JP4243068B2 - Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish - Google Patents

Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish Download PDF

Info

Publication number
JP4243068B2
JP4243068B2 JP2002089546A JP2002089546A JP4243068B2 JP 4243068 B2 JP4243068 B2 JP 4243068B2 JP 2002089546 A JP2002089546 A JP 2002089546A JP 2002089546 A JP2002089546 A JP 2002089546A JP 4243068 B2 JP4243068 B2 JP 4243068B2
Authority
JP
Japan
Prior art keywords
water
aquaculture
shellfish
tank
long wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002089546A
Other languages
Japanese (ja)
Other versions
JP2003284451A (en
Inventor
克成 ▲濱▼口
Original Assignee
克成 ▲濱▼口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 克成 ▲濱▼口 filed Critical 克成 ▲濱▼口
Priority to JP2002089546A priority Critical patent/JP4243068B2/en
Publication of JP2003284451A publication Critical patent/JP2003284451A/en
Application granted granted Critical
Publication of JP4243068B2 publication Critical patent/JP4243068B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアワビ、ナマコ、ウニ、サザエ、伊勢エビ、タコ及び車エビ等の陸上における根付魚介類の養殖方法並びに設備並びに根付魚貝類の養殖方法に用いる長波動発生装置に関するものである。
【0002】
【発明の背景】
生簀を利用した魚の養殖やたなを利用した養殖として自然海水域において行うものが主で、陸上水槽での養殖は、条件の合う魚介種に限られている。特にいわゆる根付魚介類にあっては、陸上水槽等では短期的な種苗生産以外、その完全養殖飼育が難しく、特にアワビ等の成貝に至っては、ほぼ天然産品のみに限られている。
【0003】
【開発を試みた技術的課題】
本発明はこのような背景を考慮してなされたものであって、これらの根付魚介類の生態を研究する中から、育成環境内の海水流波動等の状況が大きく影響することに着眼し、これらを最適化することによって養殖を可能とした養殖方法並びに関連する設備の開発を試みたものである。
【0004】
【課題を解決するための手段】
すなわち請求項1記載の陸上における根付魚貝類の養殖方法は、平面視で養殖水が循環する形状を有する養殖槽を用いて行う根付魚貝類の養殖方法であって、養殖槽内の養殖水に対しては、水流を伴う長波動を生起させ、
この長波動を生起させるにあたっては、養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成る長波動発生装置を用い、養殖水の灌水による位置エネルギーを利用して羽根を回転させて行うようにしたことを特徴として成るものである。
この発明によれば、養殖槽底部に至る長波動の底びき作用により、根付魚介類の排泄物及び食べ残しの餌等の底部滞留物の堆積腐敗とともに、酸欠等の水流死角をなくし、更に前記滞留物の排出除去により、養殖環境を充実させることができる。また水流を伴う長波動の作用を循環することにより反復的に持続することができるとともに灌水ポンプ及びエアーレーション等による水流確保が不要となるため、経済的な稼働が期待できる。また長波動発生装置が養殖環境の充実に不可欠である灌水による作動であることから、灌水ポンプ以外の動力設備の必要がなく設備の簡素化ができる。更にまた従来の一般的方法である灌水ポンプの動水圧力による水流確保の全揚程に比べ、位置エネルギー確保の全揚程は少なくて済むことからも、経済的な稼働が期待できる。
【0005】
また請求項2記載の陸上における根付魚貝類の養殖設備は、平面視で養殖水が循環する形状を有する養殖槽と、養殖槽内の養殖水に対し、水流を伴う長波動を生起させる長波動発生装置とを具えた養殖用の設備であって、この長波動発生装置は、養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成ることを特徴として成るものである。
この発明によれば、養殖槽底部に至る長波動の底びき作用により、根付魚介類の排泄物及び食べ残しの餌等の底部滞留物の堆積腐敗とともに、酸欠等の水流死角をなくし、更に前記滞留物の排出除去により、養殖環境を充実させることができる。また灌水ポンプ及びエアーレーション等による水流確保が不要となるため、経済的な稼働が期待できる。また長波動発生装置が養殖環境の充実に不可欠である灌水による作動であることから、灌水ポンプ以外の動力設備の必要がなく設備の簡素化ができる。更にまた従来の一般的方法である灌水ポンプの動水圧力による水流確保の全揚程に比べ、位置エネルギー確保の全揚程は少なくて済むことからも、経済的な稼働が期待できる。
【0006】
更にまた請求項3記載の陸上における根付魚貝類の養殖設備は、前記請求項2記載の要件に加え、前記養殖槽については平面視で長円状としたことを特徴として成るものである。
この発明によれば、長波動発生装置による水流を伴う長波動の作用を、直流部分において、波動の直進性を生かすことにより、円滑に持続することができる。
【0007】
更にまた請求項4記載の陸上における根付魚貝類の養殖設備は、前記請求項2または3記載の要件に加え、前記養殖槽のターン部における内岸側は、平面視で波の波長と同程度以上の幅を有し、ターン部外側に向かって下り傾斜に形成されていることを特徴として成るものである。
この発明によれば、長波動発生装置による水流を伴う長波動を、水深差による波動の屈折現象で、円滑的にターンを行わせ、長波動による作用を持続することができる。
【0008】
更にまた請求項5記載の陸上における根付魚貝類の養殖設備は、前記請求項2、3または4記載の要件に加え、前記養殖槽の底部については、養殖水の流水方向と直交する断面形状を波形に形成していることを特徴として成るものである。
この発明によれば、根付魚介類の排泄物、食べ残し餌等は、養殖槽最深部に滞留しやすいため、水槽底部を波型形成することにより、滞留範囲の縮小と、水流方向に順ずる流動路を兼備することで、前記滞留物の排出が簡易に行われる。またアワビ、サザエ、ウニ、ナマコ等の根付魚介類においては、付着面積が多くなることから飼育量の増加が見込める。
【0009】
更にまた請求項6記載の陸上における根付魚貝類の養殖設備は、前記請求項2、3、4または5記載の要件に加え、前記養殖槽の底部には排水口が設けられ、この排水口に排水管の一端が連なり、他端の排水管開口は養殖槽外部に引き出され養殖水の基準レベルに設定されており、排水作用は波動による養殖水のレベル変化により行われることを特徴として成るものである。
この発明によれば、波動による瞬時的な排水が行われるため、排水量の節約となり、排水口を分散的に多数設けることができる。
【0010】
更にまた請求項7記載の陸上における根付魚貝類の養殖設備は、前記請求項6記載の要件に加え、排水時に無駄な餌が回収フィルタにより回収されることを特徴として成るものである。
この発明によれば、投餌時に補食されず、滞留した餌が、水流を伴う長波動の押流し作用と波動による排水作用にて、養殖槽2の周囲の排水出口へと導かれ、食べ残し餌が回収フィルタによって回収される。
【0011】
更にまた請求項8記載の陸上における根付魚貝類の養殖設備は、前記請求項2、3、4、5、6または7記載の要件に加え、前記養殖槽は、養殖槽内における養殖水浸水部の側壁面及び底部面が、不溶性の電導素材にて形成され、更に接地が施されていることを特徴として成るものである。
この発明によれば、長波動発生装置の動作による養殖水と、この養殖水と接触する養殖槽内の側壁面や底部面との間の摩擦による静電気の逃げ場を作ることで、養殖水と、養殖槽内全体の電位を自然環境の海と同様にほぼゼロの安定状態に保つことが可能であり、これにより根付魚介類の健全な成長が促進される。
【0012】
更にまた請求項9記載の陸上における根付魚貝類の養殖方法に用いる長波動発生装置は、養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成ることを特徴として成るものである。
この発明によれば、灌水の持つ位置エネルギーの蓄積を一挙に水掻き作用に転換するもので、水流を伴う長波のパルス波動を生起する。この水流を伴う長波動は、押流し作用と、底引き作用を併有しつつ養殖槽内を伝播してゆき、根付魚介類の排泄物及び食べ残し餌等の底部滞留物の堆積腐敗とともに、酸欠等の水流死角をなくし、更に前記滞留物の排出除去により、養殖環境を充実させることができる。また灌水ポンプ及びエアレーション等による水流確保が不要となるため、経済的な稼働が期待できる。
【0013】
【発明の実施の形態】
以下本発明を図示の実施の形態に基づき説明する。なお以下の説明にあたっては、まず本発明に係る長波動発生装置を具えた根付魚貝類の養殖設備について説明し、次いでこの作動状態の説明と併せて本発明に係る根付魚貝類の養殖方法について説明する。
【0014】
図中符号1で示すものが、本発明の根付魚貝類の養殖設備であり、このものは、養殖水Wが満たされた養殖槽2に対し、本発明の特徴の一つである長波動発生装置3が設けられて成る。なお本発明が適用できる根付魚貝類としては、例えばアワビ、ナマコ、ウニ、サザエ、伊勢エビ、タコ及び車エビ等が挙げられるが、本実施の形態ではアワビ(図中符号4で示す)の場合を例にとって説明する。なお養殖する根付魚貝類によって適宜の変更が行われるものであり、例えばタコの養殖の場合には養殖槽2の底部にタコ壺のようなものが並べられる。
【0015】
まず養殖槽2について説明する。養殖槽2は、図2に示すように全体として長円状をしており、ほぼ中央に仕切体21が設けられ、実質的に養殖水Wが循環する形状に形成されている。養殖槽2の寸法は一例として巾5mで周長が約50m、深さは約1mであり、養殖水Wは深さ60cm程度の深さまで満たされる。なお養殖槽2内における養殖水Wが満たされる養殖水浸水部の側壁面及び底部面26は、不溶性の電導素材にて形成され、更に接地(アース)が施されている。これにより養殖槽2内の帯電状態をなくし、これにより帯電状態のない自然界の海で育てるのと同様に、アワビ4の健全な成長を促進する。養殖水浸水部の側壁面及び底部面に対する長波動発生装置3の動作による養殖水Wとの間の摩擦により発生する静電気は、電導素材の持つ自由電子の拡散作用と接地(アース)により地面に逃される。このため養殖槽2内全体の前記養殖水W及び側壁面、底部面等のすべてにおいて電位がほぼゼロの電気的な安定状態を保つことができる。因みに前記不溶性の電導素材としては、電導性のコンクリートを適用することが好ましく、このものは不溶性、電導性ともに優れており、安価で加工もしやすく経済的である。具体的にはこのような導電性コンクリートとしては、例えば株式会社ホクデンが販売している砂の変わりにEP灰粒体(EP灰は電気集塵機で集められた灰)を配合したホクデンEP−1(登録商標)等を用いることができる。また接地(アース)の態様としては、直接地盤面に、前記導電性コンクリートが接触するようにコンクリート打ちの施工により養殖槽2を構築すれば充分アースを採り得るが、その他の手法として導電性コンクリート内に導電線を埋め込み、更にこの導電線の地端を直接に又はこれに接続したアースロッドを地中に埋め込むように構成してもよい。
なお上述した導電性コンクリートの表面に対し、更に図1に拡大図で示すような導電性コンクリート片28aに白炭片28bを埋設したタイル28を、貼着するようにしてもよく、この場合更に電導性を高め電気的な安定状態を保つことができる。
【0016】
前記仕切体21の長手方向両端(養殖槽2のターン部22における内岸側21aに相当する)は、図3に示されるように下り傾斜に形成されており、波が養殖槽2のターン部22において、なるべる消波されないようにされている。養殖槽2の底部には、図4に示すように養殖水Wの流水方向と直交する断面において波形形状の波形養殖体20が養殖槽2の底部に一体的に形成されるか別体として敷設され、この上でアワビ4が養殖される。なお長波動発生装置3の下方の養殖槽2の底部は、養殖槽2の底部と、後述する長波動発生装置3の羽根32との隙間を少なくする目的で、波形に形成せず、平面若しくは羽根32の回転軌道に準じた平らな湾曲面等に形成して実施しても構わない。
【0017】
また養殖槽2の底部には、排水口23が設けられ、ここに排水管24の接続口が接続され、他端の排出口を養殖槽2の側部に位置させるものであり、この排出管の先端の排出口の高さは、養殖槽2内における養殖水Wの波立っていない状態の基準レベルとほぼ同じ高さに設定されている。また排水管24の上端部位には排水された養殖水Wを受け取る排水受け25が設けられ、この排水受け25には回収フィルタ25aが設けられており、これにより排泄物5や食べ残しの餌6が回収され、残った養殖水Wは図示を省略する周囲の排水溝等に排水されるものである。
【0018】
長波動発生装置3について説明する。長波動発生装置3は、養殖槽2の一方のターン部22近辺に一基設けられるものであり、長波動発生回転体30が適宜の支持部材に中心の回転軸30Aにおいて支持されて成る。そしてこの長波動発生回転体30は三基の羽根ユニット31と、羽根ユニット31を前記回転軸30Aに取り付ける支持フレーム35とを具えて成る。
【0019】
前記羽根ユニット31は、養殖水Wを掻き出す羽根32と、給水管36からの養殖水Wを受けて回転エネルギーに変換するための水受け33と、この水受け33に設けられ一端がこの水受け33内に臨まされ、他端が回転軸30Aの側傍を通り、ほぼ対向する側に位置されるパイプ34とを具えて成る。なお羽根ユニット31は、本実施の形態では三基で実施するものであるが、その他種々の数に変更して実施することが可能である。
更に具体的に説明すると、前記羽根32は矩形平板状を成し、この中央に水受け33が固定して設けられる。水受け33は枡形をした容器であり、上面後端部に注水口33aが開口されるとともに、これに臨んだ上面後端中央部には注水される養殖水Wを前記注水口33aへ案内する案内樋33bが形成されている。また水受け33の前方下部にパイプ34が接続されるものであって、パイプ34の一端はこの水受け33と連通し、他端は一つ前の対向する水受け33の側方付近にまで延長され開放端340としている。開放端の位置は、図5〜図10(特に図9)に示すように当該パイプが接続する水受け33が水中没入状態から浮上する途中で水中に没する位置に設定されている。そしてこのパイプ34の途中、具体的には水受け33との接続部近くには、水受け33が上方でパイプ34が下方に位置した際に、水受け33内の養殖水Wがパイプ34から流下しないようにするための逆止弁34aが設けられているものであって、この逆止弁は、水受け33内の養殖水Wの水圧によって閉鎖する。なお前記羽根32の先端は、ほぼ養殖槽2の底部付近に到達する長さに設定されているとともに、両側辺は養殖槽2の内側壁面に近接する幅に設定されている。また前記羽根ユニット31は本実施の形態のように羽根32と水受け33とを連結して一体的に形成する他、独立した別体で形成するようにしても構わない。
【0020】
本発明の根付魚貝類の養殖設備1は以上のような具体的形態を有するものであって、以下この作動態様を説明しながら併せて本発明の根付魚貝類の養殖方法について説明する。
(I)根付魚貝類の養殖設備の全体概要
養殖槽2は、養殖水Wの深さが60cm程度であり、長波動発生装置3により養殖水Wは波打ちながら図2中反時計回り方向に流れている。また自然環境(海)で飼育されているのと同様の環境を得るべく、常に新鮮な養殖水Wが灌水されるとともに、排水がなされている。そしてこのような養殖槽2内に対し、アワビ4等の稚貝が放流され、数年の養殖期間を経て成貝されるものである。
【0021】
(II)長波動の生起態様
次に長波動発生装置3による長波動Waの生起態様について説明する。なお説明の便宜上、図5〜10において同一寸法及び同一重量の三基の羽根ユニット31に対し、それぞれ31A、31B、31Cという符号を付し、また各羽根ユニット31A、31B、31Cを構成する羽根32、水受け33及びパイプ34についても、羽根32A、32B、32C、水受け33A、33B、33C、パイプ34A、34B、34Cと区別して符号を付し、特にパイプ34A、34B、34Cの開放端340は、それぞれ開放端340A、340B、340Cという区別した符号を付す。また前記各水受け33A、33B、33Cにおける外周面における進行方向先端をそれぞれ水受け先端P1、P2、P3とする。また水受け33Cのパイプ取付部を33Cn、水受け33Bの水受け縁を33Bhという符号を付す。
更に各羽根ユニット31の給水始め個所、給水終了個所、水掻き始め個所、負圧始め個所、水掻き終了個所、負圧開放個所、最大トルク個所を、それぞれ70、71、72、73、74、75、76という符号を付す。また図中符号26は養殖槽2の底部面を示し、符号Wsは養殖水Wの水面を示す。
【0022】
なお以上のことから理解されるように、三基の羽根ユニット31が順次養殖水Wに作用するものであり、長波動を生起させるために長波動発生回転体30の回転速度乃至はトルクは一回転の回転域内で均等ではなく、概要で言えば図11に示すように脈動状態となっているのである。なお図11でこれを例えば速度の曲線とすれば、0°、120°、240°、360°の位相ごとに速度0としているが、前記長波動発生回転体30の慣性により必ずしも速度0、すなわち完全停止とできるかが不明であるが、便宜上速度0として説明する。
以下図5〜10に従い説明する。
(i)始発状態
図5に示す状態を始発状態とするもので、タイミングとしては羽根ユニット31Aの水受け33Aの水受け先端P1が給水始め位置70に位置して給水が開始されるときである。なお以後の説明は羽根ユニット31Aの回転が進むにつれての各部の作用状態を中心に順次説明する。まずこのとき長波動発生回転体30は停止の状態である。
すなわち羽根ユニット31Aは上方の位置でほぼ停止しているが、図5に示すようにこの上方で案内樋33bから養殖水Wが供給されつつある。このときパイプ34Aに設けられている逆止弁34aは、わずかに受け貯めた養殖水Wの圧力を受けて閉状態となっているから、パイプ34Aの先端の開放端340Aが下方に位置していてもここから養殖水Wが流れ出ることはない。
他方羽根ユニット31B、31Cを見ると、両者とも半ば水没状態であって、バランスした状態となっている。すなわち羽根ユニット31Bは水受け33Bの注水口33aが水没しており、パイプ34Bの開放端340Bも既に水没した状態となっている。水受け33Bの中の養殖水Wは、水受け33Bの中の上方空間が負圧の状態であるから、その負圧にしたがって水受け33Bの中の養殖水Wも水面が幾分か上昇した状態となっている。一方羽根ユニット31Cについては、水受け33C内に満たされていた養殖水Wは、水受け33Cが養殖槽2内の養殖水Wに没した状態であっても内部の養殖水Wはまだこぼれる状態には至っておらず、そのほぼ満水状態の重量を保っている。従ってこの羽根ユニット31Cの重量による回転軸30Aを図5中反時計方向に回そうとするトルクと、羽根ユニット31Bの水受け33B内の負圧による回転軸30Aを時計方向に回そうとするトルクとがバランスして停止状態を保っている。なお羽根ユニット31B、31Cのそれぞれパイプ34B、34Cの逆止弁34aの状態は、パイプ34Bの逆止弁34aは開放し、パイプ34Cの逆止弁34aは水受け33C内の養殖水Wの水圧により閉じているものの、この状態においては逆止弁34aの作動そのものは長波動発生回転体30の回転には関与していない。
【0023】
(ii) 回転の開始(再開)
このような状態で水受け33Aへの給水が徐々になされてくると、水受け33Aが重くなり、回転軸30Aに対しては反時計方向の回転トルクをもたらしてくる。この回転により前工程で水面Wsに潜り込もうとしていた羽根ユニット31Cの羽根32Cは更に潜るとともに、水受け33B、33Cも変位し、特に水受け33Bは、上昇してゆくことに伴い図6に示されるように水受け先端P2が負圧開放位置75に位置した時に、注水口33aが大気と連通し、上部空間が負圧状態に維持されていたことによって水位を水面Wsより上昇させていた内部の養殖水Wは、一挙に抜け去るようになるのである。一方水受け33Cは、この回転に伴い完全に水没するものであるが、養殖水中を移動する抵抗はあるものの実質的には回転のためのトルクを付与する作用はなくなる。また結果的には羽根ユニット31B、31Aは、いずれも水面Wsから出た状態にあり、長波動の生成、すなわち水掻き作用に影響を及ぼさない状態となっている。そしてこのとき水掻き作用を担うのは、図6に示されるように羽根ユニット31Aに先行する羽根ユニット31Cの羽根32Cであって、水受け先端P3が水掻き始め位置72に達した水受け33とともに水没して養殖水Wを掻いていくのである。
【0024】
(iii)最大トルクの発生
前述の作動に続き図7に示されるように、特に前記水受け33Bの水抜けにより反時計方向(駆動方向)への回転の抵抗となっていた水受け33Bの負圧による時計方向へのトルクがなくなることから、長波動発生回転体30の回転トルクとしては、前記水受け33Aへの養殖水Wによる重力エネルギーがほぼ集中的に利用されて最大のトルクを発生させる。すなわち図6における水受け33Bの負圧の開放により水受け33B内の養殖水Wが一挙に注水口33aから流出するため満水状態の水受け33Aはバランス対象を失い羽根32Cの水掻き動作の強力なトルクを得るものであって、図7に示されるように、水受け33Aの水受け先端P1が、最大トルク位置76に位置した時、羽根32Cは先端がほぼ養殖槽2の底部面26付近に到達し、水流を伴う長波動の生起に最大力を発揮する。
【0025】
(iv) 最大トルク後の回転力の維持(図8)
このように最大トルクの位置から更に回転が進む場合、先行する水受け33C内の養殖水Wが仮に満水状態のままで上昇するとすれば、この状態が回転を妨げる時計方向へのトルクを生起することとなり、長波動発生回転体30全体の回転力を有効に利用する点では不利になるものであるが、本発明にあっては、前記パイプ34の作用によりこの不利を回避している。すなわち図8に示されるように水受け33Cでは、パイプ34Cの開放端340が水面Ws上に位置したままであり、且つ逆止弁34aは開状態を維持し(水圧を受けていないから)水受け33Cの上部空間と外部とを連通させて外気の導入を許し、水受け33C内の養殖水Wの重量による抵抗を可及的に生じないようにしているのである。
【0026】
(v)緩停止
そして図9に示されるように水受け33Aの大半が養殖水Wに水没した後に水受け33Cが浮上してくる途中で、水受け33Cにおけるパイプ34Cの先端の開放端340Cが、養殖水Wの水面Wsに達すると、パイプ34Cからの大気の流入が止まり、水受け33C内が気密状態となる。これにより図10に示されるように水受け33Cにおける下方開口部である注水口33aから養殖水Wの流出が阻まれ内部は負圧状態となり、これに応じて水面上昇がなされていく。この水面の上昇の状況は既に始発状態でも述べたように、新たに水没してきた水受け33Aの満水状態の水量とのバランスをとった状態となるのである。つまり羽根ユニット31Cの側でその負圧によりあたかも駆動方向への回転にブレーキをかける状態となり、結果的に羽根ユニット31Aによる駆動方向への回転力とのバランスした位置で再び長波動発生回転体30はその回転を停止する。この状態では先の図5に示した始発状態が実質的に再現されるものであって、再び羽根ユニット31Bが、上方に位置して水受け33B内に給水が開始されるのである。
以上、順次反時計回りの動作の繰り返しであるが、特徴的なのは三基の羽根ユニット31A、31B、31Cの各水受け33A、33B、33Cが、その回転位置によりバランスとアンバランスを交互に繰り返し、灌水による位置エネルギーの蓄積を一気に水掻き動作に転換させることである。
【0027】
(III)水流を伴う長波動の作用
回転される長波動発生装置3の羽根32は、その動作による水流とともに、羽根前面と羽根後面に慣性による水位差を生起させる。この水位差が水流とともに押し出されることにより、一例として波長4m、波高20cm位の水流を伴う長波のパルス波動が生起され、水流を伴う長波動Waとして、押し流し作用と、底びき作用を併有しつつ養殖槽2内を伝播してゆく。これによりアワビ4(根付魚介類)の排泄物5及び食べ残し餌6等の堆積腐敗を無くすことによる生息空間としての養殖水Wの衛生環境を整え、また養殖に不可欠物質である酸素等の供給媒体としての養殖水Wの死角をなくし、更に前記水槽底部の滞留物の排出除去における排出媒体としての養殖水Wの作用をより効果的にするものである。
【0028】
(IV) 長波動のターン部における動作態様
なお養殖槽2のターン部22の内岸側21aは、内岸側21aより仕切り体幅にて下り傾斜に形成されているため、ターン部22における内岸側21aと外岸側は、水深差による波動の速度変化と波長変化による屈折現象を生起することになり、乱波動とならずに円滑的なターンが行われる。すなわちターン部22における内岸側21aは外岸側より徐々に水深が浅くなるのに伴い、長波動Waの波長は短くなり波動速度が遅くなる。一方ターン部22における外岸側は直進部分と同じ水深のままであるがゆえ、直進部分の波長を維持したままターンする結果となり、水深と波長と伝達速度の関係よりターン部22に到達した長波動Waが乱波動とならずに全体的に無理なく円滑的にターンが行われるのである。
なお前記下り傾斜に形成されるターン部22の内岸側21aの仕切体幅は、前記波動の速度変化と波長変化に対応すべく長波動Waの波長により決定されるものであるが、水深が浅くなることにより短くなる波長と同程度以上の仕切体幅をもたせることが必要であり、これにより前記円滑なターンが実現できる。
【0029】
(V)摩擦による静電気の接地(アース)態様
また養殖槽2内における養殖水Wが満たされる養殖水浸水部の側壁面及び底部面26は、不溶性の電導素材にて形成され、更に接地(アース)が施されていることにより帯電状態をなくすもので、養殖水浸水部の側壁面及び底部面に対する長波動発生装置3の動作による養殖水Wとの間の摩擦による静電気が、電導素材の持つ自由電子の拡散作用と接地(アース)により、養殖槽2内全体の前記養殖水W及び側壁面、底部面等のすべてにおいて電位がほぼゼロの電気的な安定状態を保つことができる。
【0030】
(VI)養殖水の排出態様
また養殖槽2内の底部に滞留した食べ残しの餌6や、アワビ4の糞等の排泄物5は養殖槽2底部の排水口23から養殖水Wとともに排出されるものである。排水管24からの排水は、養殖槽2内の水位が波動により排水管24の先端の高さより高くなったときのみに、瞬時的に排出されるもので、したがって排水量の節約になることから、排水口を分散的に多数設けることができ、食べ残し餌6やアワビ糞等の養殖水槽底部の滞留物の排出除去が短時間ですみ、前記養殖槽底部における滞留物の腐敗がなくなり、衛生的である。
【0031】
【発明の効果】
請求項1、2記載の根付魚貝類の養殖方法並びに設備によれば、養殖槽底部に至る長波動の底びき作用により、根付魚介類の排泄物及び食べ残しの餌等の底部滞留物の堆積腐敗とともに、酸欠等の水流死角をなくし、更に前記滞留物の排出除去により、養殖環境を充実させることができる。また水流を伴う長波動の作用を循環することにより反復的に持続することができるとともに灌水ポンプ及びエアーレーション等による水流確保が不要となるため、経済的な稼働が期待できる。また長波動発生装置が養殖環境の充実に不可欠である灌水による作動であることから、灌水ポンプ以外の動力設備の必要がなく設備の簡素化ができる。更にまた従来の一般的方法である灌水ポンプの動水圧力による水流確保の全揚程に比べ、位置エネルギー確保の全揚程は少なくて済むことからも、経済的な稼働が期待できる。
【0032】
更に請求項3記載の根付魚貝類の養殖設備によれば、養殖槽2は長円状としたため、直流部分において、波動の直進性が生かされ、長波動発生装置3による水流を伴う長波動Waの作用を、円滑に持続させることができる。
【0033】
更にまた請求項4記載の根付魚貝類の養殖設備によれば、養殖槽2のターン部22における内岸側21aは、平面視で、波の波長と同程度以上の幅を有し、ターン部22外側に向かって下り傾斜に形成されているため、長波動発生装置3による水流を伴う長波動Waを、水深差による波動の屈折現象で、円滑的にターンを行わせ、長波動Waによる作用を持続することができる。
【0034】
更にまた請求項5記載の根付魚貝類の養殖設備によれば、養殖槽2の底部が波形に形成されているため、根付魚介類の排泄物5、食べ残し餌6等の養殖槽最深部の滞留物の滞留範囲が縮小され、水流方向に順ずる流動路を兼備することで、前記滞留物の排出除去が簡易に行われる。またアワビ、サザエ、ウニ、ナマコ等の根付魚介類においては、付着面積が多くなることから、飼育料の増加が見込める。
【0035】
更にまた請求項6記載の根付魚貝類の養殖設備によれば、養殖槽2の底部には排水口23が設けられ、この排水口23に排水管24の一端が連なり、他端が養殖槽2外部に引き出され基準レベルに設定されているため、排水は長波動Waによる養殖水Wのレベル変化により瞬時的に行われるため、排水量の節約になり、排水口を分散的に多数設けられることから、根付魚介類の排泄物5、また食べ残し餌6等、養殖槽底部の滞留物の排出除去が短時間ですみ、前記養殖槽底部における滞留物の腐敗がなくなる。
【0036】
更にまた請求項7記載の根付魚貝類の養殖設備によれば、排水時に無駄な餌6が養殖槽2周囲の排水出口の回収フィルタ25aにて回収されるため、養殖槽2内におけ腐敗損失がなく、再利用できることから、給餌効率をあげることができる。
【0037】
更にまた請求項8記載の根付魚貝類の養殖設備によれば、養殖槽2は、養殖槽2内における養殖水浸水部の側壁面27及び底部面26が、不溶性の電導素材にて形成され、更に接地が施されているため、長波動発生装置3の動作により波立ちながら流れる養殖水Wと、前記養殖槽2内の側壁面27や底部面26との間の摩擦による生じる静電気の逃げ場が作られ、養殖水Wと、養殖槽2内全体の電位を自然環境の海と同様にほぼゼロの安定状態に保つことが可能であり、これにより根付魚介類の健全な成長が促進される。
【0038】
更にまた請求項9記載の根付魚貝類の養殖方法に用いる長波動発生装置によれば灌水の持つ位置エネルギーの蓄積を一挙に水掻き作用に転換するもので、水流を伴う長波のパルス波動を生起する。この水流を伴う長波動は、押流し作用と、底引き作用を併有しつつ養殖槽内を伝播してゆき、根付魚介類の排泄物及び食べ残し餌等の底部滞留物の堆積腐敗とともに、酸欠等の水流死角をなくし、更に前記滞留物の排出除去により、養殖環境を充実させることができる。また灌水ポンプ及びエアレーション等による水流確保が不要となるため、経済的な稼働が期待できる。
【図面の簡単な説明】
【図1】 本発明の根付魚貝類の養殖設備並びに長波動発生装置を示す斜視図である。
【図2】 同上平面図である。
【図3】 (a)は同上縦断側面図であり、(b)は水受けを拡大して示す斜視図である。
【図4】 同上縦断正面図である。
【図5】 長波動発生装置による長波動の生起態様を段階的に示す説明図であって、上方に位置した羽根ユニットの水受け先端が給水始め位置に達した状態を示す縦断側面図である。
【図6】 同上前記羽根ユニットの水受け先端が給水始め位置に達した状態を示す縦断側面図である。
【図7】 同上前記羽根ユニットの水受け先端が最大トルク位置に達した状態を示す縦断側面図である。
【図8】 同上前記羽根ユニットの水受け先端が水面に達した状態を示す縦断側面図である。
【図9】 同上前記羽根ユニットの回転方向前段の羽根ユニットの水受け先端が負圧始め位置に達した状態を示す縦断側面図である。
【図10】 同上次の水受けへの給水が開始された状態を示す縦断側面図である。
【図11】 回転体の回転角度と回転トルクとの関係を示す説明図である。
【符号の説明】
1 根付魚介類の養殖設備
2 養殖槽
20 波形養殖体
21 仕切体
21a (ターン部の)内岸側
22 ターン部
23 排水口
24 排水管
25 排水受け
25a 回収フィルタ
26 底部面
27 側壁面
28 タイル
28a 導電性コンクリート片
28b 白炭片
3 長波動発生装置
30 長波動発生回転体
30A 回転軸
31、31A、31B、31C 羽根ユニット
32、32A、32B、32C 羽根
33、33A、33B、33C 水受け
33a 注水口
33b 案内樋
33Bh 水受け縁
33Cn パイプ取付部
34、34A、34B、34C パイプ
34a 逆止弁
340、340A、340B、340C 開放端
35 支持フレーム
36 給水管
4 アワビ
5 排泄物
6 餌
70 給水始め位置
71 給水終了位置
72 水掻き始め位置
73 負圧始め位置
74 水掻き終了位置
75 負圧開放位置
76 最大トルク位置
P1 水受け先端
P2 水受け先端
P3 水受け先端
W 養殖水
Wa 長波動
Ws 水面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and a facility for culturing rooted seafood on land such as abalone, sea cucumber, sea urchin, turban shell, lobster, octopus and prawn, and a long wave generator for use in a method for cultivating rooted shellfish.
[0002]
BACKGROUND OF THE INVENTION
Fish farming using ginger and farming using tana are mainly carried out in natural seawater, and farming in land tanks is limited to seafood species that meet conditions. In particular, so-called rooted fish and shellfishes are difficult to cultivate completely in terrestrial aquariums other than short-term seed production, and in particular, adults such as abalone are limited to natural products.
[0003]
[Technical issues for which development was attempted]
The present invention has been made in consideration of such a background, and while studying the ecology of these rooted fish and shellfishes, focusing on the fact that the situation such as seawater waves in the breeding environment has a great influence, It is an attempt to develop an aquaculture method and related equipment that enable aquaculture by optimizing these.
[0004]
[Means for Solving the Problems]
That is, the method for cultivating netted fish shellfish on land according to claim 1 is an aquaculture tank having a shape in which aquaculture water circulates in a plan view. A method for cultivating netted fish and shellfish using an aquaculture tank Against the aquaculture water The , Causing long waves with water flow,
this In order to cause long wave motion, a rotating shaft provided so as to cross the aquaculture tank at the upper side, and attached to the rotating shaft via a support frame, scrapes the aquaculture water. plural The blade is attached to the rotating shaft via a support frame, receives the aquaculture water from the water supply pipe, and converts the potential energy into rotational energy. The same radix as the vane One end of the water receiver is connected to the water receiver, and the other end is connected to the water receiver. The open end of the water is provided at a position where the water receiver is submerged under the surface of the water while it is rising from the underwater state. And using a long wave generator comprising a pipe with a check valve that closes due to the water pressure in the water receiver, and rotating the blades using the potential energy from the irrigation of the aquaculture water Is a feature.
According to the present invention, the bottom wave action of the long wave reaching the bottom of the aquaculture tank eliminates dead spots such as oxygen deficiency as well as sediment decay of bottomed seafood excrement and uneaten bait, The aquaculture environment can be enhanced by discharging and removing the staying matter. In addition, by circulating the action of long waves with water flow, the operation can be repeated repeatedly, and it is not necessary to secure the water flow by an irrigation pump, aeration, or the like, so economic operation can be expected. In addition, since the long wave generator is operated by irrigation, which is indispensable for the enhancement of the aquaculture environment, there is no need for power equipment other than the irrigation pump, and the equipment can be simplified. Furthermore, since the total head for securing the potential energy is less than the total head for securing the water flow by the dynamic pressure of the irrigation pump, which is a conventional general method, economical operation can be expected.
[0005]
Further, the onshore cultivating facility for fish shellfish on land according to claim 2 has a culture tank having a shape in which the culture water circulates in a plan view, and a long wave motion that causes a long wave motion accompanied by a water current to the culture water in the culture tank. This long-wave generator includes a rotating shaft provided so as to cross the aquaculture tank at the top, and a rotating frame attached to the rotating shaft via a support frame to supply the aquaculture water. Scrape plural The blade is attached to the rotating shaft via a support frame, receives the aquaculture water from the water supply pipe, and converts the potential energy into rotational energy. The same radix as the vane One end of the water receiver is connected to the water receiver, and the other end is connected to the water receiver. The open end of the water is provided at a position where the water receiver is submerged under the surface of the water while it is rising from the underwater state. And a pipe provided with a check valve that closes due to water pressure in the water receiver.
According to the present invention, the bottom wave action of the long wave reaching the bottom of the aquaculture tank eliminates dead spots such as oxygen deficiency as well as sediment decay of bottomed seafood excrement and uneaten bait, The aquaculture environment can be enhanced by discharging and removing the staying matter. Moreover, since it is not necessary to secure a water flow by an irrigation pump, aeration, etc., economical operation can be expected. In addition, since the long wave generator is operated by irrigation, which is indispensable for the enhancement of the aquaculture environment, there is no need for power equipment other than the irrigation pump, and the equipment can be simplified. Furthermore, since the total head for securing the potential energy is less than the total head for securing the water flow by the dynamic pressure of the irrigation pump, which is a conventional general method, economical operation can be expected.
[0006]
Furthermore, in addition to the requirement of claim 2, the aquaculture equipment for netted fish shellfish on land according to claim 3 is characterized in that the aquaculture tank has an oval shape in plan view.
According to the present invention, the action of the long wave accompanied by the water flow by the long wave generator can be smoothly maintained by utilizing the straightness of the wave in the direct current portion.
[0007]
Furthermore, in addition to the requirements described in claim 2 or 3, the aquaculture facility for netted fish shellfish on land according to claim 4 has the same level as the wave wavelength in plan view on the inner shore side in the turn part of the culture tank. It has the above width, and is characterized by being formed in a downward slope toward the outside of the turn part.
According to the present invention, a long wave accompanied by a water flow by a long wave generator can be smoothly turned by a wave refraction phenomenon caused by a difference in water depth, and the effect of the long wave can be maintained.
[0008]
Furthermore, in addition to the requirement according to claim 2, 3 or 4, the aquaculture equipment for netted fish shellfish on land according to claim 5 has a cross-sectional shape perpendicular to the flowing direction of the aquaculture water at the bottom of the culture tank. It is characterized by being formed into a waveform.
According to the present invention, the excrement of rooted seafood, uneaten bait, etc. tends to stay in the deepest part of the aquaculture tank, so that the retention range is reduced and the water flow direction is adjusted by forming a corrugated bottom of the aquarium. By combining the flow path, the accumulated matter is easily discharged. In the case of netted seafood such as abalone, turban shell, sea urchin, sea cucumber, etc., an increase in the amount of breeding is expected due to an increase in the area of attachment.
[0009]
Furthermore, in addition to the requirements described in claim 2, 3, 4 or 5, the aquaculture equipment for netted fish and shellfish on land according to claim 6 is provided with a drain outlet at the bottom of the culture tank. One end of the drainage pipe is connected, the drainage pipe opening at the other end is drawn out of the culture tank and set to the standard level of the culture water, and the drainage action is performed by changing the level of the culture water due to wave motion It is.
According to this invention, since instantaneous drainage by wave motion is performed, the amount of drainage can be saved, and a large number of drain ports can be provided in a distributed manner.
[0010]
Furthermore, in addition to the requirements described in the sixth aspect, the aquaculture equipment for netted fish shellfish on land according to the seventh aspect is characterized in that waste food is recovered by a recovery filter during drainage.
According to the present invention, the food that has not been supplemented at the time of feeding and has stayed is guided to the drainage outlet around the aquaculture tank 2 by the long-wave swarming action with water flow and the drainage action by the wave. The remaining bait is collected by the collection filter.
[0011]
Furthermore, in addition to the requirements according to claim 2, 3, 4, 5, 6 or 7, the aquaculture equipment for netted fish shellfish on land according to claim 8 is an aquaculture water inundation section in the aquaculture tank. The side wall surface and the bottom surface are formed of an insoluble conductive material and are further grounded.
According to this invention, the aquaculture water by the operation of the long wave generator and the side surface of the aquaculture tank in contact with the aquaculture water and the bottom surface to create a static electricity escape place, the aquaculture water, It is possible to keep the electric potential of the entire culture tank in a stable state of almost zero as in the case of the sea in the natural environment, which promotes the healthy growth of the rooted seafood.
[0012]
Furthermore, the long wave generator for use in the method for cultivating a rooted shellfish on land according to claim 9 includes a rotating shaft provided so as to cross the aquaculture tank upward, and is attached to the rotating shaft via a support frame for aquaculture. Scrape water plural The blade is attached to the rotating shaft via a support frame, receives the aquaculture water from the water supply pipe, and converts the potential energy into rotational energy. The same radix as the vane One end of the water receiver is connected to the water receiver, and the other end is connected to the water receiver. The open end of the water is provided at a position where the water receiver is submerged under the surface of the water while it is rising from the underwater state. And a pipe provided with a check valve that closes due to water pressure in the water receiver.
According to the present invention, the accumulation of potential energy possessed by irrigation is converted at once into a water scraping action, and a long wave pulse wave accompanied by a water flow is generated. This long wave accompanied by water flow propagates through the aquaculture tank while having both a spilling action and a bottoming action, along with sediment decay of bottom seafood excrement and leftover food, etc. The aquaculture environment can be enriched by eliminating dead spots such as lack of water and discharging and removing the accumulated matter. Moreover, since it is not necessary to secure a water flow by an irrigation pump, aeration, etc., economic operation can be expected.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below based on the illustrated embodiments. In the following description, firstly, explanation will be given on the fishery cultivation equipment for the rooted shellfish provided with the long wave generator according to the present invention, and then the method for cultivating the rooted fishshell according to the present invention together with the description of this operating state. To do.
[0014]
What is indicated by reference numeral 1 in the figure is the aquaculture facility for rooted fish and shellfish of the present invention, and this is a long wave generation that is one of the features of the present invention for the aquaculture tank 2 filled with the aquaculture water W. A device 3 is provided. In addition, examples of the netted fish shellfish to which the present invention can be applied include abalone, sea cucumber, sea urchin, sea bream, lobster, octopus, and prawn, but in the present embodiment, abalone (indicated by reference numeral 4 in the figure). Will be described as an example. It is to be noted that appropriate changes are made depending on the rooted shellfish to be cultivated. For example, in the case of octopus culture, things like octopus trout are arranged at the bottom of the culture tank 2.
[0015]
First, the culture tank 2 will be described. As shown in FIG. 2, the aquaculture tank 2 has an oval shape as a whole, and is provided with a partition 21 at substantially the center so that the aquaculture water W circulates substantially. The dimensions of the aquaculture tank 2 are, for example, a width of 5 m, a circumference of about 50 m, a depth of about 1 m, and the aquaculture water W is filled to a depth of about 60 cm. Note that the side wall surface and the bottom surface 26 of the aquaculture water submerged portion filled with the aquaculture water W in the aquaculture tank 2 are formed of an insoluble conductive material, and are further grounded. This eliminates the charged state in the aquaculture tank 2, thereby promoting the healthy growth of the abalone 4 in the same way as growing in a natural sea without a charged state. Static electricity generated by friction with the culture water W due to the operation of the long wave generator 3 on the side wall surface and the bottom surface of the aquaculture water submerged portion is caused by the diffusion of free electrons of the conductive material and grounding (grounding). To be missed. For this reason, it is possible to maintain an electrically stable state in which the potential is substantially zero in all of the aquaculture water W, the side wall surface, the bottom surface and the like in the entire culture tank 2. Incidentally, it is preferable to use conductive concrete as the insoluble conductive material, which is excellent in both insolubility and conductivity, is inexpensive, easy to process and economical. Specifically, as such conductive concrete, for example, Hokuden EP-1 (EP ash is ash collected with an electric dust collector) instead of sand sold by Hokuden Co., Ltd. Registered trademark) or the like. In addition, as an aspect of grounding (grounding), if the culture tank 2 is constructed by applying concrete so that the conductive concrete is in direct contact with the ground surface, sufficient grounding can be taken. A conductive wire may be embedded therein, and a ground rod connected directly or to the ground end of the conductive wire may be embedded in the ground.
Further, the tile 28 in which the white charcoal pieces 28b are embedded in the conductive concrete pieces 28a as shown in the enlarged view of FIG. 1 may be attached to the surface of the conductive concrete described above. It is possible to increase the property and maintain an electrical stable state.
[0016]
Both ends in the longitudinal direction of the partition 21 (corresponding to the inner shore side 21a in the turn part 22 of the culture tank 2) are formed in a downward slope as shown in FIG. In FIG. As shown in FIG. 4, a corrugated cultured body 20 having a corrugated shape in a cross section orthogonal to the flowing direction of the cultured water W is integrally formed on the bottom of the culture tank 2 or laid as a separate body at the bottom of the culture tank 2. Abalone 4 is cultivated on this. In addition, the bottom part of the culture tank 2 below the long wave generator 3 is not formed into a corrugated shape for the purpose of reducing the gap between the bottom part of the culture tank 2 and the blade 32 of the long wave generator 3 to be described later. You may form and implement on the flat curved surface etc. according to the rotation track | orbit of the blade | wing 32.
[0017]
In addition, a drainage port 23 is provided at the bottom of the culture tank 2, and a connection port for a drainage pipe 24 is connected to the drainage port 24, and the discharge port at the other end is positioned on the side of the culture tank 2. The height of the discharge port at the tip of is set to be almost the same height as the reference level in the state where the culturing water W is not rippled in the culturing tank 2. In addition, a drain receiver 25 for receiving the drained culture water W is provided at the upper end portion of the drain pipe 24, and a recovery filter 25a is provided in the drain receiver 25, whereby the excrement 5 and uneaten bait 6 are provided. Is collected, and the remaining aquaculture water W is drained into a surrounding drainage groove or the like (not shown).
[0018]
The long wave generator 3 will be described. One long wave generator 3 is provided in the vicinity of one turn part 22 of the aquaculture tank 2, and a long wave generator 30 is supported by a suitable support member on a central rotating shaft 30A. The long wave generating rotator 30 includes three blade units 31 and a support frame 35 for attaching the blade units 31 to the rotary shaft 30A.
[0019]
The blade unit 31 includes a blade 32 for scraping the culture water W, a water receiver 33 for receiving the culture water W from the water supply pipe 36 and converting it into rotational energy, and one end of the water receiver 33 provided on the water receiver 33. 33, and the other end is the rotating shaft 30A. By the side of And a pipe 34 located on substantially opposite sides. In addition, although the blade unit 31 is implemented with three units in the present embodiment, it can be implemented with various other numbers.
More specifically, the blade 32 has a rectangular flat plate shape, and a water receiver 33 is fixedly provided at the center. The water receiver 33 is a bowl-shaped container, and a water injection port 33a is opened at the rear end portion of the upper surface, and the aquaculture water W to be injected is guided to the water injection port 33a at the center portion of the upper surface rear end facing this. A guide rod 33b is formed. A pipe 34 is connected to the front lower portion of the water receiver 33, and one end of the pipe 34 communicates with the water receiver 33, and the other end is close to the side of the preceding opposite water receiver 33. The open end 340 is extended. As shown in FIGS. 5 to 10 (particularly FIG. 9), the position of the open end is set to a position where the water receiver 33 to which the pipe is connected is submerged in the middle of rising from the submerged state. In the middle of the pipe 34, specifically, near the connection with the water receiver 33, when the water receiver 33 is positioned above and the pipe 34 is positioned downward, the aquaculture water W in the water receiver 33 flows from the pipe 34. A check valve 34 a for preventing the water from flowing down is provided, and this check valve is closed by the water pressure of the aquaculture water W in the water receiver 33. The tip of the blade 32 is set to a length that reaches almost the bottom of the culture tank 2, and both sides are set to have a width close to the inner wall surface of the culture tank 2. Further, the blade unit 31 may be formed as an independent separate body in addition to the blade 32 and the water receiver 33 being connected and integrally formed as in the present embodiment.
[0020]
The rooted fish shell culture facility 1 according to the present invention has the above-described specific form, and the operation method for rooted fish shells according to the present invention will be described below while explaining the operation mode.
(I) Overview of fish farming equipment
In the aquaculture tank 2, the depth of the aquaculture water W is about 60 cm, and the aquaculture water W flows in a counterclockwise direction in FIG. In addition, fresh aquaculture water W is constantly irrigated and drained to obtain an environment similar to that bred in the natural environment (the sea). And into such an aquaculture tank 2, juveniles such as abalone 4 are released, and they are grown after several years of cultivation.
[0021]
(II) Long wave motion
Next, how the long wave Wa is generated by the long wave generator 3 will be described. For convenience of explanation, the three blade units 31 having the same dimensions and the same weight in FIGS. 5 to 10 are denoted by reference numerals 31A, 31B, and 31C, and the blades constituting the blade units 31A, 31B, and 31C. 32, the water receiver 33, and the pipe 34 are also provided with reference numerals to distinguish the blades 32A, 32B, 32C, the water receivers 33A, 33B, 33C, and the pipes 34A, 34B, 34C, and particularly the open ends of the pipes 34A, 34B, 34C. Reference numerals 340 are given different reference numerals, 340A, 340B, and 340C, respectively. Further, the front ends of the water receivers 33A, 33B, and 33C in the traveling direction on the outer peripheral surfaces are referred to as water receiver front ends P1, P2, and P3, respectively. Further, the pipe mounting portion of the water receiver 33C is denoted by 33Cn, and the water receiving edge of the water receiver 33B is denoted by 33Bh.
Furthermore, the water supply start location, water supply end location, water scraping start location, negative pressure start location, water scraping finish location, negative pressure release location, and maximum torque location of each blade unit 31 are 70, 71, 72, 73, 74, 75, respectively. The code | symbol of 76 is attached | subjected. Reference numeral 26 in the figure indicates the bottom surface of the culture tank 2, and reference Ws indicates the water surface of the culture water W.
[0022]
As can be understood from the above, the three blade units 31 sequentially act on the aquaculture water W, and the rotational speed or torque of the long wave generating rotating body 30 is equal to one in order to generate the long wave. It is not uniform within the rotation range of rotation, but in summary, it is in a pulsating state as shown in FIG. In FIG. 11, for example, if this is a speed curve, the speed is 0 for each phase of 0 °, 120 °, 240 °, and 360 °. It is unclear whether a complete stop can be made, but for the sake of convenience, explanation will be made assuming that the speed is zero.
A description will be given below with reference to FIGS.
(I) Initial state
The state shown in FIG. 5 is set to the initial state, and the timing is when the water receiving tip P1 of the water receiver 33A of the blade unit 31A is positioned at the water supply start position 70 and water supply is started. In the following description, the operation state of each part as the rotation of the blade unit 31A proceeds will be described in order. First, at this time, the long wave generating rotator 30 is in a stopped state.
That is, the blade unit 31A is substantially stopped at the upper position, but as shown in FIG. 5, the aquaculture water W is being supplied from the guide rod 33b above this position. At this time, the check valve 34a provided in the pipe 34A is closed due to the slightly received pressure of the culture water W, so that the open end 340A at the tip of the pipe 34A is positioned below. However, the aquaculture water W does not flow out from here.
Looking at the other blade units 31B and 31C, both are in a submerged state and are in a balanced state. That is, in the blade unit 31B, the water inlet 33a of the water receiver 33B is submerged, and the open end 340B of the pipe 34B is already submerged. The culture water W in the water receiver 33B has a negative pressure in the upper space in the water receiver 33B, so that the water level of the culture water W in the water receiver 33B rises somewhat according to the negative pressure. It is in a state. On the other hand, for the blade unit 31C, the culture water W filled in the water receiver 33C is still spilled even if the water receiver 33C is submerged in the culture water W in the culture tank 2 It has not yet reached its weight and is almost full. Accordingly, the torque to rotate the rotating shaft 30A due to the weight of the blade unit 31C counterclockwise in FIG. 5 and the torque to rotate the rotating shaft 30A clockwise due to the negative pressure in the water receiver 33B of the blade unit 31B. And the balance is maintained. Note that the check valves 34a of the pipes 34B and 34C of the blade units 31B and 31C are opened, the check valve 34a of the pipe 34B is opened, and the check valve 34a of the pipe 34C is the water pressure of the culture water W in the water receiver 33C. However, in this state, the operation of the check valve 34 a itself is not involved in the rotation of the long wave generating rotator 30.
[0023]
(ii) Start (restart) of rotation
When water is gradually supplied to the water receiver 33A in such a state, the water receiver 33A becomes heavier and brings a counterclockwise rotational torque to the rotating shaft 30A. With this rotation, the blade 32C of the blade unit 31C that was about to dive into the water surface Ws in the previous process further dive, and the water receivers 33B and 33C are displaced. In particular, the water receiver 33B is moved upward as shown in FIG. As shown, when the water receiving tip P2 was positioned at the negative pressure release position 75, the water inlet 33a communicated with the atmosphere, and the water level was raised above the water surface Ws because the upper space was maintained in a negative pressure state. The internal culture water W comes off at once. On the other hand, the water receiver 33C is completely submerged along with this rotation, but there is substantially no effect of applying torque for rotation although there is resistance to move in the aquaculture water. As a result, the blade units 31B and 31A are both in a state of exiting from the water surface Ws, and are in a state that does not affect the generation of long wave motion, that is, the watering action. At this time, as shown in FIG. 6, the blade 32C of the blade unit 31C preceding the blade unit 31A is responsible for the water scraping action, and the water receiver tip P3 is submerged together with the water receiver 33 that has reached the water scraping start position 72. Then, the cultured water W is scratched.
[0024]
(iii) Generation of maximum torque
Following the above operation, as shown in FIG. 7, the torque in the clockwise direction due to the negative pressure of the water receiver 33 </ b> B, which has been the resistance to rotation in the counterclockwise direction (driving direction) due to the drainage of the water receiver 33 </ b> B. Therefore, as the rotational torque of the long wave generating rotator 30, the gravitational energy from the aquaculture water W applied to the water receiver 33A is used almost intensively to generate the maximum torque. That is, since the culture water W in the water receiver 33B flows out from the water injection port 33a all at once due to the release of the negative pressure of the water receiver 33B in FIG. 6, the water receiver 33A in the full state loses the balance target and has a powerful watering action of the blade 32C. As shown in FIG. 7, when the water receiver tip P1 of the water receiver 33A is located at the maximum torque position 76, the tip of the blade 32C is approximately near the bottom surface 26 of the culture tank 2, as shown in FIG. Reach and exert maximum power in the occurrence of long waves with water flow.
[0025]
(iv) Maintaining rotational force after maximum torque (Fig. 8)
When the rotation further proceeds from the position of the maximum torque in this way, if the aquaculture water W in the preceding water receiver 33C rises in a full water state, this state causes a clockwise torque that prevents the rotation. This is disadvantageous in that the rotational force of the entire long wave generating rotator 30 is effectively used, but in the present invention, this disadvantage is avoided by the action of the pipe 34. That is, as shown in FIG. 8, in the water receiver 33C, the open end 340 of the pipe 34C remains positioned on the water surface Ws, and the check valve 34a is kept open (because it is not subjected to water pressure). The upper space of the receiver 33C is communicated with the outside to allow the introduction of outside air, and resistance due to the weight of the aquaculture water W in the water receiver 33C is prevented as much as possible.
[0026]
(V) Slow stop
And as shown in FIG. 9, most of the water receiver 33A was submerged in the aquaculture water W. Later on the way the water receiver 33C emerged When the open end 340C of the tip of the pipe 34C in the water receiver 33C reaches the water surface Ws of the aquaculture water W, the inflow of air from the pipe 34C stops, and the inside of the water receiver 33C becomes airtight. The As a result, as shown in FIG. 10, the outflow of the aquaculture water W is prevented from the water injection port 33a which is the lower opening of the water receiver 33C, and the inside becomes a negative pressure state, and the water level rises accordingly. As described in the initial state, this rising state of the water surface is in a state balanced with the full water amount of the water receiver 33A that has been submerged. That is, on the blade unit 31C side, the negative pressure causes the rotation in the driving direction to be braked, and as a result, the long wave generating rotating body 30 again at a position balanced with the rotational force in the driving direction by the blade unit 31A. Stops its rotation. In this state, the initial state shown in FIG. 5 is substantially reproduced, and the blade unit 31B is positioned again and water supply is started in the water receiver 33B.
As described above, the counterclockwise operation is sequentially repeated. The characteristic is that the water receivers 33A, 33B, and 33C of the three blade units 31A, 31B, and 31C alternately repeat the balance and the unbalance depending on the rotation position. In other words, the accumulation of potential energy due to irrigation is converted into a watering action at once.
[0027]
(III) Long wave action with water flow
The blades 32 of the rotating long wave generator 3 cause a water level difference due to inertia on the front surface of the blade and the rear surface of the blade together with the water flow by the operation. This water level difference is pushed out together with the water flow, and as an example, a long wave pulse wave with a water flow having a wavelength of about 4 m and a wave height of about 20 cm is generated, and the long wave Wa accompanied with the water flow has both a pushing action and a bottoming action. While propagating through the culture tank 2. As a result, the sanitary environment of aquaculture water W as a habitat space is eliminated by eliminating accumulated decay of abalone 4 (rooted seafood) excrement 5 and uneaten bait 6, etc., and supply of oxygen and other essential substances for aquaculture The blind spot of the culture water W as a medium is eliminated, and the action of the culture water W as a discharge medium in discharging and removing the accumulated matter at the bottom of the water tank is made more effective.
[0028]
(IV) Mode of operation in the long wave turn
In addition, since the inner shore side 21a of the turn part 22 of the aquaculture tank 2 is formed in a downward slope with the partition body width from the inner shore side 21a, the inner shore side 21a and the outer shore side in the turn part 22 are different in water depth. This causes a refraction phenomenon due to the wave speed change and the wavelength change due to, and a smooth turn is made without turbulence. That is, as the water depth of the inner shore side 21a in the turn portion 22 gradually becomes shallower than that of the outer shore side, the wavelength of the long wave Wa becomes shorter and the wave speed becomes slower. On the other hand, since the outer shore side at the turn part 22 remains at the same depth as the straight part, it turns while maintaining the wavelength of the straight part, and the length that reaches the turn part 22 from the relationship between the water depth, the wavelength, and the transmission speed. The wave Wa does not become a turbulent wave, and the entire turn is performed smoothly and smoothly.
The partition width of the inner shore side 21a of the turn portion 22 formed in the downward slope is determined by the wavelength of the long wave Wa to cope with the speed change and wavelength change of the wave. It is necessary to have a partition width equal to or greater than the wavelength that is shortened by becoming shallower, whereby the smooth turn can be realized.
[0029]
(V) Grounding of static electricity due to friction
Further, the side wall surface and the bottom surface 26 of the aquaculture water submerged portion filled with the aquaculture water W in the aquaculture tank 2 are formed of an insoluble conductive material, and further grounded (grounded), thereby eliminating the charged state. Therefore, static electricity due to friction with the culture water W due to the operation of the long wave generator 3 on the side wall surface and the bottom surface of the aquaculture water submerged part is caused by the free electron diffusion action and grounding (earth) of the conductive material, It is possible to maintain an electrically stable state in which the potential is substantially zero in all of the aquaculture water W, the side wall surface, the bottom surface, and the like in the entire culture tank 2.
[0030]
(VI) Aquaculture water discharge mode
Moreover, the uneaten bait 6 staying at the bottom in the culture tank 2 and the excreta 5 such as feces of the abalone 4 are discharged together with the culture water W from the drain outlet 23 at the bottom of the culture tank 2. The drainage from the drainage pipe 24 is instantaneously discharged only when the water level in the aquaculture tank 2 becomes higher than the height of the tip of the drainage pipe 24 due to the wave, and therefore, the drainage amount is saved. A large number of drain outlets can be provided in a distributed manner, and the removal and removal of accumulated matter at the bottom of the aquaculture tank, such as uneaten bait 6 and abalone feces, can be completed in a short period of time. It is.
[0031]
【The invention's effect】
According to the culture method and equipment for the rooted shellfish according to claim 1 or 2, accumulation of bottom sediment such as excrement of rooted seafood and leftover food due to the bottoming action of long waves leading to the bottom of the culture tank It is possible to enhance the aquaculture environment by eliminating the dead angle of water flow such as lack of oxygen as well as rot, and further by discharging and removing the accumulated matter. In addition, by circulating the action of long waves with water flow, the operation can be repeated repeatedly, and it is not necessary to secure the water flow by an irrigation pump, aeration, or the like, so economic operation can be expected. In addition, since the long wave generator is operated by irrigation, which is indispensable for the enhancement of the aquaculture environment, there is no need for power equipment other than the irrigation pump, and the equipment can be simplified. Furthermore, since the total head for securing the potential energy is less than the total head for securing the water flow by the dynamic pressure of the irrigation pump, which is a conventional general method, economical operation can be expected.
[0032]
Further, according to the aquaculture facility for rooted fish and shellfish according to claim 3, since the aquaculture tank 2 has an oval shape, the straight wave motion is utilized in the direct current portion, and the long wave Wa accompanied by the water flow by the long wave generator 3 is used. Can be smoothly maintained.
[0033]
Furthermore, according to the aquaculture facility for rooted fish and shellfish according to claim 4, the inner shore side 21a in the turn part 22 of the aquaculture tank 2 has a width equal to or greater than the wave wavelength in plan view, and the turn part 22 Since it is formed in a downward slope toward the outside, the long wave Wa accompanied by the water flow by the long wave generator 3 is smoothly turned by the refraction phenomenon of the wave due to the water depth difference, and the action by the long wave Wa Can last.
[0034]
Furthermore, according to the fish culture facility for rooted fish shells according to claim 5, since the bottom of the culture tank 2 is formed in a corrugated shape, the deepest part of the culture tank such as the excrement 5 of the rooted seafood, the leftover food 6 and the like The staying range of the staying material is reduced, and the removal of the staying material is easily performed by providing a flow path that follows the water flow direction. In addition, in the case of rooted seafood such as abalone, turban shell, sea urchin, sea cucumber, etc., an increase in the area of attachment is expected.
[0035]
Furthermore, according to the fish culture facility for rooted fish shells according to claim 6, the drainage port 23 is provided at the bottom of the culture tank 2, and one end of the drainage pipe 24 is connected to the drainage port 23, and the other end is the culture tank 2. Since it is drawn out to the outside and set to the standard level, drainage is instantaneously performed by changing the level of the aquaculture water W due to the long wave Wa, so that the drainage amount is saved and a large number of drain outlets are provided in a distributed manner. The excrement 5 of the rooted seafood and the uneaten bait 6 can be removed and removed from the bottom of the aquaculture tank in a short time, and the spoilage of the accumulated substance at the bottom of the aquaculture tank is eliminated.
[0036]
Furthermore, according to the cultivation facility for the rooted shellfish according to claim 7, since waste feed 6 is recovered by the recovery filter 25 a at the drain outlet around the culture tank 2 during drainage, rot loss occurs in the culture tank 2. Since it can be reused, feeding efficiency can be increased.
[0037]
Furthermore, according to the aquaculture facility for rooted fish and shellfish according to claim 8, in the aquaculture tank 2, the side wall surface 27 and the bottom surface 26 of the aquaculture water immersion part in the aquaculture tank 2 are formed of an insoluble conductive material, Further, since grounding is performed, a ground for static electricity generated by friction between the aquaculture water W flowing while undulating by the operation of the long wave generator 3 and the side wall surface 27 and the bottom surface 26 in the aquaculture tank 2 is created. In addition, it is possible to maintain the culture water W and the electric potential of the entire culture tank 2 in a stable state of almost zero like the sea of the natural environment, thereby promoting the healthy growth of the rooted seafood.
[0038]
Furthermore, according to the long wave generator for use in the method for cultivating a root-crusted fish shell according to claim 9, the accumulation of potential energy possessed by irrigation is converted at once into a water scraping action, and a long wave pulse wave accompanied by a water flow is generated. . This long wave accompanied by water flow propagates through the aquaculture tank while having both a spilling action and a bottoming action, along with sediment decay of bottom seafood excrement and leftover food, etc. The aquaculture environment can be enriched by eliminating dead spots such as lack of water and discharging and removing the accumulated matter. Moreover, since it is not necessary to secure a water flow by an irrigation pump, aeration, etc., economic operation can be expected.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an aquaculture facility and a long wave generator of a rooted fish shell according to the present invention.
FIG. 2 is a plan view of the same.
3A is a longitudinal side view of the same as above, and FIG. 3B is an enlarged perspective view showing a water receiver.
FIG. 4 is a longitudinal sectional front view of the above.
FIG. 5 is an explanatory view showing, in a stepwise manner, how long waves are generated by the long wave generator, and is a longitudinal side view showing a state where the water receiving tip of the blade unit positioned above has reached the water supply start position. .
FIG. 6 is a longitudinal sectional side view showing a state in which the water receiving tip of the blade unit has reached a water supply start position.
FIG. 7 is a longitudinal sectional side view showing a state where the water receiving tip of the blade unit has reached the maximum torque position.
FIG. 8 is a longitudinal sectional side view showing a state where the water receiving tip of the blade unit has reached the water surface.
FIG. 9 is a longitudinal sectional side view showing a state in which the water receiving tip of the blade unit at the front stage in the rotational direction of the blade unit has reached the negative pressure start position.
FIG. 10 is a longitudinal side view showing a state in which water supply to the next water receiver is started.
FIG. 11 is an explanatory diagram showing a relationship between a rotation angle of a rotating body and a rotation torque.
[Explanation of symbols]
1 Fish farming equipment with netsuke
2 aquaculture tank
20 Wave culture
21 Partition
21a Inner shore (turn part)
22 Turn part
23 Drain outlet
24 Drain pipe
25 Drainage receptacle
25a Recovery filter
26 Bottom surface
27 Side wall surface
28 tiles
28a Conductive concrete pieces
28b White charcoal fragments
3 Long wave generator
30 Long wave generation rotating body
30A Rotating shaft
31, 31A, 31B, 31C Blade unit
32, 32A, 32B, 32C
33, 33A, 33B, 33C Water receptacle
33a Water inlet
33b Guide
33Bh water receiving edge
33Cn Pipe mounting part
34, 34A, 34B, 34C Pipe
34a Check valve
340, 340A, 340B, 340C Open end
35 Support frame
36 Water supply pipe
4 Abalone
5 excrement
6 Bait
70 Water supply start position
71 Water supply end position
72 Position to start watering
73 Negative pressure start position
74 End position
75 Negative pressure release position
76 Maximum torque position
P1 water receiving tip
P2 Water receiving tip
P3 water receiving tip
W Aquaculture water
Wa long wave motion
Ws Water surface

Claims (9)

平面視で養殖水が循環する形状を有する養殖槽を用いて行う根付魚貝類の養殖方法であって、養殖槽内の養殖水に対しては、水流を伴う長波動を生起させ、この長波動を生起させるにあたっては、養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成る長波動発生装置を用い、養殖水の灌水による位置エネルギーを利用して羽根を回転させて行うようにしたことを特徴とする陸上における根付魚貝類の養殖方法。 A rooted fish farming methods shellfish performed using farming tank having a shape aquaculture water circulates in a plan view, with respect to aquaculture water aquaculture tank causes the occurrence of long wave with the water flow, the long wave In order to cause the occurrence of the problem, the rotating shaft provided so as to cross the culture tank above, a plurality of blades attached to the rotating shaft via a support frame and scraping out the aquaculture water, and the rotating shaft via the support frame A water receiver of the same number as the blades for receiving aquaculture water from a water supply pipe and converting its potential energy into rotational energy, one end connected to the water receiver in a communicating state, and the other end open Uses a long wave generator that includes a pipe provided with a check valve that is provided at a position where the water receiver is submerged under the surface of the water in the middle of being submerged , and is closed by water pressure in the water receiver. Aquaculture water irrigation NETSUKE fish farming methods shellfish on land, characterized in that the blade by using a potential energy to perform rotate by. 平面視で養殖水が循環する形状を有する養殖槽と、養殖槽内の養殖水に対し、水流を伴う長波動を生起させる長波動発生装置とを具えた養殖用の設備であって、この長波動発生装置は、養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成ることを特徴とする陸上における根付魚貝類の養殖設備。An aquaculture facility comprising an aquaculture tank having a shape in which the aquaculture water circulates in a plan view and a long wave generator for generating a long wave with a water flow in the aquaculture tank. The wave generator includes a rotating shaft provided so as to cross the culture tank above, a plurality of blades attached to the rotating shaft via a support frame and scraping out the aquaculture water, and attached to the rotating shaft via a support frame. And receiving the aquaculture water from the water supply pipe and converting the potential energy into rotational energy, the same number of water receivers as the blades , one end of which is connected to the water receiver, the open end of the other end is Netting on land characterized by comprising a pipe provided with a check valve provided at a position where the water receiver is submerged under the surface of the water in the middle of rising from the underwater state and closed by water pressure in the water receiver. Feeding fish and shellfish Equipment. 前記養殖槽は、平面視で長円状としたことを特徴とする請求項2記載の陸上における根付魚貝類の養殖設備。  The aquaculture facility for netfish shellfish on land according to claim 2, wherein the aquaculture tank has an oval shape in plan view. 前記養殖槽のターン部における内岸側は、平面視で波の波長と同程度以上の幅を有し、ターン部外側に向かって下り傾斜に形成されていることを特徴とする請求項2または3記載の陸上における根付魚貝類の養殖設備。  The inner shore side in the turn part of the aquaculture tank has a width equal to or greater than the wavelength of the wave in plan view, and is formed to be inclined downward toward the outside of the turn part. 3. Aquaculture equipment for netted fish and shellfish on land described in 3. 前記養殖槽の底部は、養殖水の流水方向と直交する断面形状を波形に形成していることを特徴とする請求項2、3または4記載の陸上における根付魚貝類の養殖設備。  5. The aquaculture equipment for rooted shellfish on land according to claim 2, 3 or 4, wherein the bottom of the aquaculture tank has a corrugated cross-sectional shape perpendicular to the direction of the aquaculture water flow. 前記養殖槽の底部には排水口が設けられ、この排水口に排水管の一端が連なり、他端の排水管開口は養殖槽外部に引き出され養殖水の基準レベルに設定されており、排水作用は波動による養殖水のレベル変化により行われることを特徴とする請求項2、3、4または5記載の陸上における根付魚貝類の養殖設備。  A drainage port is provided at the bottom of the aquaculture tank, and one end of the drainage pipe is connected to the drainage outlet, and the drainage pipe opening at the other end is drawn out of the culture tank and set to a reference level for the aquaculture water. 6. The apparatus for cultivating netted fish and shellfish on land according to claim 2, wherein the culturing is performed by changing the level of the aquaculture water due to wave motion. 排水時に無駄な餌が回収フィルタにより回収されることを特徴とする請求項6記載の陸上における根付魚貝類の養殖設備。  The facility for aquaculture of rooted shellfish on land according to claim 6, wherein waste food is collected by a collection filter during drainage. 前記養殖槽は、養殖槽内における養殖水浸水部の側壁面及び底部面が、不溶性の電導素材にて形成され、更に接地が施されていることを特徴とする請求項2、3、4、5、6または7記載の陸上における根付魚貝類の養殖設備。  The said aquaculture tank is characterized in that the side wall surface and the bottom surface of the aquaculture water submerged part in the aquaculture tank are formed of an insoluble conductive material, and are further grounded. 5. Aquaculture equipment for netted fish shellfish on land according to 5, 6 or 7. 養殖槽を上方で横切るように設けられる回転軸と、この回転軸に支持フレームを介して取り付けられて養殖水を掻き出す複数の羽根と、前記回転軸に支持フレームを介して取り付けられて給水管からの養殖水を受けてその位置エネルギーを回転エネルギーに変換するための前記羽根と同基数の水受けと、この水受けに一端が連通状態に接続され、他端の開放端は水受けが水中没入状態から浮上する途中で水面下に没する位置に設けられ、且つ水受け内の水圧により閉鎖する逆止弁を具えたパイプとを具えて成ることを特徴とする陸上における根付魚貝類の養殖方法に用いる長波動発生装置。A rotating shaft provided so as to cross the culture tank above, a plurality of blades attached to the rotating shaft via a support frame to scrape the aquaculture water, and attached to the rotating shaft via a support frame from a water supply pipe The same number of water receptacles as the blades for receiving the aquaculture water and converting the potential energy into rotational energy, and one end of the water receptacle is connected to the water receptacle , and the other end of the water receptacle is immersed in the water. A method for cultivating rooted shellfish on land, comprising a pipe provided with a check valve which is provided at a position where the water sinks under the surface of the water while rising from the state and which is closed by water pressure in the water receiver. Long wave generator for use in
JP2002089546A 2002-03-27 2002-03-27 Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish Expired - Fee Related JP4243068B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002089546A JP4243068B2 (en) 2002-03-27 2002-03-27 Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002089546A JP4243068B2 (en) 2002-03-27 2002-03-27 Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish

Publications (2)

Publication Number Publication Date
JP2003284451A JP2003284451A (en) 2003-10-07
JP4243068B2 true JP4243068B2 (en) 2009-03-25

Family

ID=29235101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002089546A Expired - Fee Related JP4243068B2 (en) 2002-03-27 2002-03-27 Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish

Country Status (1)

Country Link
JP (1) JP4243068B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918038B1 (en) 2007-12-11 2009-09-18 백용성 Apparatus for breeding Scapharca broughtonii
KR20140004207U (en) * 2012-12-27 2014-07-09 오영탁 the abalone aquaculture shelter for water cistern
CN103098731A (en) * 2013-02-06 2013-05-15 大连海洋大学 Rock worm-sea cucumber pond mixing breeding method
CN105519463B (en) * 2015-12-16 2018-02-13 浙江省海洋水产研究所 Rotary snail seed proliferating system
CN112584700B (en) * 2018-06-07 2023-09-01 特鲁养虾公司 Waterway and system thereof
CN111955405A (en) * 2020-08-13 2020-11-20 欧立明 Fish tank with wave making device
CN112314508B (en) * 2020-11-05 2022-05-20 烟台立尚海水养殖有限公司 Sea cucumber culture equipment
CN114586714B (en) * 2022-03-21 2022-12-06 吴常文 Micro-ecological breeding device for creeping shellfish planted in island land area on outer side

Also Published As

Publication number Publication date
JP2003284451A (en) 2003-10-07

Similar Documents

Publication Publication Date Title
EP0651605B1 (en) Process for the supply of water to a pond
KR100875803B1 (en) Circulation flow fish farm
JP4243068B2 (en) Long wave generator with water flow used for cultivating method and equipment for rooted fish and shellfish on land, and method for culturing rooted fish and shellfish
JP2015035988A (en) Growth unit for fishery organism
US3996895A (en) System for growing concentrated populations of oysters and related shellfish
US3996894A (en) System for growing concentrated populations of oysters and related shellfish
CN108739594B (en) Aquaculture equipment
CN210610729U (en) Take automatic feeding device&#39;s rearing pond
CN207201758U (en) A kind of aquaculture device of easy cleaning
JP5913717B1 (en) Sandy aquatic life culture equipment
JP2002045084A (en) Excessive feed and fish droppings recoverer for fish- farming net cage
KR102030965B1 (en) A submerged type aquaculture apparatus
KR200411254Y1 (en) Equipment for farming lugworm
CN114304026B (en) Offshore wind power scouring pit self-repairing device with micro-ecological breeding function
CN109287544A (en) A kind of application method for the net cage that can periodically clean mesh sheet with water
CN108208873A (en) A kind of acquisition cleaning method of reef Membrane cleaning device and wild monostroma nitidum
CN210492221U (en) Aquaculture irrigation and drainage device
US3901190A (en) Systems for growing concentrated populations of shellfish
CN110402868B (en) Chain type floating and sinking box net
CN209390863U (en) A kind of efficiently feeding spiral shell device
JP2017086060A (en) Culture apparatus for underwater creatures that live in sandy soil
CN208523541U (en) A kind of small-sized prawn culturing case
CN221488755U (en) Underground funnel type culture pond
CN206333206U (en) Greening system for sturgeon cultivation
CN217771157U (en) Marine pasture breeding device for enhancing marine carbon sink

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees