としてはZn、Sn、Biの金属やAl−Si、Al−Cu、Al−Cu−Si、Zn−Al、Al−Ge合金が好ましく使用できる。Mgの添加はろう材の溶融時の濡れ性向上に有効であり、貫通穴付き金属板3、4との間の水密性確保に有効に寄与する。この添加量が0.1%未満ではその効果が不十分であり、6%を超えると添加効果が飽和して無意味になるとか、加工性が低下する問題が有り好ましくない。   As described above, as the brazing material of the aluminum thin laminated plates 12 and 13 (the core material 12a of the aluminum thin laminated plate 12 and the intermediate materials 13d and 13e of the aluminum thin laminated plate 13), those having a melting point of 600 ° C. or less are used. However, as the brazing material satisfying this condition, metals such as Zn, Sn, and Bi, and Al—Si, Al—Cu, Al—Cu—Si, Zn—Al, and Al—Ge alloys can be preferably used. The addition of Mg is effective for improving the wettability at the time of melting the brazing material, and effectively contributes to ensuring water tightness between the metal plates 3 and 4 with through holes. If this addition amount is less than 0.1%, the effect is insufficient, and if it exceeds 6%, the addition effect is saturated and meaningless, or there is a problem that workability is lowered, which is not preferable.

さらに、アルミニウム薄合わせ板材12、13の構成部材のいずれかにBiを添加するのが好ましい。特に接合するアルミニウム板材(アルミニウム母材。貫通穴付き金属板3、封止用金属板4、封止用金属板5)がMgを含有した合金の場合(上記の例では3004、4003、4004、4104、4N04、5052等)には通常溶融ろう材の濡れ性が劣化するが、Biはこの劣化を防止する働きをするのでBiを0.01〜1.0%添加するのが好ましいのである。その添加量が0.01%ではその効果が十分でなく1.0%を超えるとその効果が飽和し、それ以上の添加は無意味なので0.01〜1.0%が望ましい。   Furthermore, it is preferable to add Bi to any of the constituent members of the aluminum thin laminated plates 12 and 13. In particular, when the aluminum plate material (aluminum base material, metal plate 3 with through hole, metal plate 4 for sealing, metal plate 5 for sealing) to be joined is an alloy containing Mg (in the above example, 3004, 4003, 4004, 4104, 4N04, 5052, etc.), the wettability of the molten brazing material usually deteriorates. However, since Bi functions to prevent this deterioration, it is preferable to add 0.01 to 1.0% of Bi. If the addition amount is 0.01%, the effect is not sufficient, and if it exceeds 1.0%, the effect is saturated, and addition beyond that is meaningless, so 0.01 to 1.0% is desirable.

挿入するアルミニウム薄合わせ板材12、13の全板厚としては通常0.1〜1.0mmであれば良い。
アルミニウム薄合わせ板材12、13のろう材(アルミニウム薄合わせ板材12の芯材12a、アルミニウム薄合わせ板材13の中間材13d、13e)のクラッド率は全板厚の10〜80%が良い。これら全板厚とクラッド率の下限未満では製造が難しくなったり、ろう材が不足でろう付け性が低下する。又全板厚とクラッド率の上限を超えると、不必要な厚さで経済的でなかったり、異種の低融点金属を挿入させるので異合金化の悪影響が大きくなるので好ましくない。
The total thickness of the aluminum thin laminated plates 12 and 13 to be inserted is usually 0.1 to 1.0 mm.
The clad rate of the brazing material of the aluminum thin laminated plates 12 and 13 (the core material 12a of the aluminum thin laminated plate 12 and the intermediate materials 13d and 13e of the aluminum thin laminated plate 13) is preferably 10 to 80% of the total thickness. If the total plate thickness and the cladding ratio are less than the lower limit, it becomes difficult to manufacture, or brazing is insufficient and the brazing performance is lowered. If the total plate thickness and the upper limit of the cladding ratio are exceeded, it is not preferable because it is not economical due to an unnecessary thickness, or because different types of low melting point metals are inserted, the adverse effect of different alloys increases.

3層薄合わせ板材12での両皮材12b、12c、並びに、5層薄合わせ板材13での芯材13aと両皮材13b、13cには、アルミニウム薄合わせ板材12、13のろう材より融点の高いアルミニウム合金を用いる以外には特に限定はなく、例えば、JIS A 1070、1050、1100、1200、3003、3203、3004、4003、4004、4104、4N045005、5N01、5052、5454、5086、5083、6061、6063、6N01等が好ましく使用できる。   The two-layer thin laminated plate material 12 has both the skins 12b and 12c, and the core 13a and both the skin materials 13b and 13c in the five-layer thin laminated plate material 13 have a melting point higher than that of the aluminum thin laminated plate materials 12 and 13. There is no particular limitation other than using a high aluminum alloy, for example, JIS A 1070, 1050, 1100, 1200, 3003, 3203, 3004, 4003, 4004, 4104, 4N045005, 5N01, 5052, 5454, 5086, 5083, 6061, 6063, 6N01 and the like can be preferably used.

ろう接合の加熱をろう材の液相線温度以上にするのは、ろう接であるから、はんだ材又はろう材を溶融させる必要があるからで、またその上限加熱温度をろう材以外の各部材の固相線温度の内の最低値を超えない範囲にするのは、ろう材以外の部材の変形・劣化を防止するためである。
上記ろう材の液相線温度は通常380〜590℃になる。このろう接合した部材の凝固は温度を下げて行うとか、そのろう接温度で長時間そのまま保持をして液相拡散凝固させて行っても良い。この際、保持時間は特に制約はないが通常1〜10時間程度が好ましい。1時間未満だと拡散が十分でなく10時間以上では拡散が十分でありそれ以上の加熱は無意味である。
The reason for heating the brazing joint to be equal to or higher than the liquidus temperature of the brazing material is because it is brazing, and it is necessary to melt the soldering material or brazing material. The reason why the lower limit of the solidus temperature is not exceeded is to prevent deformation and deterioration of members other than the brazing material.
The liquidus temperature of the brazing material is usually 380 to 590 ° C. Solidification of the brazed member may be performed by lowering the temperature, or may be performed by liquid phase diffusion solidification by holding the brazing member for a long time at the brazing temperature. At this time, the holding time is not particularly limited, but is usually preferably about 1 to 10 hours. If it is less than 1 hour, the diffusion is not sufficient, and if it is 10 hours or more, the diffusion is sufficient, and further heating is meaningless.

なお、この液体冷却板1では、冷却液体導入口6、冷却液体排出口7として、流路加工板3や封止用金属板4、5と同様の材質で形成したものを採用し、封止用金属板4に対して、流路加工板3と封止用金属板4、5との間のろう付けと同様の手法により、ろう付けしており、接合部に優れた水密性が確保されている。また、この場合、冷却液体導入口6並びに冷却液体排出口7の封止用金属板4に対するろう付けと、流路加工板3と封止用金属板4、5との間のろう付けとを、同時に一括して行って、液体冷却板1の組み立て効率を向上できる利点がある。
但し、冷却液体導入口6並びに冷却液体排出口7の封止用金属板4に対する接合は、前述のろう付けに限定されず、例えば溶接等も採用できる。
In this liquid cooling plate 1, the cooling liquid introduction port 6 and the cooling liquid discharge port 7 are made of the same material as the flow path processing plate 3 and the sealing metal plates 4 and 5, and sealed. The metal plate 4 is brazed by the same method as the brazing between the flow path processing plate 3 and the sealing metal plates 4 and 5, and excellent water tightness is secured at the joint. ing. In this case, brazing of the cooling liquid inlet 6 and the cooling liquid outlet 7 to the sealing metal plate 4 and brazing between the flow path processing plate 3 and the sealing metal plates 4 and 5 are performed. There is an advantage that the assembly efficiency of the liquid cooling plate 1 can be improved at the same time.
However, the joining of the cooling liquid inlet 6 and the cooling liquid outlet 7 to the sealing metal plate 4 is not limited to the brazing described above, and for example, welding or the like can be employed.

本発明では、液体冷却板1を構成するアルミニウム板材間のろう付けは、アルミニウム板材の間に薄合わせ板材12(あるいは5層薄合わせ板材13)を挿入して行うものに限定されず、重ねろう付けする2つのアルミニウム板材の内の少なくとも一方のアルミニウム板材に、芯材の片面側に皮材と中間材を設けた3層合わせ板母材を用い、合わせ板母材の中間材には融点が600℃以下のろう材を用い、皮材および芯材が前記中間材より融点が高いアルミニウム合金からなるものを用い、薄合わせ板材を使用せずに、大気中無フラックス重ねろう付け法を実現することも可能である。この場合、少なくとも芯材と皮材と中間材のいずれか一つ以上にMgを0.1〜6%、あるいは更にBiを0.01〜1%添加する。そして、合わせ板母材の皮材面を重ね合わせ界面側に配置して、アルミニウム板母材同士を加圧密着した状態で、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない範囲に加熱することで、アルミニウム合金の大気中無フラックス重ねろう付け(大気中無フラックス高温ろう付け)を実現できる。   In the present invention, the brazing between the aluminum plate members constituting the liquid cooling plate 1 is not limited to the one performed by inserting the thin laminated plate member 12 (or the five-layer thin laminated plate member 13) between the aluminum plate members. At least one of the two aluminum plates to be attached is a three-layer laminated plate base material in which a skin material and an intermediate material are provided on one side of the core material, and the intermediate material of the laminated plate base material has a melting point. A brazing material of 600 ° C. or lower is used, and a skin material and a core material are made of an aluminum alloy whose melting point is higher than that of the intermediate material, and a fluxless brazing method in the atmosphere is realized without using a thin laminated plate material. It is also possible. In this case, 0.1 to 6% of Mg or 0.01 to 1% of Bi is added to at least one of the core material, the skin material, and the intermediate material. Then, the skin surface of the laminated plate base material is placed on the interface side and the aluminum plate base materials are pressed and adhered to each other, and the temperature of the brazing material is higher than the liquidus temperature of each member other than the brazing material. By heating to a range that does not exceed the minimum value of the solidus temperature, flux-free brazing of the aluminum alloy in the atmosphere (high flux brazing in the atmosphere without flux) can be realized.

(他の態様)
図8、図9に示す液体冷却板14は、流路加工板15として、一方の面に凹溝15aが形成されている凹溝付き金属板を採用した例である。この液体冷却板14は、流路加工板15と、封止用金属板16と、冷却液体導入口6と、冷却液体排出口7とを一体化したものであり、流路加工板15及び封止用金属板16からなる金属板積層体に、冷却液体導入口6及び冷却液体排出口7が一体化された構造になっている。なお、ここで、「凹溝」とは、前述したように、金属板(流路加工板)の一部を削除したような形状に形成された溝条のことである。
封止用金属板16は、流路加工板15の前記凹溝15aが形成されている面15bに被着されており、前記凹溝15aが冷却液体流通路を形成している。流路加工板15及び封止用金属板16の材質は、前述した液体冷却板1の流路加工板3及び封止用金属板3、4と同様であり、また、流路加工板15と封止用金属板16との間は、流路加工板3と封止用金属板3、4との間と同様のろう付けによって接合されている。図9に示すように、流路加工板15と封止用金属板16との間のろう付け部位には、アルミニウム薄合わせ板材12が、流路加工板15と封止用金属板16との間に挟み込まれるようにして配置されている。
(Other aspects)
The liquid cooling plate 14 shown in FIGS. 8 and 9 is an example in which a grooved metal plate having a groove 15 a formed on one surface is adopted as the flow path processing plate 15. The liquid cooling plate 14 is an integrated unit of the flow path processing plate 15, the sealing metal plate 16, the cooling liquid introduction port 6, and the cooling liquid discharge port 7. The cooling liquid introduction port 6 and the cooling liquid discharge port 7 are integrated with the metal plate laminate including the stop metal plate 16. Here, as described above, the “concave groove” is a groove formed in a shape in which a part of the metal plate (flow-path processed plate) is deleted.
The sealing metal plate 16 is attached to the surface 15b of the flow path processing plate 15 on which the concave groove 15a is formed, and the concave groove 15a forms a cooling liquid flow path. The material of the flow path processing plate 15 and the sealing metal plate 16 is the same as the flow path processing plate 3 and the sealing metal plates 3 and 4 of the liquid cooling plate 1 described above. The sealing metal plate 16 is joined by brazing similar to that between the flow path processing plate 3 and the sealing metal plates 3 and 4. As shown in FIG. 9, the aluminum thin laminated plate 12 is placed between the flow path processed plate 15 and the sealing metal plate 16 at the brazed portion between the flow path processed plate 15 and the sealing metal plate 16. It is arranged so as to be sandwiched between them.

この液体冷却板14は、2枚のアルミニウム板材(流路加工板15及び封止用金属板16)を重ね合わせた構造であるため、3枚のアルミニウム板材を重ね合わせた構造の前述の液体冷却板1に比べて、厚さ寸法を小さくすることができる利点がある。   Since the liquid cooling plate 14 has a structure in which two aluminum plates (the flow path processing plate 15 and the sealing metal plate 16) are overlapped, the above-described liquid cooling having a structure in which three aluminum plates are stacked. Compared with the plate 1, there is an advantage that the thickness dimension can be reduced.

なお、本発明は、上述の実施形態に限定されず、各種変更が可能である。
例えば、液体冷却板を構成するアルミニウム板材の形状は、長方形板状に限定されず、様々な形状を採用できる。また、アルミニウム板材は、外面側の凹凸によって表面積を増大して、放熱性を高めたもの等も採用可能である。
図2、図8では、蛇行貫通穴及び凹溝を、いずれもU字状に形成した例を示したが、蛇行貫通穴や凹溝の形状は、これに限定されず、適宜変更可能であることは言うまでも無い。前記凹溝並びに前記蛇行貫通穴の全体が、前記流路加工板の外周面よりも内側に形成されている構成であれば、凹溝又は蛇行貫通穴の周囲で、液体冷却板を構成するアルミニウム板材同士がろう付けされて封止されることで、冷却液流路の水密性を容易かつ確実に確保できる点で有利である。
In addition, this invention is not limited to the above-mentioned embodiment, A various change is possible.
For example, the shape of the aluminum plate constituting the liquid cooling plate is not limited to a rectangular plate shape, and various shapes can be adopted. Moreover, as the aluminum plate material, one having an increased surface area due to the unevenness on the outer surface side and improved heat dissipation can be employed.
FIGS. 2 and 8 show examples in which the meandering through hole and the concave groove are both formed in a U-shape. However, the shape of the meandering through hole and the concave groove is not limited to this, and can be changed as appropriate. Needless to say . Overall pre-SL groove and said meandering through holes, if the channel processing plate configuration which is formed inside the outer peripheral surface of, around the groove or serpentine through holes, constituting the liquid cooling plate The aluminum plate members are brazed and sealed, which is advantageous in that the water tightness of the coolant channel can be easily and reliably ensured.

本発明は、CPU等の電子部品の放熱のみならず、例えば、ハードディスクドライブや、LED等の表示装置といった、電子機器の様々な部品の冷却に幅広く適用できる。   The present invention can be widely applied not only to heat dissipation of electronic components such as CPUs, but also to cooling various components of electronic devices such as hard disk drives and display devices such as LEDs.

本発明に係る実施形態の液体冷却板を示す全体斜視図である。It is a whole perspective view which shows the liquid cooling plate of embodiment which concerns on this invention. 図1の液体冷却板を示す分解斜視図である。It is a disassembled perspective view which shows the liquid cooling plate of FIG. 図1の液体冷却板の冷却液体導入口及び冷却液体排出口と冷却液流通路との関係を示す断面図である。It is sectional drawing which shows the relationship between the cooling liquid inlet and the cooling liquid discharge port of the liquid cooling plate of FIG. 図1の液体冷却板の冷却液体流通路を横断して示した断面図である。FIG. 2 is a cross-sectional view across a cooling liquid flow path of the liquid cooling plate of FIG. 1. 図1の液体冷却板を組み込んだ電子機器の一例としての携帯型パソコンを示す部分破断斜視図である。FIG. 2 is a partially cutaway perspective view showing a portable personal computer as an example of an electronic apparatus incorporating the liquid cooling plate of FIG. 1. 本発明の液体冷却板の製造方法を説明する図であって、液体冷却板を構成する複数のアルミニウム板材(流路加工板、封止用金属板)と、アルミニウム薄合わせ板材との関係を模式的に示す図である。It is a figure explaining the manufacturing method of the liquid cooling plate of this invention, Comprising: The relationship between the some aluminum plate material (flow-path processed plate, metal plate for sealing) which comprises a liquid cooling plate, and an aluminum thin laminated plate material is modeled. FIG. 5層構造のアルミニウム薄合わせ板材を示す図である。It is a figure which shows the aluminum thin laminated board material of a 5 layer structure. 本発明に係る他の実施態様の液体冷却板の構造を示す分解斜視図である。It is a disassembled perspective view which shows the structure of the liquid cooling plate of the other embodiment which concerns on this invention. 図8の液体冷却板の構造を示す断面図である。It is sectional drawing which shows the structure of the liquid cooling plate of FIG. 放熱側ヒートシンクユニットの一例を示す断面図である。It is sectional drawing which shows an example of the thermal radiation side heat sink unit.

符号の説明Explanation of symbols

1…液体冷却板、2…電子機器(携帯型パソコン)、21…発熱部品(CPU)、3…流路加工板(貫通穴付き金属板)、31…蛇行貫通穴、32…流路加工板の外周面、4,5…封止用金属板、51…貫通孔(冷却液体導入用開口部、冷却液体排出用開口部)、6…冷却液体導入口、7…冷却液体排出口、8…冷却液体流通路、12…アルミニウム薄合わせ板材、12a…芯材、12b,12c…皮材、13…アルミニウム薄合わせ板材、13a…芯材、13b,13c…皮材、13d,13e…中間材、14…液体冷却板、15…流路加工板(凹溝付き金属板)、15a…凹溝、16…封止用金属板。   DESCRIPTION OF SYMBOLS 1 ... Liquid cooling plate, 2 ... Electronic device (portable personal computer), 21 ... Heat-emitting component (CPU), 3 ... Channel processing plate (metal plate with a through-hole), 31 ... Serpentine through-hole, 32 ... Channel processing plate 4, 5 ... sealing metal plate, 51 ... through hole (cooling liquid introduction opening, cooling liquid discharge opening), 6 ... cooling liquid introduction port, 7 ... cooling liquid discharge port, 8 ... Cooling liquid flow path, 12 ... Aluminum thin laminated plate material, 12a ... Core material, 12b, 12c ... Skin material, 13 ... Aluminum thin laminated plate material, 13a ... Core material, 13b, 13c ... Skin material, 13d, 13e ... Intermediate material, DESCRIPTION OF SYMBOLS 14 ... Liquid cooling plate, 15 ... Channel processing plate (metal plate with a groove), 15a ... Groove, 16 ... Metal plate for sealing.

Claims (2)

複数のアルミニウム板材が大気中無フラックス重ねろう付けされた金属板積層体であって、この金属板積層体内には、該金属板積層体内層の少なくとも一枚の前記アルミニウム板材の片面に形成された凹溝又は板厚方向に貫通された貫通穴によって前記アルミニウム板材の板面方向に蛇行延設された冷却液体流通路が形成されており、
前記冷却液体流通路の一端及び他端は、それぞれ、金属板積層体の片面側のアルミニウム板材(5)に穿設された貫通孔(51)の該アルミニウム板材の外面側における開口部である冷却液体導入用開口部及び冷却液体排出用開口部に接続され
金属板積層体の片面側のアルミニウム板材(5)には、アルミニウムあるいはその基合金からなる管である冷却液体導入口(6)及び冷却液体排出口(7)が、その断面角形の継ぎ口(6’、7’)に穿設されている穴(6a、7a)を、該アルミニウム板材(5)の前記貫通孔(51、51)と合致させて、それぞれ、前記継ぎ口を大気中無フラックス重ねろう付けによりろう付けして接合されており、
前記アルミニウム板材同士の大気中無フラックス重ねろう付けが、前記金属板積層体を構成する複数のアルミニウム板材の重ね合わせ界面に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付け、冷却液体導入口(6)及び冷却液体排出口(7)のアルミニウム板材に対する大気中無フラックス重ねろう付けが、冷却液体導入口(6)及び冷却液体排出口(7)の前記継ぎ口と金属板積層体の片面側のアルミニウム板材(5)との間に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けであって、
前記アルミニウム薄合わせ板材が、融点600℃以下のろう材からなる芯材と、前記芯材より融点の高いアルミニウム合金からなる皮材とによって構成され、かつ前記芯材及び皮材のいずれか一つ以上にMgを0.1〜6%(mass%、以下同じ)あるいは更にBiを0.01〜1%添加してなる3層構造のもの、あるいは、芯材と、その両側の皮材との間に、融点が600℃以下のろう材からなる中間材が設けられており、芯材と両皮材とは、中間材より融点の高いアルミニウム合金からなり、しかも、芯材と皮材と中間材のいずれか一つ以上にMgを0.1〜6%あるいは更にBiを0.01〜1%添加してなる5層構造のものであり、
冷却液体導入口(6)及び冷却液体排出口(7)、重ね合わせ板材全体を加圧密着した状態で、大気中にて、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない温度範囲に加熱して一括して重ねろう付けしてなるものである
ことを特徴とする電子機器部品の液体冷却板。
A metal plate laminate in which a plurality of aluminum plates are brazed without flux in the atmosphere, and the metal plate laminate is formed on at least one surface of the aluminum plate in the metal plate laminate. A cooling liquid flow passage extending in a meandering manner in the plate surface direction of the aluminum plate material is formed by a concave groove or a through hole penetrating in the plate thickness direction,
One end and the other end of the cooling liquid flow passage are respectively cooling portions that are openings on the outer surface side of the aluminum plate material of the through holes (51) formed in the aluminum plate material (5) on one side of the metal plate laminate. Connected to the liquid introduction opening and the cooling liquid discharge opening ,
The aluminum plate material (5) on one side of the metal plate laminate has a cooling liquid inlet (6) and a cooling liquid outlet (7), which are tubes made of aluminum or a base alloy thereof, and a joint having a square cross section ( 6 ', 7') are aligned with the through holes (51, 51) of the aluminum plate (5), and the joints are respectively made fluxless in the atmosphere. It is joined by brazing by overlapping brazing,
The aluminum flux brazing in the air between the aluminum plates is performed by previously inserting an aluminum thin laminated plate into the overlapping interface of a plurality of aluminum plates constituting the metal plate laminate, and a cooling liquid Flux brazing in the air to the aluminum plate material of the inlet (6) and the cooling liquid outlet (7) is performed in the atmosphere, and the joint of the cooling liquid inlet (6) and the cooling liquid outlet (7) and the metal plate laminate Aluminum brazing performed by inserting an aluminum thin laminated plate in advance between the aluminum plate (5) on one side of
The aluminum thin laminated plate material is constituted by a core material made of a brazing material having a melting point of 600 ° C. or less and a skin material made of an aluminum alloy having a melting point higher than that of the core material, and any one of the core material and the skin material A three-layer structure in which Mg is added in an amount of 0.1 to 6% (mass%, the same shall apply hereinafter) or Bi is further added in an amount of 0.01 to 1%, or a core material and skin materials on both sides thereof An intermediate material made of a brazing material having a melting point of 600 ° C. or lower is provided between the core material and the both skin materials, which are made of an aluminum alloy having a melting point higher than that of the intermediate material. It has a five-layer structure in which Mg is added to any one or more of 0.1 to 6% or Bi to 0.01 to 1%,
The cooling liquid inlet (6), the cooling liquid outlet (7), and the entire laminated plate are in pressure contact with each other, in the atmosphere, at a temperature higher than the liquidus temperature of the brazing material and for each member other than the brazing material. A liquid cooling plate for electronic device parts, wherein the liquid cooling plate is formed by heating to a temperature range that does not exceed the minimum value of the solidus temperature and then collectively brazing.
アルミニウム又はその基合金からなるアルミニウム板材を大気中無フラックス重ねろう付けにより複数接合することで、前記アルミニウム板材の内の一つに形成されている凹溝又は前記アルミニウム板材の板厚方向に貫通されている貫通穴によって構成される冷却液体流通路を内蔵する金属板積層体を組み立てるとともに、
金属板積層体の片面側のアルミニウム板材(5)に、アルミニウムあるいはその基合金からなる管である冷却液体導入口(6)及び冷却液体排出口(7)を、その断面角形の継ぎ口(6’、7’)に穿設されている穴(6a、7a)を、前記金属板積層体の片面側のアルミニウム板材(5)に穿設された貫通孔(51)の該アルミニウム板材の外面側における開口部である冷却液体導入用開口部及び冷却液体排出用開口部と合致させて、それぞれ、前記継ぎ口を大気中無フラックス重ねろう付けによりろう付けして接合して、液体冷却板を組み立てる液体冷却板の製造方法であり、
前記アルミニウム板材同士の大気中無フラックス重ねろう付け、前記金属板積層体を構成する複数のアルミニウム板材の重ね合わせ界面に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付け、冷却液体導入口(6)及び冷却液体排出口(7)のアルミニウム板材に対する大気中無フラックス重ねろう付けが、冷却液体導入口(6)及び冷却液体排出口(7)の前記継ぎ口と金属板積層体の片面側のアルミニウム板材(5)との間に、予めアルミニウム薄合わせ板材を挿入して行うアルミニウムの重ねろう付けであって、
前記アルミニウム薄合わせ板材が、融点600℃以下のろう材からなる芯材と、前記芯材より融点の高いアルミニウム合金からなる皮材とによって構成され、かつ前記芯材及び皮材のいずれか一つ以上にMgを0.1〜6%(mass%、以下同じ)あるいは更にBiを0.01〜1%添加してなる3層構造のもの、あるいは、芯材と、その両側の皮材との間に、融点が600℃以下のろう材からなる中間材が設けられており、芯材と両皮材とは、中間材より融点の高いアルミニウム合金からなり、しかも、芯材と皮材と中間材のいずれか一つ以上にMgを0.1〜6%あるいは更にBiを0.01〜1%添加してなる5層構造のものであり、
冷却液体導入口(6)及び冷却液体排出口(7)、重ね合わせ板材全体を加圧密着した状態で、大気中にて、ろう材の液相線温度以上でかつろう材以外の各部材の固相線温度の内の最低値を超えない温度範囲に加熱して一括して重ねろう付けする
ことを特徴とする液体冷却板の製造方法。
By joining a plurality of aluminum plate materials made of aluminum or its base alloy by flux-free brazing in the atmosphere, the aluminum plate material is penetrated in the thickness direction of the groove formed in one of the aluminum plate materials or the aluminum plate material. Assembling the metal plate laminate that incorporates the cooling liquid flow path constituted by the through-holes ,
A cooling liquid inlet (6) and a cooling liquid outlet (7), which are pipes made of aluminum or a base alloy thereof, are connected to an aluminum plate (5) on one side of the metal plate laminate, and a joint (6 The holes (6a, 7a) drilled in ', 7') are formed on the outer surface side of the aluminum plate of the through hole (51) drilled in the aluminum plate (5) on one side of the metal plate laminate. The liquid cooling plate is assembled by brazing and joining the joints by means of non-flux lap brazing in the atmosphere so as to match the cooling liquid introduction opening and the cooling liquid discharge opening, which are openings in FIG. A method for manufacturing a liquid cooling plate ,
The aluminum sheet material atmosphere fluxless superposed brazing each other, the interface superposition of a plurality of aluminum sheet material constituting the metal plate laminate superimposed brazing aluminum performed previously inserting the aluminum foil laminated sheet, cooling liquid Flux brazing in the air to the aluminum plate material of the inlet (6) and the cooling liquid outlet (7) is performed in the atmosphere, and the joint of the cooling liquid inlet (6) and the cooling liquid outlet (7) and the metal plate laminate Aluminum brazing performed by inserting an aluminum thin laminated plate in advance between the aluminum plate (5) on one side of
The aluminum thin laminated plate material is constituted by a core material made of a brazing material having a melting point of 600 ° C. or less and a skin material made of an aluminum alloy having a melting point higher than that of the core material, and any one of the core material and the skin material A three-layer structure in which Mg is added in an amount of 0.1 to 6% (mass%, the same shall apply hereinafter) or Bi is further added in an amount of 0.01 to 1%, or a core material and skin materials on both sides thereof An intermediate material made of a brazing material having a melting point of 600 ° C. or lower is provided between the core material and the both skin materials, which are made of an aluminum alloy having a melting point higher than that of the intermediate material. It has a five-layer structure in which Mg is added to any one or more of 0.1 to 6% or Bi to 0.01 to 1%,
The cooling liquid inlet (6), the cooling liquid outlet (7), and the entire laminated plate are in pressure contact with each other, in the atmosphere, at a temperature higher than the liquidus temperature of the brazing material and for each member other than the brazing material. A method for producing a liquid cooling plate, comprising heating to a temperature range that does not exceed a minimum value of the solidus temperature, and collectively brazing.
JP2003361177A 2003-10-21 2003-10-21 Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate Expired - Fee Related JP4243654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003361177A JP4243654B2 (en) 2003-10-21 2003-10-21 Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003361177A JP4243654B2 (en) 2003-10-21 2003-10-21 Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate

Publications (2)

Publication Number Publication Date
JP2005129599A JP2005129599A (en) 2005-05-19
JP4243654B2 true JP4243654B2 (en) 2009-03-25

Family

ID=34641247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003361177A Expired - Fee Related JP4243654B2 (en) 2003-10-21 2003-10-21 Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate

Country Status (1)

Country Link
JP (1) JP4243654B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070089858A1 (en) * 2005-10-25 2007-04-26 Andberg John W Waterblock for cooling electrical and electronic circuitry
JP4856960B2 (en) * 2006-01-24 2012-01-18 日本電気株式会社 Liquid-cooled heat dissipation device
JP4736048B2 (en) * 2006-04-25 2011-07-27 住友軽金属工業株式会社 Electronic device cooling plate and method for manufacturing the electronic device cooling plate
JP5283836B2 (en) * 2006-07-25 2013-09-04 富士通株式会社 Heat receiver and liquid cooling unit for liquid cooling unit and electronic device
JP4845912B2 (en) * 2008-03-25 2011-12-28 株式会社豊田自動織機 Liquid cooling system
US9671179B2 (en) * 2008-01-15 2017-06-06 Showa Denko K.K. Liquid-cooled-type cooling device
KR101496523B1 (en) 2011-12-08 2015-02-26 주식회사 엘지화학 Radiant heat plate for battery cell
JP5664878B2 (en) * 2012-11-05 2015-02-04 三菱自動車工業株式会社 Inverter cooling structure
JP6673635B2 (en) * 2014-11-20 2020-03-25 三菱マテリアル株式会社 Method of manufacturing bonded body, method of manufacturing power module substrate with heat sink, method of manufacturing heat sink, and bonded body, power module substrate with heat sink, and heat sink
JP6459427B2 (en) * 2014-11-20 2019-01-30 三菱マテリアル株式会社 Manufacturing method of power module substrate with heat sink, and joined body, power module substrate with heat sink, heat sink
CN113710031B (en) * 2021-08-30 2023-08-11 无锡格林沃科技有限公司 Main board control box outer body device and preparation method thereof

Also Published As

Publication number Publication date
JP2005129599A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4243654B2 (en) Liquid cooling plate for electronic device parts, method for manufacturing liquid cooling plate
US20150198372A1 (en) Compact aluminium heat exchanger with welded tubes for power electronics and battery cooling
WO2019018943A1 (en) Ultra thin heat exchangers for thermal management
JP2007178062A (en) Method of manufacturing heat exchanger, aluminum-clad plate material, and heat exchanger
KR100618482B1 (en) Liquid-cooling system and electronic device
WO2006115073A1 (en) Liquid-cooled jacket
WO2006018953A1 (en) Heat exchanger
JP4965242B2 (en) Manufacturing method of aluminum heat sink
JP2003007944A (en) Cooling device for heating part
TWI605236B (en) Liquid cooling jacket and manufacturing method of liquid cooling jacket
JP2007185709A (en) Brazing method and brazed structure
JPH08271175A (en) Stainless steel plate laminated heat exchanger, and its production
JP2002168575A (en) Heat pipe
JP7256760B2 (en) Brazing method
JP2015530552A (en) Small aluminum heat exchanger with welded tube for power electronics and battery cooling
WO2016163062A1 (en) Composite material containing carbon material layer, and heat exchanger
JP2006341304A (en) Method for joining different kinds of metals
JP2012160688A (en) Heat sink and method for manufacturing the same
US11614289B2 (en) Aluminum heat exchanger with solderable outer surface layer
JP2003185365A (en) Heat exchanger
JP6510817B2 (en) Motor cooling structure and welding torch unit having the same
JP2000073878A (en) Egr gas cooling device
JP2003251459A (en) Heat exchanger of refrigerator
JP4984955B2 (en) Power element mounting unit, power element mounting unit manufacturing method, and power module
JP2008241052A (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081120

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081120

R150 Certificate of patent or registration of utility model

Ref document number: 4243654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees