JP4242645B2 - Transport line and transport method for moving cryogenic fluid - Google Patents

Transport line and transport method for moving cryogenic fluid Download PDF

Info

Publication number
JP4242645B2
JP4242645B2 JP2002542800A JP2002542800A JP4242645B2 JP 4242645 B2 JP4242645 B2 JP 4242645B2 JP 2002542800 A JP2002542800 A JP 2002542800A JP 2002542800 A JP2002542800 A JP 2002542800A JP 4242645 B2 JP4242645 B2 JP 4242645B2
Authority
JP
Japan
Prior art keywords
flow path
valve
cryogenic fluid
line
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002542800A
Other languages
Japanese (ja)
Other versions
JP2004514095A5 (en
JP2004514095A (en
Inventor
ズレキ、ジビグニュー
ハーバート フレイ、ジョン
トレンブレー、ジャン−フィリップ
Original Assignee
エアー プロダクツ エンド ケミカルズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/911,027 external-priority patent/US6513336B2/en
Application filed by エアー プロダクツ エンド ケミカルズ インコーポレーテッド filed Critical エアー プロダクツ エンド ケミカルズ インコーポレーテッド
Publication of JP2004514095A publication Critical patent/JP2004514095A/en
Publication of JP2004514095A5 publication Critical patent/JP2004514095A5/en
Application granted granted Critical
Publication of JP4242645B2 publication Critical patent/JP4242645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C6/00Methods and apparatus for filling vessels not under pressure with liquefied or solidified gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0326Valves electrically actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0329Valves manually actuated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • F17C2205/0332Safety valves or pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0355Insulation thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0358Pipes coaxial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0352Pipes
    • F17C2205/0364Pipes flexible or articulated, e.g. a hose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/037Quick connecting means, e.g. couplings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/01Purifying the fluid
    • F17C2265/015Purifying the fluid by separating
    • F17C2265/017Purifying the fluid by separating different phases of a same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/02Applications for medical applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/05Applications for industrial use
    • F17C2270/0545Tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Pipeline Systems (AREA)

Abstract

A method and apparatus are set forth for transferring a cryogenic fluid. A polymeric, coaxial transfer line is utilized where a first portion of the cryogenic fluid flows through the inner tube while a second portion flows through an annulus between the inner tube and outer tube which annulus is at a lower pressure than the inside tube. In one embodiment, the inner tube is substantially non-porous and the transfer line is preceded by a flow control means to distribute at least part of the first and second portions of the cryogenic fluid to the inner tube and annulus respectively. In a second embodiment, the inner tube is porous with respect to both gas permeation and liquid permeation such that both a gaseous part and a liquid part of the first portion permeates into the annulus to form at least a part of the second portion.

Description

【0001】
発明の背景
超低温流体を搬送する多くの場合では、できる限り完全な液体状態で流体を移動することが重要である。従来は、流体をまず相分離したり、熱交換器で過冷したり、真空ジャケッティングによりラインを断熱状態に保ったりすることが必要であった。さもなければ、搬送ラインの熱漏れはボイルオフを招来し、ひいては搬送ライン内における波動、不安定さ、脈動等、一般的に望ましくない流れの原因となる。長い搬送ラインでは、特に熱漏れが問題となる。
【0002】
本発明は、超低温流体の第一部分が内方の管内を流れ、第二部分が内方の管と外方の管との間の環体内を流れ、外方の管における環体が内方の管よりも圧力が低く同軸、又は“チューブインチューブ”構造の超低温搬送ラインに関するものである。この圧力の違いにより、容易に環体内の流体により内方の管内(煮沸など)にある液体の冷却が可能になり、飽和液体状態に留められる。液体をさらに冷却し、冷却“クッション”として熱漏れに対応可能にする事が望ましい。
【0003】
また、多くの超低温流体搬送装置では搬送ラインが軽量で可撓性を有することが重要である。これは導入時、操作時、保守時に最大の自由度を提供し、ラインが繰り返し曲がることを防げるようにする。本発明は第二に可撓性材料(ポリマー物質など)からラインの少なくとも一部分を形成する超低温搬送ラインに関するものである。
【0004】
従来の技術では超低温搬送ラインのこれら双方の重要な問題が解決されていない。
米国特許第3696627号(ロングスワース(Longsworth))の超低温搬送システムは、堅固な同軸パイピングの構成により超低温流の過冷や安定化を開示している。米国特許第4296610号(デービス(Davis))、米国特許第4336689号(デービス(Davis))、米国特許第4715187号(スターンズ(Stearns))及び、米国特許第5477691号(ホワイト(White))でも同様のシステムを開示している。
【0005】
チャン等(Chang et al)が開示した非金属、可撓超低温搬送ラインは超低温を冷凍手術システム内のクリオプローブを冷却する超低温システムに使用している(“高パフォーマンスマルチプルーブ冷凍手術デバイスの開発”バイオメディカル インストゥルメンション アンド テクノロジー(Biomedical Instrumentation and Techology)、 9月/10月 1994年 383−390ページ)。チャンの可撓性を有するライン設計に起因する熱漏れボイルオフのため、本質的に防熱が弱いこともあいまって、これらのラインは短くする必要があり、適切に稼動させるため十分に過冷された(−214℃)超低温液体で充満される必要がある。これは複雑にして高価な超低温の貯蔵装置と、供給装置と制御システムを上流側に必要とする。
【0006】
また超低温搬送ラインが機械加工に使用されることも知られている。機械加工においては、起寒剤は切削工具や被加工物のインターフェースとして使用される。例として、米国特許第2635399号(ウエスト(West))、米国特許第5103701号(ランデン(Lundin))、米国特許第5509335号(エマーソン(Emerson))、米国特許第5592863号(ジャスコウィック(Jaskowiak))、米国特許第5761974号(ワグナー(Wagner))、米国特許第5901623号(ホン(Hong))がある。チャンと同様に、これらのラインは短く、熱漏れボイルオフの防止のために過冷超低温液体を流す必要があり、従って上流に高価な過冷システムを必要とする。
【0007】
米国特許第3433028号(クレー(Klee))は、純単層内において超低温流体を一定の距離にわたって運ぶ同軸システムを開示している。大きさが決定された、超低温搬送内部ライン入口オリフィスを使用することにより、外部熱漏れの影響を受ける場合、液体は蒸発するために外部ラインへ通過することが許容される。同軸ラインの出口端に設置された温度センサよりなるフロー制御ユニットは、内部ライン内の液体の沸点よりも高いことを必要とする温度(通常、50−100°F)になると、外部ラインの蒸気の流れを止める。その結果、外部ラインの圧力が超低温ソースの圧力に近づいてくる。また、外部ラインの蒸気は常に内部ラインの液体よりも暖かくなる。さらに、蒸発するために外部ラインへ通過する液体の量は、入口に設けた非可変的に設けられたオリフィスにより常に制限されるため、高い熱漏れは完全に防ぐことができない。これらの操作原理において、ラインの設置工事中に耐高圧材、非可撓性金属管材、や断熱素材の使用を必要とする。
【0008】
日本国特許出願公開06210105号は非超低温のガス抜き用ポリマー同軸搬送ラインを開示している。このチューブの素材の特性では、超低温にて使用される搬送ラインの使用が困難である。
【0009】
発明の概要
本発明は超低温流体搬送方法及び搬送装置に関する。ポリマー同軸搬送ラインは内方の導管を超低温流体の第一部分が流れるように使用され、超低温流体の第二部分が内方の導管と外方の導管との間の環体内を流れる。環体内の圧力は内方の導管内の圧力よりも低い。一実施例においては、内方の導管はほぼ非孔質であり、搬送ラインの上流には流れ制御手段が設けられている。流れ制御手段は、超低温流体の第一の部分と第二の部分の少なくとも一部を内方の導管と環体とに分配をする。第二の実施例では、内方の導管の少なくとも一部分は、超低温流体の第一部分の気体浸透や液体浸透に対応するように浸透性を有し、第一部分の気体部及び液状部が環体に浸透して第二部分の少なくとも一部を構成する。
【0010】
本発明の詳細な説明
本発明のポリマー同軸搬送ラインは、図1に示すように、流れ制御ボックス20の下流側に搬送ライン22が配置されている。搬送ライン22において、内方の管72の周囲に外方の管74が配置されている。外方の管74の周囲には断熱材70が設けられ、同断熱材70の周囲には可撓保護ケース68が設けられている。超低温流体の第一部分は内方の管内を流れ、第二部分は内方の管と外方の管の間の環体内を流れる。第一部分は第二部分より高い圧力を有する。
【0011】
搬送ラインの少なくも一部分はポリマー物質など、可撓性材料で形成される。ほぼ全ての内方の管と、ほぼ全ての外方の管を可撓性のあるポリマー物質にて形成することも可能である。さらに、ほぼ全ての外方の管を可撓性に富むポリマー物質で形成し、ほぼ全ての内方の管を、超低温下で脆くならず、かつ可撓性を備えた非ポリマー物質、例えば、(i)銅やその合金、(ii)アルミニウムやその合金、(iii)ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ製品から形成することも可能である。さらに、ほぼ全ての内方の管と、ほぼ全ての外方の管を(i)銅やその合金、(ii)アルミニウムやその合金、(iii)ニッケルやその合金(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(vi)セラミックファイバー編みこみ管状製品などから選択された可撓性非ポリマー物質から形成することも可能である。加えて、ほぼ全ての外方の管を可撓性を有する断熱材料で形成することも可能である。さらに、内方の導管及び外方の導管のうちの少なくとも一方がほぼ四辺形、多辺形、楕円形、他の一般的な幾何学的な断面を有する形状にしてもよい。
【0012】
内方の管はほぼ非浸透性を有することができ、このため環体内における流体の第二部分は内方の管を通じた浸透の結果ではない。又は、内方の管の少なくとも一部分には複数の穴が形成可能であり及び/又は、気体浸透及び液体浸透が可能なように浸透性を有することができ、第一の部分の気体状部及び液状部が環体に浸透し、第二の部分の少なくとも一部を形成する。また、内方の管の複数の部分は、より詳細に述べるならば内方の管の長さ方向において等間隔をおいて配置された複数の部分は、それら浸透性が増強され得る。
【0013】
搬送ラインの上流には、超低温流体の第一部分と第二部分の少なくとも一部を内方の導管と環体に対して分配する流れ制御手段、例えば図1に示す流れ制御ボックス20が有効に配置されている。流れ制御手段は、一般に環体に分配される流体の第二部分の圧力を減少する手段(バルブなど)と一体化され、流体の第二部分の少なくとも少量が液体として環体内に分配される。この差圧により、環体内の液体が内方の管の内部の流体を冷却できる。内方の管が少なくとも部分的に浸透性を有する場合、内方の管から環体気体内への浸透は流れ制御ボックスによって実行される流体分配の少なくとも一部分を補完することができる。流れ制御ボックスの連結部及び内部コンポーネントは3つのオン/オフ(ソレノイド)バルブ61,62,63と手動計量バルブ64を備え、これらのバルブは入口30を介して流れ制御ボックスに連通し、超低温の流れの受け入れ、圧力を制御する。流れ制御ボックス20内部の主要コンポーネントは3方向連結器66であり、これは内方の管と環体にそれぞれ超低温流体の第一部分と第二部分を導入する。ねじ連結部78は3方向連結器66を外方の管74に連結する。任意の直線クランプ部材76は、外方の管をねじ連結部に固定するために使用され得る。流れ制御ボックス20は断熱ケーシングを有し、断熱フィルターを任意に備える。圧力リリーフ弁84を設けてもよい。オン/オフバルブ62、63はその内壁又はバルブシートに開口が形成され、バイパスオリフィス(86,88)が設けられている。
【0014】
環体内における流体の第二部分の少なくとも少量は内方の管内の液体と共に搬送目的箇所及び/又は冷却対象に搬送される。任意に、環体内の流体の第二部分の少なくとも少量が搬送目的箇所及び/又は冷却対象から発散される。前者の場合、搬送ラインの内方の導管と連通する内方管と、搬送ラインの環体と連通する外方管とからなる同軸ノズルの使用により達成される。後者の場合、環体の流体全てが発散され、このことは、環体内の流れの方向が内方の管の流れの方向と同一であるという制限がなくなるだろう任意のノズルが搬送ラインのインターフェースとノズルとの間の漏れを防止するために熱収縮コネクタを含むことが望ましい。
【0015】
本発明の搬送ラインに適したポリマー物質として、炭素系ポリマフッ化炭素系ポリマ、コポリマ及びその混合物、例えばテフロン(E.I.デュポン社の商標名)が挙げられる。
【0016】
本発明における搬送ラインで搬送され得る超低温流体の例としては、窒素、アルゴン、これらの混合物が挙げられる。
本発明における超低温流体を搬送する装置と方法は、搬送目的箇所や冷却対象が、比較的流速が低く、液体の高い応答性を必要とする時、特に使用に適している。このような本発明の搬送ラインが使用される搬送目的箇所及び/又は冷却対象の例として以下に示すものが挙げられる。
【0017】
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー
(ii)収縮させた後に締りばめされたコンポーネント
(iii )生物学的な保存に使用される標本保存用コンテナ
(iv)窒素飛沫ディスペンサー
(v)機械加工に使用される切削工具及び/又は被加工物
vi 冷凍手術システムのクリオプローブ
【図面の簡単な説明】
【図1】 本発明の一実施の形態を示す概略図
[0001]
Background of the Invention In many cases of transporting cryogenic fluids, it is important to move the fluid in as complete a liquid state as possible. In the past, it was necessary to phase-separate the fluid first, to supercool it with a heat exchanger, or to keep the line in an adiabatic state by vacuum jacketing. Otherwise, heat leaks in the transfer line can result in boil-off and, in turn, cause generally undesired flows such as waves, instabilities, and pulsations in the transfer line. In long transport lines, heat leakage is a problem.
[0002]
In the present invention, the first portion of the cryogenic fluid flows through the inner tube, the second portion flows through the annulus between the inner tube and the outer tube, and the annulus in the outer tube is the inner tube. The present invention relates to an ultra-low temperature conveying line having a pressure lower than that of a tube and having a coaxial or “tube-in-tube” structure. Due to the difference in pressure, the fluid in the inner tube (such as boiling) can be easily cooled by the fluid in the annulus and can be kept in a saturated liquid state. It is desirable to further cool the liquid so that it can respond to heat leaks as a cooling “cushion”.
[0003]
In many ultra-low temperature fluid transfer devices, it is important that the transfer line is lightweight and flexible. This provides maximum freedom during introduction, operation and maintenance, and prevents the line from bending repeatedly. The present invention secondly relates to a cryogenic transfer line that forms at least a portion of the line from a flexible material (such as a polymer material ).
[0004]
The prior art has not solved both of these important problems in the cryogenic transfer line.
U.S. Pat. No. 3,696,627 (Longsworth) ultracold transport system discloses supercooling and stabilization of a cryogenic flow with a rigid coaxial piping configuration. The same applies to U.S. Pat. No. 4,296,610 (Davis), U.S. Pat. No. 4,336,689 (Davis), U.S. Pat. No. 4,715,187 (Stearns), and U.S. Pat. No. 5,477,691 (White). The system is disclosed.
[0005]
The non-metallic, flexible cryogenic transfer line disclosed by Chang et al. Uses ultra-low temperatures for cryogenic systems that cool cryoprobes in cryosurgical systems (“Development of high performance multiple probe cryosurgical devices”) Biomedical Instrumentation and Technology, September / October 1994, pages 383-390). Due to heat leak boil-off due to Chang's flexible line design, these lines need to be shortened, coupled with their inherently poor thermal insulation, and are sufficiently subcooled to operate properly (−214 ° C.) Need to be filled with ultra low temperature liquid. This requires a complex and expensive ultra-low temperature storage device, a supply device and a control system upstream.
[0006]
It is also known that ultra-low temperature transfer lines are used for machining. In machining, cryogens are used as interfaces for cutting tools and workpieces. Examples include U.S. Pat. No. 2,635,399 (West), U.S. Pat. No. 5,107,701 (Lundin), U.S. Pat. No. 5,509,335 (Emerson), U.S. Pat. No. 5,592,863 (Jaskowiac). ), US Pat. No. 5,761,974 (Wagner), US Pat. No. 5,901,623 (Hong). Like Chang, these lines are short and require a supercooled cryogenic liquid to flow to prevent heat leak boil-off, thus requiring an expensive supercooling system upstream.
[0007]
U.S. Pat. No. 3,433,028 (Klee) discloses a coaxial system that carries cryogenic fluid over a distance in a pure monolayer. By using the inlet orifice of the sized cryogenic transfer inner line , when affected by external heat leakage, the liquid is allowed to pass to the external line to evaporate. A flow control unit consisting of a temperature sensor installed at the outlet end of the coaxial line will cause the vapor in the external line to reach a temperature (usually 50-100 ° F.) that needs to be higher than the boiling point of the liquid in the internal line. Stop the flow. As a result, the pressure in the external line approaches the pressure in the cryogenic source. Also, the external line vapor is always warmer than the internal line liquid. Furthermore, the amount of liquid that passes to the external line to evaporate is always limited by a non-variably provided orifice at the inlet, so high heat leakage cannot be completely prevented. These operating principles require the use of high pressure resistant materials, inflexible metal tubing, and insulation materials during line installation work.
[0008]
Japanese Patent Application No. 06210105 discloses a non-ultra low temperature degassing polymer coaxial transport line. Due to the properties of the tube material, it is difficult to use a transfer line that is used at ultra-low temperatures.
[0009]
The present invention relates to the transport method and conveying apparatus for the cryogenic fluid. The polymer coaxial transport line is used such that the first portion of the cryogenic fluid flows through the inner conduit and the second portion of the cryogenic fluid flows through the annulus between the inner and outer conduits. The pressure in the annulus is lower than the pressure in the inner conduit. In one embodiment, the inner conduit is substantially non-porous and a flow control means is provided upstream of the transfer line. The flow control means distributes at least a portion of the first and second portions of the cryogenic fluid into the inner conduit and the annulus . In the second embodiment, at least a portion of the inner conduit is permeable to accommodate gas permeation and liquid permeation of the first portion of the cryogenic fluid, with the gas and liquid portions of the first portion being in the annulus. Permeates and constitutes at least part of the second part.
[0010]
DETAILED DESCRIPTION OF THE INVENTION The polymer coaxial conveyance line of the present invention has a conveyance line 22 disposed on the downstream side of the flow control box 20 as shown in FIG. In the transfer line 22, an outer pipe 74 is disposed around the inner pipe 72. A heat insulating material 70 is provided around the outer pipe 74, and a flexible protective case 68 is provided around the heat insulating material 70. The first part of the cryogenic fluid flows in the inner tube and the second part flows in the annulus between the inner and outer tubes. The first portion has a higher pressure than the second portion.
[0011]
At least a portion of the transport line is formed of a flexible material, such as a polymer material . It is also possible to form almost all inner tubes and almost all outer tubes from flexible polymeric materials . Furthermore, almost all outer tubes are formed of a flexible polymeric material , and almost all inner tubes are not brittle under ultra-low temperatures and are flexible non- polymeric materials , for example, (I) Copper and alloys thereof, (ii) Aluminum and alloys thereof, (iii) Nickel and alloys thereof (iv) Austenitic stainless steel, (v) High concentration graphite (vi) Ceramic fiber braided products Is possible. In addition, almost all inner tubes and almost all outer tubes are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys (iv) austenitic stainless steel, ( v) It can also be formed from flexible non- polymeric materials selected from high concentrations of graphite (vi) ceramic fiber braided tubular products and the like. In addition, almost all outer tubes can be formed of a flexible insulating material. Furthermore, at least one of the inner conduit and the outer conduit may have a substantially quadrilateral, polygonal, elliptical, or other general geometric cross-sectional shape.
[0012]
Inner tubes can have a substantially non-permeable, a second portion of the fluid at this end ring body is not the result of penetration through the inner tube. Or, at least a portion of the inner tube may be formed a plurality of holes, and / or can have a permeability to allow gas permeation and liquid permeation, gaseous portion of the first portion And the liquid part penetrates into the ring body and forms at least a part of the second part. Further, the plurality of portions of the inner tube, which will be described in more detail, can have their permeability enhanced by a plurality of portions arranged at equal intervals in the length direction of the inner tube.
[0013]
Effectively disposed upstream of the transfer line is a flow control means for distributing at least a portion of the first and second portions of the cryogenic fluid to the inner conduit and ring, for example, the flow control box 20 shown in FIG. Has been. The flow control means is generally integrated with means (such as a valve) for reducing the pressure of the second portion of fluid distributed to the annulus, and at least a small amount of the second portion of fluid is distributed as a liquid into the annulus. This differential pressure allows the liquid in the annulus to cool the fluid inside the inner tube. If the inner tube is at least partially permeable, permeation from the inner tube into the annulus gas can complement at least a portion of the fluid distribution performed by the flow control box. The connection and internal components of the flow control box include three on / off (solenoid) valves 61, 62, 63 and a manual metering valve 64, which communicate with the flow control box via the inlet 30 and are very cold. Accepts flow and controls pressure. The main component inside the flow control box 20 is a three-way coupler 66, which introduces a first and second portion of cryogenic fluid into the inner tube and ring respectively. A screw connection 78 connects the three-way connector 66 to the outer tube 74. An optional linear clamp member 76 can be used to secure the outer tube to the threaded connection. The flow control box 20 has a heat insulating casing and is optionally provided with a heat insulating filter. A pressure relief valve 84 may be provided. The on / off valves 62 and 63 have openings in their inner walls or valve seats, and are provided with bypass orifices (86 and 88).
[0014]
At least a small amount of the second portion of the fluid in the annulus is transported along with the liquid in the inner tube to the transport destination and / or to be cooled. Optionally, at least a small amount of the second part of the fluid in the annulus is emitted from the delivery destination and / or the object to be cooled. In the former case, this is achieved by using a coaxial nozzle comprising an inner pipe communicating with the inner conduit of the transport line and an outer pipe communicating with the ring of the transport line. In the latter case, all the fluid in the annulus will diverge, which will eliminate the restriction that the flow direction in the annulus is the same as the flow direction in the inner tube . It is desirable for any nozzle to include a heat shrink connector to prevent leakage between the transport line interface and the nozzle .
[0015]
As polymeric substances suitable for conveying line of the present invention, the carbon-based polymer over, fluorocarbon polymer - over, copolymer over and mixtures thereof, for example, Teflon (E. I. Du Pont trade name) and the like.
[0016]
Examples of the cryogenic fluid that can be transported on the transport line in the present invention include nitrogen, argon, and mixtures thereof.
The apparatus and method for transporting a cryogenic fluid in the present invention are particularly suitable for use when the transport destination and the object to be cooled have a relatively low flow rate and require high liquid responsiveness. Such transfer line of the present invention include those shown below as an example of a target site feed transportable that is used and / or cooling target.
[0017]
(I) Environmental test chambers used for stress screening electronic components (ii) Components that have been crimped after shrinking (iii) Containers for specimen storage used for biological preservation (iv) Nitrogen spray dispensers ( v) Cutting tools and / or workpieces used for machining
( Vi ) Cryoprobe of cryosurgery system [Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of the present invention.

Claims (12)

超低温流体の搬送ラインであって、前記搬送ラインは前記超低温流体の少なくとも一部を搬送目的箇所と冷却対象のうちの少なくとも一方に配送するために使用され、前記搬送ラインの少なくとも一部は可撓性材料によって形成され、前記搬送ラインは、
(a)前記超低温流体の第1部分が通るように構成される内方導管(72)と;
(b)前記内方導管(72)を包囲する外方導管(74)であって、前記外方導管(74)は前記内方導管(72)との間に前記超低温流体の第2部分が通る環体を区画形成することと;
(c)前記内方導管(72)に前記第1部分を流し、前記環体に前記第2部分を流すように分配する流れ制御手段と
を備え、
前記流れ制御手段は、
(i) 前記超低温流体の受入れに適した流路入口(30)と;
(ii)3方向連結器(66)と;
(iii) 前記流路入口(30)から前記3方向連結器(66)まで延びる第1流路であって、前記第1流路は前記3方向連結器(66)によって前記内方導管(72)に連結され、前記第1流路は前記流路入口(30)から前記3方向連結器(66)に向かって順に第1分岐部と第1結合部を有することと;
(iv) 前記第1分岐部と前記第1連結部の間において前記第1流路に設けられる第1オンオフバルブ(63)であって、前記第1オンオフバルブ(63)は第1バイパスオリフィス(86)を有し、前記第1バイパスオリフィス(86)は前記第1オンオフバルブ(63)の閉じ状態において前記第1流路を絞ることと;
(v) 前記第1分岐部において前記第1流路から分岐して前記3方向連結器(66)まで延びる第2流路であって、前記第2流路は前記3方向連結器(66)によって前記環体に連結され、前記3方向連結器は前記第1部分を前記内方導管に導入し、前記第2部分を前記外方導管に導入し、前記第2流路は前記第1分岐部と前記3方向連結器(66)の間に第2分岐部を有することと;
(vi) 前記第1分岐部と前記第2分岐部の間において前記第2流路に設けられる第2オンオフバルブ(62)であって、前記第2オンオフバルブ(62)は第2バイパスオ
リフィス(88)を有し、前記第2バイパスオリフィス(88)は前記第2オンオフバルブ(62)の閉じ状態において前記第2流路を絞ることと;
(vii) 前記第2分岐部において前記第2流路から分岐して、前記第1結合部において前記第1流路に連結される第3流路と;
(viii) 前記第3流路に設けられる手動計量バルブ(64)と
を備え、
前記流路入口(30)から前記第1流路に受入れた前記超低温流体を前記第1部分と前記第2部分に分配し、前記第2部分の少なくとも一部の圧力減少させ、前記環体内の前記第2部分の少なくとも少量は液体として前記環体内に分配されつつ前記内方導管(72)内の前記第1部分を冷却し、前記第2部分の少なくとも一部は前記搬送目的箇所と前記冷却対象のうちの少なくとも一方に搬送されるように、前記第2オンオフバルブ(62)の閉じ状態において前記手動計量バルブ(64)が調整されることによって前記超低温流体の流れは圧力調整される、搬送ライン。
An ultra-low temperature fluid transfer line, wherein the transfer line is used to deliver at least a part of the ultra-low temperature fluid to at least one of a transfer destination and a cooling target, and at least a part of the transfer line is flexible. Formed of a conductive material, the transport line is
(A) an inner conduit (72) configured to pass a first portion of the cryogenic fluid;
(B) an outer conduit (74) surrounding the inner conduit (72), the second portion of the cryogenic fluid being between the outer conduit (74) and the inner conduit (72). Compartmentalizing the passing ring;
(C) flow control means for distributing the first portion through the inner conduit (72) and distributing the second portion through the annular body;
The flow control means includes
(I) a flow path inlet (30) suitable for receiving said cryogenic fluid;
(Ii) a three-way coupler (66);
(Iii) a first flow path extending from the flow path inlet (30) to the three-way coupler (66), wherein the first flow path is connected to the inner conduit (72) by the three-way coupler (66). The first flow path has a first branch part and a first coupling part in order from the flow path inlet (30) toward the three-way coupler (66);
(Iv) A first on / off valve (63) provided in the first flow path between the first branch portion and the first connecting portion, wherein the first on / off valve (63) is a first bypass orifice (63). 86), and the first bypass orifice (86) restricts the first flow path in the closed state of the first on-off valve (63);
(V) a second flow path that branches from the first flow path at the first branch portion and extends to the three-way coupler (66), wherein the second flow path is the three-way coupler (66). The three-way coupler introduces the first part into the inner conduit, the second part into the outer conduit, and the second flow path is connected to the first branch. And having a second branch between the three-way connector (66);
(Vi) A second on / off valve (62) provided in the second flow path between the first branch portion and the second branch portion, wherein the second on / off valve (62) is a second bypass valve.
The second bypass orifice (88) restricts the second flow path in the closed state of the second on / off valve (62);
(Vii) a third flow path branched from the second flow path at the second branch portion and connected to the first flow path at the first coupling portion;
(Viii) a manual metering valve (64) provided in the third flow path;
With
Distributing the cryogenic fluid received in said first flow path from the flow path inlet (30) to said second portion and said first portion, reducing at least a portion of the pressure of said second portion, said ring body At least a small amount of the second part is distributed as a liquid in the annulus and cools the first part in the inner conduit (72), and at least a part of the second part includes the transport destination and the part. The flow of the cryogenic fluid is adjusted by adjusting the manual metering valve (64) in a closed state of the second on / off valve (62) so as to be conveyed to at least one of the objects to be cooled. Conveying line.
前記外方導管(74)は管であり、前記内方導管(72)はほぼ非浸透性のポリマー物質によって形成される管である、請求項1に記載の搬送ライン。  The transport line of claim 1, wherein the outer conduit (74) is a tube and the inner conduit (72) is a tube formed by a substantially non-permeable polymer material. 前記環体内の流体の第2部分の少なくとも少量は、同軸ノズルの作用によって前記内方導管(72)内の液流とともに前記搬送目的箇所と前記冷却対象のうちの少なくとも一方にまで搬送され、
前記同軸ノズルは、
前記内方導管(72)に連通する内方通路と、
前記環体に連通する外方通路と
を備える、請求項1に記載の搬送ライン。
At least a small amount of the second portion of the fluid in the annular body is transported to the at least one of the transport destination and the object to be cooled together with the liquid flow in the inner conduit (72) by the action of the coaxial nozzle,
The coaxial nozzle is
An inner passage communicating with the inner conduit (72);
The conveyance line according to claim 1, further comprising an outer passage communicating with the ring body.
前記第2部分の少なくとも少量は、前記搬送目的箇所と前記冷却対象のうちの少なくとも一方から離間した前記環体から発散される、請求項1に記載の搬送ライン。  The conveyance line according to claim 1, wherein at least a small amount of the second portion is diverged from the ring body that is separated from at least one of the conveyance destination location and the cooling target. 前記可撓性材料は、炭素系ポリマー、フッ化炭素系ポリマー、コポリマー、およびそれらの混合物から選択されるポリマー物質である、請求項1に記載の搬送ライン。  The transport line of claim 1, wherein the flexible material is a polymer material selected from carbon-based polymers, fluorocarbon-based polymers, copolymers, and mixtures thereof. 前記超低温流体は、窒素、アルゴン、およびそれらの混合物から選択される、請求項1に記載の搬送ライン。  The transfer line of claim 1, wherein the cryogenic fluid is selected from nitrogen, argon, and mixtures thereof. 前記搬送目的箇所と前記冷却対象のうちの少なくとも一方は
(i)ストレススクリーニング電子コンポーネントに使用される環境試験チャンバー、
(ii)収縮させた後に締りばめされたコンポーネント、
(iii )生物学的な保存用に使用される標本保存用コンテナ、
(iv)窒素飛沫ディスペンサー、
(v)機械加工に使用される切削工具と被加工物のうちの少なくとも一方、および
(vi)冷凍手術システムのクリオプローブ
のうちから選択される、請求項1に記載の搬送ライン。
At least one of the transfer destination and the cooling object is (i) an environmental test chamber used for a stress screening electronic component;
(Ii) components that have been crimped after being shrunk;
(Iii) specimen storage containers used for biological storage;
(Iv) Nitrogen splash dispenser,
The transfer line according to claim 1, selected from (v) at least one of a cutting tool and a workpiece used for machining, and (vi) a cryoprobe of a cryosurgical system.
ほぼ全ての前記内方導管(72)とほぼ全ての前記外方導管(74)は、可撓性を有するポリマー物質からなる、請求項1に記載の搬送ライン。  The transport line of claim 1, wherein substantially all of the inner conduits (72) and substantially all of the outer conduits (74) are made of a flexible polymeric material. ほぼ全ての前記外方導管(74)は、可撓性を有するポリマー物質によって形成され、
ほぼ全ての前記内方導管(72)は、(i)銅やその合金、(ii)アルミニウムやその合金、(iii)ニッケルやその合金、(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト(dense graphite)、および(vi)セラミックファイバー
編込管状製品から選択された可撓性を有する非ポリマー物質によって形成された、請求項1に記載の搬送ライン。
Almost all the outer conduit (74) is formed by a flexible polymeric material;
Almost all the inner conduits (72) consist of (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys, (iv) austenitic stainless steel, and (v) high-concentration graphite. The delivery line of claim 1 formed by a flexible non-polymeric material selected from (dense graphite) and (vi) a ceramic fiber braided tubular product.
ほぼ全ての前記内方導管(72)とほぼ全ての前記外方導管(74)は、(i)銅やその合金、(ii)アルミニウムやその合金、(iii)ニッケルやその合金、(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト、および(vi)セラミックファイバー編込管状製品から選択された可撓性を有する非ポリマー物質から形成される、請求項1に記載の搬送ライン。  Almost all the inner conduits (72) and almost all the outer conduits (74) are (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys, (iv) The delivery line of claim 1 formed from a flexible non-polymeric material selected from austenitic stainless steel, (v) high concentrations of graphite, and (vi) ceramic fiber braided tubular products. ほぼ全ての前記外方導管(74)は、可撓性を有する断熱物質によって形成され、
ほぼ全ての前記内方導管(72)は、(i)銅やその合金、(ii)アルミニウムやその合金、(iii)ニッケルやその合金、(iv)オーステナイトステンレス鋼、(v)高濃度のグラファイト、および(vi)セラミックファイバー編込管状製品から選択された可撓性を有する非ポリマー物質から形成される、請求項1に記載の搬送ライン。
Almost all the outer conduit (74) is formed by a flexible insulating material;
Almost all the inner conduits (72) consist of (i) copper and its alloys, (ii) aluminum and its alloys, (iii) nickel and its alloys, (iv) austenitic stainless steel, and (v) high-concentration graphite. And (vi) the transfer line of claim 1 formed from a flexible non-polymeric material selected from ceramic fiber braided tubular products.
請求項1から請求項11のいずれか一項に記載の搬送ラインを用いて前記超低温流体を搬送する方法であって、前記方法は、
前記第1部分を前記内方導管(72)に流すとともに前記第2部分を前記環体に流すことと、
前記流路入口(40)から前記第1流路に受入れた前記超低温流体を前記第1部分と前 記第2部分に分配し、前記第2部分の少なくとも一部の圧力を減少させ、前記環体内の前記第2部分の少なくとも少量は液体として前記環体内に分配されつつ前記内方導管(72)内の前記第1部分を冷却し、前記第2部分の少なくとも一部は前記搬送目的箇所と前記冷却対象のうちの少なくとも一方に搬送されるように、前記オンオフバルブ(62)の閉じ状態において前記手動計量バルブ(64)を調整することと
を備える、方法。
A method for transporting the cryogenic fluid using the transport line according to any one of claims 1 to 11, wherein the method comprises:
Flowing the first portion through the inner conduit (72) and flowing the second portion through the annulus;
Distributing the cryogenic fluid received in said first flow path from the flow path inlet (40) to said first portion and before Symbol second portion reduces at least a portion of the pressure of said second portion, said ring At least a small amount of the second part in the body is distributed as a liquid in the annulus and cools the first part in the inner conduit (72), and at least a part of the second part is separated from the transport destination point. Adjusting the manual metering valve (64) in a closed state of the on-off valve (62) to be conveyed to at least one of the objects to be cooled .
JP2002542800A 2000-11-14 2001-11-08 Transport line and transport method for moving cryogenic fluid Expired - Fee Related JP4242645B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US71268000A 2000-11-14 2000-11-14
US09/911,027 US6513336B2 (en) 2000-11-14 2001-07-23 Apparatus and method for transferring a cryogenic fluid
PCT/US2001/047516 WO2002040915A2 (en) 2000-11-14 2001-11-08 Apparatus and method for transferring a cryogenic fluid

Publications (3)

Publication Number Publication Date
JP2004514095A JP2004514095A (en) 2004-05-13
JP2004514095A5 JP2004514095A5 (en) 2008-12-25
JP4242645B2 true JP4242645B2 (en) 2009-03-25

Family

ID=27108869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002542800A Expired - Fee Related JP4242645B2 (en) 2000-11-14 2001-11-08 Transport line and transport method for moving cryogenic fluid

Country Status (11)

Country Link
EP (1) EP1334306B1 (en)
JP (1) JP4242645B2 (en)
CN (1) CN1237303C (en)
AT (1) ATE287064T1 (en)
AU (2) AU2892502A (en)
BR (1) BR0115316B1 (en)
CA (1) CA2428777C (en)
DE (1) DE60108415T2 (en)
MX (1) MXPA03004259A (en)
TW (1) TW536601B (en)
WO (1) WO2002040915A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI652210B (en) 2017-11-20 2019-03-01 國璽幹細胞應用技術股份有限公司 Smart automation storage device for bio-material
CN112709873A (en) * 2020-12-25 2021-04-27 浙江启尔机电技术有限公司 Double-layer pipe, pipe joint and fluid conveying system
CN112709872A (en) * 2020-12-25 2021-04-27 浙江启尔机电技术有限公司 Double-layer pipe
CN112709878B (en) * 2020-12-25 2022-11-15 浙江启尔机电技术有限公司 Double-layer pipe quick joint

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH260393A (en) * 1946-04-10 1949-03-15 Rateau Soc Thermal insulation device for low temperature and low density gas pipelines, in particular for cold and expanded air pipelines of aircraft engine test benches.
US3433028A (en) * 1966-09-02 1969-03-18 Air Prod & Chem Cryogenic fluid conveying system
US3706208A (en) * 1971-01-13 1972-12-19 Air Prod & Chem Flexible cryogenic liquid transfer system and improved support means therefor
US3696627A (en) * 1971-01-18 1972-10-10 Air Prod & Chem Liquid cryogen transfer system
FR2624949B1 (en) * 1987-12-22 1990-06-15 Commissariat Energie Atomique LIQUEFIED GAS TRANSFER LINE COMPRISING AT LEAST ONE BYPASS OF THE VAPORS OF THIS GAS
US5477691A (en) * 1994-09-30 1995-12-26 Praxair Technology, Inc. Liquid cryogen delivery system
GB0004174D0 (en) * 2000-02-22 2000-04-12 Gore & Ass Cryogenic fluid transfer tube

Also Published As

Publication number Publication date
TW536601B (en) 2003-06-11
WO2002040915A3 (en) 2003-05-01
CA2428777C (en) 2006-09-12
DE60108415D1 (en) 2005-02-17
AU2892502A (en) 2002-05-27
DE60108415T2 (en) 2005-12-22
EP1334306B1 (en) 2005-01-12
ATE287064T1 (en) 2005-01-15
CN1237303C (en) 2006-01-18
BR0115316A (en) 2003-10-21
AU2002228925B9 (en) 2005-09-08
AU2002228925B2 (en) 2005-04-21
MXPA03004259A (en) 2004-12-03
BR0115316B1 (en) 2011-04-05
CA2428777A1 (en) 2002-05-23
CN1474920A (en) 2004-02-11
JP2004514095A (en) 2004-05-13
EP1334306A2 (en) 2003-08-13
WO2002040915A2 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
KR100561585B1 (en) Apparatus and method for transferring a cryogenic fluid
US8950194B2 (en) Reduction of cryogen loss during transportation
EP0038673B1 (en) Apparatus and process for delivering liquid cryogen
US5165246A (en) Transport trailer for ultra-high-purity cryogenic liquids
CA2219967C (en) Cryogenic cold shelf
GB2315320B (en) Apparatus and method for regulating temperature in a cryogenic test chamber
US6227173B1 (en) Fuel line arrangement for LPG system, and method
JP4242645B2 (en) Transport line and transport method for moving cryogenic fluid
US5860971A (en) Thawing of cryosurgical apparatus
EP3245969B1 (en) Closed-loop system for cryosurgery
US5829791A (en) Insulated double bayonet coupler for fluid recirculation apparatus
JPWO2017183185A1 (en) Gas filling device
JP2003524135A (en) Cryogenic fluid transport pipe
CN102884360B (en) The method of production sterile cryogenic liquid
AU2002228925A1 (en) Apparatus and method for transferring a cryogenic fluid
JP2004514095A5 (en) Cryogenic fluid transfer device and transfer method
WO2019132657A1 (en) Sampling device and method for sampling a cryogenic fluid for measuring at least one property
US7051537B2 (en) Method and apparatus for carbon dioxide accelerated reactor cooldown
KR200173364Y1 (en) Double pipe for ultra low temperature liquid
CN113431706B (en) Venturi tube combination device and system for liquid engine and operation method of venturi tube combination device
WO2022140295A1 (en) Method and apparatus for introducing pre-heated working fluid within a high pressure vessel
Das et al. Integrated flow distribution and control system of supercritical and liquid helium for SST-1
WO2005116514A1 (en) Reduction of cryogen loss during transportation of cryostats
Möller Pressure drops in the helium supply lines, for the ACOL cryogenic and cryopumping system
JPH01123974A (en) Medium feeding device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20060410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20060419

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070613

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080812

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080819

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080912

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080918

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4242645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees