JP4240579B2 - Inner corner friction stir welding probe and inner corner friction stir welding method using the same - Google Patents

Inner corner friction stir welding probe and inner corner friction stir welding method using the same Download PDF

Info

Publication number
JP4240579B2
JP4240579B2 JP14030598A JP14030598A JP4240579B2 JP 4240579 B2 JP4240579 B2 JP 4240579B2 JP 14030598 A JP14030598 A JP 14030598A JP 14030598 A JP14030598 A JP 14030598A JP 4240579 B2 JP4240579 B2 JP 4240579B2
Authority
JP
Japan
Prior art keywords
friction stir
stir welding
joined
inner corner
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14030598A
Other languages
Japanese (ja)
Other versions
JPH11320128A (en
Inventor
慎也 牧田
博光 石川
博通 佐野
一浩 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP14030598A priority Critical patent/JP4240579B2/en
Publication of JPH11320128A publication Critical patent/JPH11320128A/en
Application granted granted Critical
Publication of JP4240579B2 publication Critical patent/JP4240579B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内すみ摩擦攪拌接合用プローブおよびこれを用いた内すみ角摩擦攪拌接合方法に関し、すみ肉表面に凹凸がなく美麗な角継ぎ手の形成と、任意の角度のすみ継手の形成が可能な内すみ摩擦攪拌接合用プローブおよびこれを用いた内すみ角摩擦攪拌接合方法に関する。また、接合される材料の材質は、通常の摩擦攪拌接合の適用が可能なものでよく、アルミニウム合金材は殊に適用が容易なものである。
【0002】
【従来の技術】
すみ継手、すなわち、2枚の母材(被接合材)を略直角にL字形に保つ、そのすみの溶接継手を形成するに際し、従来の溶融溶接法による場合、図23(a)〜(c)に示すように、2枚の母材(被接合材)30a 、30b に開先31を設けて、外側から溶融溶接を行い溶接ビード32を形成する外すみ溶接方法、また図23(d)に示すように、内側から隅肉継手状に溶接する内すみ溶接方法がある。
【0003】
また、特表平9ー508073号公報には、摩擦攪拌接合方法が示され、さらに摩擦攪拌接合方法を用いて二部材のすみ継手を形成することが説明されている。すなわち、図24に示すように、略垂直な被接合材30a の上端部側面に、略水平な被接合材30b の端面を接触させて被接合面33を形成し、前記被接合材30a と前記被接合材30b の内すみに裏当34を当接せしめ、下部に凹面円形下面35b を有し、該凹型底面の中心から下方に所定の高さだけ突出する攪拌ピン36を備えた回転プローブ35を回転しつつ前記攪拌ピン36を前記被接合面部の被接合部材30a と30b に押し込み、前記回転プローブ35を矢印Fp で示す所定の押圧力で前記凹面円形下面35b が、前記一対の被接合部材30a 、30b に接するように下方に押圧しつつ、被接合面33に沿って移動させることによって、該被接合面部を接合させてすみ継手を形成する外すみ摩擦攪拌接合方法が開示されている。
【0004】
【発明が解決しようとする課題】
前記図23に示したように溶融溶接によりすみ継手を形成する場合には、下記の問題がある。
(1)溶接ビード表面に凹凸が生じ、接合材の用途によっては、特に外すみ溶接の場合は溶接ビードを切削もしくは研削加工により平滑に仕上げる必要が生じる場合がある。
(2)ポロシティを始めとした溶接部欠陥が発生しやすい。また、ヒューム、スパッタ等の発生が多く、作業環境の悪化を招いたり、スパッタ除去作業等が必要になる。また、ヒュームによる作業環境の悪化を防止するため、局部集塵装置等が必要になり、設備コストが増大する。
(3)局部加熱や残留応力による変形が大きく、溶接後の焼鈍や変形矯正を必要とすることがある。
(4)アルミニウム、チタニウム、銅等の酸化しやすい金属の溶接には、溶接装置が複雑、高価で、溶接技術が難しいMIG溶接やTIG溶接等の不活性ガスシールド溶接法や、真空中電子ビーム溶接法、レーザ溶接法等を適用しなければならない。
【0005】
前記図24に示した外すみ摩擦攪拌接合方法によれば、上記のような溶融溶接による方法の問題点を軽減または解消することが可能であるが、下記のような問題点がある。
(1)略直角な角継手を形成することはできるが、摩擦攪拌接合プローブのプローブ本体の底面に、該底面に垂直で前記プローブ本体の回転軸と同軸に一体に接続される攪拌ピンを備える摩擦攪拌接合プローブを使用するため、
a)図25(a)、(b)に示すように、一対の被接合材30a 、30b の内角βが90°を超える鈍角の場合は、前記一対の被接合材30a 、30b のいずれかの外面に垂直で、内すみ底線をとおる被接合面33vaまたは33vbの形成が可能で、かつ、前記外面の被接合面から一対の被接合材の外角稜線までの距離w30a またw30b が摩擦攪拌接合プローブのプローブ本体の底面半径よりも大きく取れる場合は外角摩擦攪拌接合は可能である。しかし、これら被接合(板)材30a または30b の板材の端部の必要加工形状が複雑で、かつ厳しい加工精度が必要である。
b)従来の溶融溶接法に比べれば、極めて僅かであるが接合部の表面に凹凸が現れる。またこの接合部は被接合材の側面側となり、すみ部で接合することはできなかった。
【0006】
本発明は、上記の従来技術の問題点を解消し、溶融溶接のもつ欠点が殆どなく、外すみ角摩擦攪拌接合の場合のように、外側面に接合痕が生じず、任意の角度で配置された一対の被接合材のすみ継手を内側からの摩擦攪拌接合により容易に形成可能な内すみ摩擦攪拌接合用プローブとそれを用いた内すみ摩擦攪拌接合方法の提供を課題とする。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決するために、第1の手段として、
被接合材端部を被接合材の内面に対して任意に決められる所定の角度α/2の斜面を有するように予め加工された一対の被接合材の、前記斜面同士を接触させて任意に決められる所定の内すみ角度αのすみ継手を形成するように被接合面を形成し、前記すみ継手の内すみから前記被接合面を摩擦攪拌接合する内すみ摩擦攪拌接合用プローブを、
前記すみ継手の内すみ部表面に接する二辺が等しく頂角角度αの逆二等辺三角柱片形状を備え、該逆二等辺三角柱片の頂角稜線上の一点から該逆二等辺三角柱片の上辺面に垂直な中心軸を有する攪拌ピン挿通用貫通孔を備えた押さえブロックと、
該押さえブロックの前記攪拌ピン挿通用貫通孔の上辺面部内径より大径の底面を備えたプローブ本体と、
該プローブ本体の底面に該プローブ本体の回転軸と同軸に一体に接続され、前記押さえブロックの前記攪拌ピン挿通用貫通孔に回転自在に挿通されて、押さえブロックの前記頂角稜線から所定の長さだけ突出した攪拌ピンと、からなることを特徴とするように構成した。
【0008】
上記の第1手段からなる本発明の内すみ摩擦攪拌接合用プローブにおいては、第2の手段として、
前記攪拌ピンの、前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線より所定の距離だけ前記上辺面に近づいた部位に、該部位で前記上辺面に平行な面と前記押さえブロックの二等辺面とが交差する一対の交差線間の幅に等しい直径の上面を有し、斜面が前記すみ継手を構成する一対の被接合材の内すみ部表面に接し、下面の直径が前記攪拌ピンの先端部の外径に等しく該攪拌ピンの先端部に繋がる逆円錐台部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側に、前記攪拌ピンの前記逆円錐台部が嵌装される空洞部を設けるように、構成してもよい。
【0009】
上記の第1手段からなる本発明の内すみ摩擦攪拌接合用プローブにおいては、第3の手段として、
前記攪拌ピンの、前記押さえブロックの前記頂角稜線より所定の距離だけ該押さえブロックの前記上辺面に近づいた部位に、前記攪拌ピン挿通用貫通孔の内径より大きな直径を有する上面を有し、該上面と前記頂角稜線との間の所定の位置に上面の直径と同じ直径の円形下面を有する大径円盤部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側の周囲に、前記攪拌ピンの前記大径円盤部の上面と外周面の一部とに接し該大径円盤部が嵌装される円形孔を設け、さらに前記押さえブロックの前記大径円盤部の外周面から前記押さえブロックの長手方向の一端面までの間の、前記大径円盤部の前記円形下面の高さ位置に、前記押さえブロックの上辺面に平行な下面を形成するようにして、構成してもよい。
【0010】
上記の第1手段からなる本発明の内すみ摩擦攪拌接合用プローブにおいては、第4の手段として、
前記攪拌ピンの、前記押さえブロックの前記頂角稜線の位置に前記攪拌ピン挿通用貫通孔の内径より大きな直径を有する円形下面を有し、外周面が前記の一対の被接合部材の内すみ部の内面と交差する高さ以上の高さ位置に上面を有する大径円盤部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側の周囲に、前記攪拌ピンの前記大径円盤部の上面に接し該大径円盤部が嵌装される円形孔を設けるように、構成してもよい。
【0011】
上記のいずれかの本発明の内すみ摩擦攪拌接合用プローブにおいては、第5の手段として、
前記押さえブロックの上辺面または前記プローブ本体下部に潤滑剤貯留部を設けるとともに、該潤滑剤貯留部から前記プローブ本体の底面と前記押さえブロックの上辺面との間に潤滑剤を供給する潤滑剤供給通路を設けるように、構成してもよい。
【0012】
本発明の内すみ摩擦攪拌接合方法においては、上記の課題を解決するために、第6の手段として、
内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、前記第1の手段または第2の手段に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法を、
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
内面同士が前記の角度αをなすように前記一対の被接合材の前記斜面同士を接触させて被接合面を形成するとともに、
前記一対の被接合材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同士の接触を保ちつつ、
前記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの先端部を被接合面部の被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみ部に押し付けながら、
前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とするように構成した。
【0013】
本発明の内すみ摩擦攪拌接合方法においては、上記の課題を解決するために、第7の手段として、
内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、前記第3の手段に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法を、
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
内面同士が前記の角度αをなすように前記一対の被接合材の前記斜面同士を接触させて被接合面を形成するとともに、
前記一対の被接合材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同士の接触を保ちつつ、
記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの先端部および前記大径円盤部の下部を被接合面部の被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみに押し付けながら、
前記押さえブロックの前記下面を前記攪拌ピンの後方に位置させつつ前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とするように構成した。
【0014】
本発明の内すみ摩擦攪拌接合方法においては、上記の課題を解決するために、第8の手段として、
内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、前記第4の手段に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法を
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
a)前記被接合材の前記斜面の内面側端部位置に、前記一対の被接合材の前記斜面同士を接触させて被接合面を形成した場合に、該被接合面の内すみ側端の位置に、該被接合面に垂直な底面を有し、縦断面の外周寸法が前記内すみ摩擦攪拌接合プローブの大径円盤部の縦断面の外周寸法よりも僅かに大きく、被接合ラインの方向に伸びる溝が形成されるように、前記一対の被接合材端部に断面形状が直角三角形の溝を刻設しておき、
内面同士が前記の角度αをなすように前記一対の被接合材の端部の前記斜面同士を接触させて被接合面を形成した後、
または、
b)内面同士が前記の角度αをなすように前記一対の被接合材の端部の前記斜面同志を接触させて被接合面を形成し、
前記の被接合面の内すみ側端の位置に、該被接合面に垂直な底面を有し、縦断面の外周寸法が前記内すみ摩擦攪拌接合プローブの大径円盤部の縦断面の外周寸法よりも僅かに大きく、被接合ラインの方向に伸びる溝を刻設した後、
前記一対の被接合部材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同士の接触を保ちつつ、
前記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの前記大径円盤部より先の先端部を被接合面部の前記被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみ部に、前記攪拌ピンの前記大径円盤部の円形下面を前記被接合面の内すみ側端部位置に形成された前記の溝の底面に、各々押し付けつつ、
前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とするように構成した。
【0015】
【発明の実施の形態】
請求項1に係る本発明の内すみ角摩擦攪拌接合用プローブの一実施の形態と、請求項6に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、図1〜図3、図16、図17、図19を参照して、以下に説明する。
図1は本実施の形態の内すみ角摩擦攪拌接合用プローブの斜視図、図2は図1の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図1のA−A線矢視断面図、図3は図1の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図1のB−B線矢視断面図、図16、図17は本発明の実施の形態を適用して、一対の被接合材ですみ継手を形成する場合の形状と配置を示す端面図であって、図16は被接合材の厚みt1、2 が等しい場合、図17は被接合材の厚みt1、2 が等しくない場合、図19(a)は前記図1〜3で示した内すみ摩擦攪拌接合用プローブを用いて、例えば前記図16に示した一対の被接合材で、すみ継手を形成するための摩擦攪拌接合方法を示す斜視図、図19(b)は形成されたすみ継手の接合部の仕上り状況を示す断面図である。
【0016】
上記図に示す請求項1に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態は、被接合材1a 、1b の端部を被接合材1a 、1b のそれぞれの内面1ai、1biに対して所定の角度α/2の斜面1as、1bsを各々有するように予め加工された一対の被接合部材1a 、1b の、前記斜面1asと1bsとを接触させて任意に決められる所定の角度αのすみ継手3を形成するように被接合面2を形成し、前記すみ継手3の内すみから前記被接合面2を摩擦攪拌接合する内角摩擦攪拌接合用プローブ41 を、
前記すみ継手3の内すみ部表面1ai、1biに接する二辺が等しい逆二等辺三角柱片状外形を備え、該逆二等辺三角柱片の頂角稜線5el上の一点から該逆二等辺三角柱片の上辺面5usに垂直な中心軸を有する攪拌ピン挿通用貫通孔5h を備えた押さえブロック5と、
該押さえブロック5の前記攪拌ピン挿通用貫通孔5h の上辺面部内径より大径の円形底面6bsを備えたプローブ本体6と、
該プローブ本体6の前記円形底面6bsに該プローブ本体6の回転軸と同軸に一体に接続され、前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h に回転自在に挿通された攪拌ピン上部7t と、該攪拌ピン上部7tに一体に繋がり、前記押さえブロック5の前記頂角稜線5elから所定の長さだけ突出し、ネジ状の攪拌翼のある攪拌ピン先端部7b とからなる攪拌ピン7と、から基本的に構成される。
【0017】
つぎに、前記のように構成された請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の作用と、該内すみ摩擦攪拌接合用プローブ41 を用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、以下に説明する。
(1)図16に示すように、それぞれの厚みt1 、t2 の等しい一対の被接合材1a 、1b の端部を、該一対の被接合材1a 、1b をその内面1aiと1biとが任意に決められる所定の角度αをなすように配置してすみ継手3を形成するために、前記被接合材1a 、1b のそれぞれの内面1ai、1biに対して角度α/2のをなすような斜面1as、1bsを各々有するように予め加工しておく。
なお、図17に示すようにそれぞれの厚みt1 、t2 が異なり、厚み差Δt =t2 −t1 のある一対の被接合材1a 、1b を用いてすみ継手3を形成する場合は、上記と同じような斜面1as、1bsを有するように予め加工するに際して、大きな厚みt2 をもつ被接合材1b の端面1bes において、外面1boの端縁1boe から厚さΔt だけ内面1bi側に離れた位置を起点として前記斜面1bsを形成しておけばよい。
(2)前記の内面1aiと1biとが前記の角度αをなすように、前記一対の被接合材1a 、1b のそれぞれの端部の前記斜面1asと1bsとを接触させて被接合面2を形成する。
(3)前記一対の被接合材1a 、1b の外すみ部表面1aoと1boとに接する裏当て部材8によって、前記一対の被接合部材1a 、1b のそれぞれの斜面1asと1bsが内すみ摩擦攪拌接合中に接触を保つように保持する。
(4)前記内すみ摩擦攪拌接合用プローブ41 の前記プローブ本体6および前記攪拌ピン7を回転させながら、前記攪拌ピン7の先端部を前記被接合面2の周囲の被接合材1a と1b の中に押し込む。なお、この実施の形態の場合、接合開始位置において、被接合部に前記攪拌ピン下部7btと同径の下穴を開けておくことにより塑性流動固相化した材料の攪拌ピンの体積分の処理が不要となり問題が生じない。
次に、前記プローブ本体6を前記一対の被接合材1a と1b が形成する内すみの方向(矢印Fp の方向)に押圧して、前記押さえブロック5の前記頂角稜線5elを含む斜面5sa、5sbを前記内すみ部の一対の被接合材内表面1ai、1biに押し付けながら、前記内すみ摩擦攪拌接合用プローブ41 を被接合ライン2tl(被接合面2の上端線) に沿って矢印(t)の方向に移動させる。
その結果、回転する前記攪拌ピン7と前記被接合面2の周囲の被接合材1a 、1b との間に摩擦熱が発生して温度が上昇し、前記攪拌ピン7の周囲に塑性流動固相部9が形成される。前記攪拌ピン7が前記矢印(t)の方向に移動した後の塑性流動固相部9の顕熱が周囲に奪われて温度が低下し、塑性流動を起こさない温度まで低下すると、前記一対の被接合材1a と1b が接合されて図3および図19(b)に示されるような接合部10が形成される。
なお、前記プローブ本体6の円形底面6bsは、攪拌ピン7および押さえブロック5に加える押し圧力Fp を作用させると共に、押さえブロック5の貫通孔5h と攪拌ピン上部7t との間の隙間に塑性流動固相部9が流入しても、それが前記円形底面6bsと押さえブロック5の上辺面5usとの間から流出するのを防止する作用を呈する。
【0018】
上記のような本発明の実施の形態によれば、溶融溶接にともなうような欠点が殆どなく、外すみ摩擦攪拌接合のように、被接合材端部の接合面形成のための加工形状が複雑かつ高精度を要求されたり、接合部がすみ部になく、凹凸のある接合部が被接合材の側面にくるといった欠点のない、任意に決められる所定の角度で配置された一対の被接合材のすみ継手を内側からの摩擦攪拌接合により容易に形成可能である。
【0019】
次に、請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態と、請求項6に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、図4〜図6、図16、図17、図19を参照して、以下に説明する。
図4は本実施の形態の内すみ摩擦攪拌接合用プローブの斜視図、図5は図4の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図4のC−C線矢視断面図、図6は図4の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図4のD−D線矢視断面図、図16、図17は前述のとおりである。図19(a)は前記図4〜図6で示した内すみ摩擦攪拌接合用プローブを用いて、例えば前記図16に示した一対の被接合材で、すみ継手を形成するための摩擦攪拌接合方法を示す斜視図、図19(b)は形成されたすみ継手の接合部の仕上り状況を示す断面図である。
【0020】
上記図に示す請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態は、前記図1〜図3で示した請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の一実施の形態とは、以下の点で異なる。
すなわち、前記攪拌ピン7の、前記押さえブロック5の前記頂角稜線5elより所定の距離だけ該押さえブロック5の前記上辺面5usに近づいた部位に、該部位で前記上辺面5usに平行な面と前記押さえブロックの二等辺面5sa、5sbとが交差する一対の交差線間の幅に等しい直径D11の上面を有し、斜面が前記角継手を構成する一対の被接合材1a 、1b の内すみ部表面1ai、1biに接し、下面が前記攪拌ピンの先端部7b の外径d7bに等しく該攪拌ピンの先端部7b に繋がる逆円錐台部11を設けるとともに、
前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の前記頂角稜線5el側の周囲に、前記攪拌ピン7の前記逆円錐台部11の上面11usと外周面11 sの一部とに接して前記逆円錐台部11が嵌装される逆円錐台状の空洞部511a を設けて、基本的に構成されている。
【0021】
なお、前記攪拌ピン上部7t 、逆円錐台部11と攪拌ピン先端部7b とからなる攪拌ピン7を組み立てるために、以下のように構成されている。すなわち、
a)攪拌ピン7を前記押さえブロック5に着脱可能にするために、前記逆円錐台部11より上方の前記押さえブロック5の中心部は、内径が前記攪拌ピン挿通用貫通孔5h の内径に等しく、外径が前記円錐台部11の上面11usの直径D11よりもやや大きな外径D5ip の中空円筒5ipが、前記押さえブロック5の中心部に着脱可能に装着され、該押さえブロック5に固定されている。
b)さらに、前記中空円筒5ipと前記攪拌ピン7とを分離・一体化可能にするために、前記中空円筒5ipを割り型で構成するか、または、前記攪拌ピン上部7t の上端部を前記プローブ本体6の下端部に着脱可能なようにネジ接合されて構成されている。
【0022】
上記のように構成された請求項2に係る本発明の内すみ摩擦攪拌接合用プローブ42 の実施の形態の作用と、これを用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の実施の形態は、前記請求項1に係る本発明の内すみ擦攪拌接合用プローブ41 の作用と、該内すみ摩擦攪拌接合用プローブ41 を用いた請求項6に係る本発明の内角摩擦攪拌接合方法の一実施の形態と作用・効果は略同様であるので、説明を省略する。
【0023】
ただし、前記請求項1に係る本発明の内すみ角摩擦攪拌接合用プローブの実施の形態によれば、前記図2、図3に示すように、塑性流動固相金属9が、攪拌ピン7の外周面と前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の下端部の内面との僅かな隙間や、必ずしも平滑度が高くない前記一対の被接合材1a 、1b のそれぞれの内面1ai、1biとこれに接する前記押さえブロック5の二等辺面5sa、5sbとの間に生じる僅かな隙間へ浸入する可能性がある。
これに対して、請求項2に係る本発明の内角摩擦攪拌接合用プローブの上記の実施の形態によれば、図5、図6に示すように前記内すみ摩擦攪拌接合プローブの攪拌ピン7の逆円錐台部11の円錐周面11s が回転しつつ、前記一対の被接合材1a 、1b のそれぞれの内面1ai、1biに押し付けられるために、一般に硬質金属で製作される逆円錐台部11の円錐周面11s によって、前記一対の被接合材1a 、1b のそれぞれの内面1ai、1biの多少の凹凸が均されて平滑化し、円錐台部11の円錐周面11s との密着度が高くなること、また前記円錐台部11の上面11usの外径D11が前記押さえブロック5の上部の前記攪拌ピン挿通用貫通孔5h の内径より大きく形成されているために、前記円錐台部11と前記一対の被接合材1a 、1b のそれぞれの内面1ai、1biとの間や、攪拌ピン上部7t の外周と押さえブロック5の攪拌ピン挿通用貫通孔5h の内周とのあいだの僅かな隙間に浸入する可能性が殆どなくなる。
【0024】
次に請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの別の実施の形態と作用について、図7、図5、図8、図16、図17および図9を参照して、以下に説明する。
図7は本実施の形態の内すみ摩擦攪拌接合用プローブの斜視図、図5は図7の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図7のC’−C’矢視断面図、図8は図7の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図7のD’−D’矢視断面図、図16、図17、図19は前述のとおりである。
【0025】
上記の図に示す請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの別の実施の形態は、前記図4〜図6で示した請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態42 とは、以下の点で異なる。
すなわち、前記図4〜図6で示した請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態42 においては、前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の前記頂角稜線5el側の周囲に、前記攪拌ピン7の前記逆円錐台部11の上面11usと外周面11s の一部とに接して前記逆円錐台部11が嵌装される逆円錐台状の空洞部511a を設けて、基本的に構成されていた。
これに対して、内すみ摩擦攪拌接合用プローブの本実施の形態42 ' においては、記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の前記頂角稜線5el側の周囲に、前記攪拌ピン7の前記逆円錐台部11の上面11usと接するとともに、該上面11usと同径の内周面を有して、前記逆円錐台部11が嵌装される逆円筒容器状の空洞部511b を設けて、基本的に構成されている。
このため、逆円筒容器状の空洞部511b の内周面と逆円錐台部11の側面と前記一対の被接合材1a 、1b の各々の内面1as、1bsとの間には、図8に示すように空間511p が形成されることになる。
【0026】
上記のように構成された請求項2に係る本発明の内すみ摩擦攪拌接合用プローブ42 ' の実施の形態の作用と、これを用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の実施の形態は、前記請求項2に係る本発明の内すみ擦攪拌接合用プローブ42 の作用と、該内すみ摩擦攪拌接合用プローブ42 を用いた請求項6に係る本発明の内角摩擦攪拌接合方法の一実施の形態と作用・効果は、下記の点を除いて、略同じである。
【0027】
すなわち、図8に示した空間511p の存在により、前記の実施の形態の場合のように、接合開始部の被接合面2の周囲に下穴を形成しなくても、前記被接合面部に押し込まれた攪拌ピン先端部7b の体積分の塑性流動固相金属が、前記空間511p に流入し、摩擦攪拌接合が円滑に開始される。
また、回転する逆円錐台部11の側面11s により前記空間511p 内の塑性流動固相金属の攪拌および摩擦熱発生作用が向上し、接合がさらに容易になる。
【0028】
次に、請求項3に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態と、請求項7に係る本発明内の内すみ摩擦攪拌接合方法の一実施の形態について、図9〜図12、図16、図17、図20を参照して、以下に説明する。
図9は本実施の形態の内すみ摩擦攪拌接合用プローブの斜視図、図10(a)は図9のG−G線矢視断面図、図10(b)は図9のH−H線矢視断面図、図11(a)は図9の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図9のE−E線矢視断面図、図11(b)は図11(a)の要部の図、図12は図9の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図9のF−F線矢視断面図、図16、図17は前記のとおりである。図20(a)は前記図9〜12で示した内すみ摩擦攪拌接合用プローブを用いて、例えば前記図16に示した一対の被接合板材で、すみ継手を形成するための摩擦攪拌接合方法を示す斜視図、図20(b)は形成されたすみ継手の接合部仕上り状況を示す断面図である。
【0029】
上記の図に示す請求項3に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態は、前記図1〜図3で示した請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の一実施の形態とは、以下の点で異なる。
すなわち、前記攪拌ピン7の、前記押さえブロック5の前記頂角稜線5elより所定の距離だけ該押さえブロック5の前記上辺面5usに近づいた部位に、前記攪拌ピン挿通用貫通孔5h の内径より大きな直径D12を有する上面12usを有し、該上面12usと前記頂角稜線5el との間の所定の位置に前記上面の直径D12と同じ直径の円形下面12bsを有する大径円盤部12を設けるとともに、
前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の前記頂角稜線5el側の周囲に、前記攪拌ピン7の前記大径円盤部12の上面12usと外周面の一部とに接する円形孔512を設け、
さらに前記押さえブロック5の前記大径円盤部12の外周面12csから前記押さえブロック5の長手方向の端面5esまでの間の、前記大径円盤部12の円形下面12bsの高さ位置に、前記押さえブロック5の上面5usに平行な下面5lsを備えるように形成して、基本的に構成されている。
上記円形下面12bsは凹面状に形成され、塑性流動固相金属の攪拌および摩擦熱発生作用ともに、接合開始時に下部攪拌ピン7b の被接合面部への押込により溢れる塑性流動固相金属を収容する。
【0030】
なお、上記の攪拌ピン7の大径円盤部12の上下方向の位置は、下記のようにして決めればよい。
すなわち、図11(a)、(b)において、前記被接合面2の上端線2tlから前記大径円盤部12の下面12bsまでの高さをh12b 、該下面12bsから前記大径円盤部12の外周面が前記押さえブロック5の斜面5sa、5sbのそれぞれと交わる高さ位置までの高さをh12c としたとき、前記大径円盤部12の下面12bs、前記一対の被接合材1a 、1b の内面1ai、1biのそれぞれと前記被接合面2の上端線2tlとの間の縦断面逆三角形の空間10u の断面積をAv としたとき、前記大径円盤部12の前記下面12bsと外周面12csと前記押さえブロック5の斜面5sa、5sbのそれぞれとがつくる前記大径円盤部12の下部両側の縦断面三角形の空間12a 、12b の各々の断面積Aa 、Ab の和と前記断面積Av とが略等しくなるように前記高さh12b とh12c を決める。
また、前記大径台円盤部12の上面12usの位置は、前記大径円盤部12の外周面12csが前記押さえブロック5の斜面5sa、5sbのそれぞれと交わる高さ位置から前記上面12usまでの高さをh12t としたとき、この高さが前記h12c と略等しくなる程度に決めればよい。
【0031】
次に、前記のように構成された請求項3に係る本発明の内すみ摩擦攪拌接合用プローブ43 の作用と、該内すみ摩擦攪拌接合用プローブ43 を用いた請求項7に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、以下に説明する。
(1)〜(3)項は、前記請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の作用と、該内すみ摩擦攪拌接合用プローブ41 を用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態と作用で説明した(1)〜(3)項と同様であるので省略する。
(4)図12や図20(a)に示すように、前記内すみ摩擦攪拌接合用プローブ43 の押さえブロック5の頂角稜線5elを有する方を該内すみ摩擦攪拌接合用プローブ43 の矢印(t)で示す移動方向の前方に、前記押さえブロック5の下面5lsを移動方向の後方になるように、前記一対の被接合材1a と1b とで形成する内すみ部に配置し、
前記プローブ本体6および前記攪拌ピン7を回転させながら、前記攪拌ピン7の先端部7b と前記大径円盤部12の下部外周部を前記被接合面2の周囲の被接合材1a と1b の中に押し込み、
前記プローブ本体6を前記一対の被接合材1a と1b が形成する内すみの方向(矢印Fp の方向)に押圧して、前記押さえブロック5の前記頂角稜線5elを含む斜面5sa、5sbを前記内すみ部の一対の被接合材表面1ai、1biに押し付けながら、
前記内すみ摩擦攪拌接合用プローブ43 を被接合ライン2tl(被接合面2の上端線)に沿って矢印(t)の方向に移動させる。
【0032】
その結果、回転する前記攪拌ピン先端部7b 、大径円盤部12の下部外周面12csおよび凹面状の円形下面12bsと、前記被接合面2の周囲の被接合材1a と1b との間に摩擦熱が発生して温度が上昇し、前記攪拌ピン先端部7b 、大径円盤部12の下部外周面12csおよび凹面状円形下面12bsの周囲に塑性流動固相部9が形成される。
このとき、前記図11(b)を用いて説明したように、前記縦断面逆三角形の空間10u の断面積Av と、前記大径円盤部12下部の両側の縦断面三角形の空間12a 、12b の各々の断面積Aa とAb との和とが略等しくなるように前記高さh12b とh12c を決めたので、前記大径円盤部12の下部外周部によって押し退けられた塑性流動固相部の体積相当量が、前記押さえブロック5の下面5lsと前記被接合面2の上端線2tlとの間に形成された断面逆三角形状の空間10u に充填される。
そして、前記攪拌ピン7が前記矢印(t)の方向に移動した後の塑性流動固相部9の顕熱が周囲に奪われて温度が低下し、塑性流動を起こさない温度まで低下すると、前記一対の被接合材1a と1b が接合されて図12および図20(b)に示されるような前記断面逆三角形状の空間10u に充填された固相を含め、上端部に幅が前記大径円盤部の直径D12に、深さが前記図11を参照して説明した高さh12c に、それぞれ略等しい断面の溝12g を有する接合部10が形成される。
【0033】
また、上記の請求項3に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態においては、前記大径円盤部12の上面12usの外径が前記押さえブロック5の上部の前記攪拌ピン挿通用貫通孔5h の内径より大きく形成されているために、塑性流動固相9が前記攪拌ピン上部7t の外周面と押さえブロック5の攪拌ピン挿通用貫通孔5h の内周面との間の僅かな隙間に浸入する可能性が殆どなくなる。
【0034】
次に、請求項4に係る本発明の内すみ擦攪拌接合用プローブの一実施の形態と、請求項8に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、図13〜図15、図18、図21を参照して以下に説明する。
図13は本実施の形態の内すみ摩擦攪拌接合用プローブ44 の斜視図、図14(a)は図13の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図13のJ−J線矢視断面図、図14(b)は図14(a)の破線の円で囲んだ要部の拡大図、図15は図13の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図13のK−K線矢視断面図、図18は本実施の形態を適用して、一対の被接合材ですみ継手を形成する場合の形状と配置を示す端面図、図21(a)は前記図13〜図15で示した内すみ摩擦攪拌接合用プローブを用いて、前記図18に示した一対の被接合材ですみ継手を形成するための摩擦攪拌接合方法を示す斜視図、図21(b)は形成されたすみ継手の接合部仕上り状況を示す断面図である。
【0035】
上記の図に示す請求項4に係る本発明の内すみ摩擦攪拌接合用プローブ44 の一実施の形態は、前記図1〜図3で示した請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の一実施の形態とは、以下の点で異なる。
前記攪拌ピン7の、前記押さえブロック5の前記頂角稜線5elの位置に前記攪拌ピン挿通用貫通孔5hの内径より大きな直径D13を有する凹面円形下面13bsを有し、外周面13csが前記の一対の被接合部材1a 、1b の内すみ部の内面1ai、1biと交差する高さ以上の高さ位置に上面13usを有する大径円盤部13を設けるとともに、
前記押さえブロック5の前記攪拌ピン挿通用貫通孔5h の前記頂角稜線5el側の周囲に、前記攪拌ピン7の前記大径円盤部13の上面13usと外周面13csの一部とに接する円形孔513を設けて、基本的に構成している。
【0036】
次に、前記のように構成された請求項4に係る本発明の内すみ摩擦攪拌接合用プローブ44 の作用と、該内すみ摩擦攪拌接合用プローブ44 を用いた請求項8に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態について、以下に説明する。
(1)図16に示すように、前記一対の被接合材1a 、1b の端部を、該被接合材の1a 、1b のそれぞれの内面1ai、1biに対して角度α/2をなすような斜面1as、1bsを有するように予め加工する。
(2)次のいづれかの工程を行う。
a)前記被接合材1a 、1b のそれぞれの斜面1as、1bsのそれぞれの内面1ai、1bi側の端部位置に、前記一対の被接合材1a 、1b のそれぞれの斜面1asと1bsとを接触させて被接合面2を形成した場合に、前記の斜面1as、1bsの内面1ai、1bi側端の位置に、該斜面1as、1bsのそれぞれに垂直で、幅が前記大径円盤部13の外径D13よりも僅かに大きな底面14bsを有し、該底面14bsの端部から該底面14bsに直交し被接合材1a 、1b のそれぞれの内面1ai、1biに達する側壁14swを有するとともに、被接合ライン2tl(被接合面2の上端線)の方向に伸びる溝14が形成されるように、前記一対の被接合材端部に断面直角三角形の溝を刻設しておき、
前記内面1aiと1biが角度αをなすように前記一対の被接合(板)材1 a 、1b の端部の前記斜面1asと1bsとを接触させて被接合面2を形成する。
b)前記被接合材1a 、1b のそれぞれの内面1aiと1biとが角度αをなすように前記一対の被接合材1a 、1b の端部の前記斜面1asと1bsとを接触させて被接合面2を形成し、
前記の被接合面2の内すみ側端の位置に、該被接合面2に垂直で幅が前記攪拌ピン7の大径円盤部13の外径D13より僅かに大きな底面14bsを有し、該底面14bsの両端から該底面14bsに直交し、前記一対の被接合材1a 、1b のそれぞれの内面1aiと1biに達する側面14swを備えて、被接合ライン2tl(被接合面2の上端線)の方向に伸びる溝14を刻設する。
(3)前記一対の被接合材1a 、1b の外すみ部表面1aoと1boに接する裏当て部材8によって、前記一対の被接合材1a 、1b の被接合面2の接触を保つ。
(4)前記内すみ摩擦攪拌接合用プローブ44 の前記プローブ本体6および前記攪拌ピン7を回転させながら、前記攪拌ピン7の前記大径円盤部13より先の先端部7b を被接合面部の前記被接合材1a と1b 中に押し込み、
前記プローブ本体6を前記一対の被接合材1a と1b とが形成する内すみ方向(矢印Fp で示す方向) に押圧して、前記押さえブロック5の前記頂角稜線5elを含む斜面5saと5sbを前記内すみ部に、前記攪拌ピン7の前記大径円盤部13の凹面円形下面13bsを前記被接合面2の内すみ側端部位置に形成された前記溝14の底面14bsに、各々押し付けつつ、
前記内すみ摩擦攪拌接合用プローブ44 を被接合ライン2tl(被接合面2の上端線)に沿って移動させる。
【0037】
この結果、前記請求項1に係る本発明の内すみ摩擦攪拌接合用プローブ41 の作用と、該内すみ摩擦攪拌接合用プローブ41 を用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の一実施の形態についての説明と同様に、図15および図19に示されるような接合部10が前記溝14の底面14bsの下に形成される。
【0038】
なお、請求項4に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態と、これを用いた請求項8に係る本発明の内すみ摩擦攪拌接合方法によれば、前記攪拌ピン7の大径円盤部13が凹面円形下面13bsを備えるように形成されているので、前記の塑性流動固相9が前記凹面円形下面13bsの周囲の溝14のなかに洩れ出ることがない。
また、この実施の形態では、内すみ部に溝14を予め形成したことにより該溝の底面14bs以下の部分を見た場合通常の摩擦攪拌接合の技術をそのまま用いることができるが、さらに前述の押さえブロック5があることにより、不安定な内すみ部分におけるプローブの保持、移動のためのガイドが容易になる。
【0039】
次に、図面を参照して請求項5に係る本発明の内すみ摩擦攪拌接合プローブの一実施の形態とその作用について以下に述べる。
図22(a−1)は前記請求項1に係る本発明の内すみ摩擦攪拌接合プローブ41 に請求項5に係る本発明を適用した場合の図1のA−A線矢視断面図、図22(a−2)は図22(a−1)のM−M線矢視図である。
【0040】
上記図22(a−1)、(a−2)に示す請求項5に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態においては、前記内すみ摩擦攪拌接合用プローブ41 の前記押さえブロック5の上辺面5usの前記プローブ本体6の下部外周面6los から所定の間隔をおいた位置に、所定の高さのリング上突起15olを立設し、該リング上突起15olと前記プローブ本体6の下部外周面6los と前記前記押さえブロック5の上辺面5usで囲まれる潤滑剤貯留部15が設けられる。
さらに、前記プローブ本体6の底面6bsに、前記押さえブロック5の攪拌ピン挿通用貫通孔5h の外周から少し外側に離れた位置に起始し、前記プローブ本体6の下部外周面6los に達し前記潤滑剤貯留部15と連通する1乃至複数の潤滑剤供給溝15goを刻設し、該潤滑剤供給溝15goを前記潤滑剤貯留部15から前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usとの間に潤滑剤を供給する潤滑剤供給通路が形成される。
なお、前記プローブ本体6の下部外周面6los から前記リング上突起15olの内側面までの間隔と、前記リング上突起15olの高さは、前記潤滑剤貯留部15の容積が少なくとも所定の長さ以上のすみ継手を形成する時に消費される潤滑剤の量を貯留しておける容積となるようにすればよい。
【0041】
上記のように構成した請求項5に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態においては、潤滑剤を上記潤滑剤貯留部15に貯留しておけば、該潤滑剤貯留部15から前記潤滑剤供給溝15goに浸入した潤滑剤は、プローブ本体6の回転とともに、前記プローブ本体6の底面6bsの略全面とこれに接する範囲の押さえブロック5の上辺面5usに薄く塗布されて薄膜を形成するので、前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usとの間の摩擦係数を著しく低下させて、プローブ本体6の回転を円滑化するとともに、前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usの磨耗を防止する。
【0042】
次に、図面を参照して請求項5に係る本発明の内すみ摩擦攪拌接合プローブの別の実施の形態とその作用について以下に述べる。
図22(b−1)は前記請求項3に係る本発明の内すみ摩擦攪拌接合プローブ43 に請求項5に係る本発明を適用した場合の図9のE−E線矢視断面図、図22(b−2)は図22(b−1)のN−N線矢視図である。
【0043】
上記図22(b−1)、(b−2)に示す請求項5に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態においては、前記内すみ摩擦攪拌接合用プローブ43 の前記プローブ本体6の下部大径部6l の上面6lus の外周端部に所定の高さの円筒状外壁15plを立設し、該円筒状外壁15plと前記プローブ本体6の上部外周6uos と前記プローブ本体6の下部大径部6l の上面6lus とによって囲まれる潤滑剤貯留部15を設けられている。さらに、前記プローブ本体6の底面6bsに、前記押さえブロック5の攪拌ピン挿通用貫通孔5h の外周から少し外側に離れた位置に起始し、前記プローブ本体6の下部外周面6los から少し内側の位置に停止する1乃至複数の潤滑剤供給溝15gcを刻設し、前記潤滑剤貯留部15の底面から前記潤滑剤供給溝15gcに連通する1乃至複数の潤滑剤供給孔15h を穿設して、前記潤滑剤貯留部15から前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usとの間に潤滑剤を供給する潤滑剤供給通路が形成されている。
【0044】
上記のように構成した請求項5に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態においては、潤滑剤を上記潤滑剤貯留部15に貯留しておけば、該潤滑剤貯留部15から1乃至複数の潤滑剤供給孔15h を経由して、それぞれの潤滑剤供給孔15h に連通する潤滑剤供給溝15gcに供給された潤滑剤は、プローブ本体6の回転とともに、前記プローブ本体6の底面6bsの略全面とこれに接する範囲の押さえブロック5の上辺面5usに薄く塗布されて薄膜を形成するので、前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usとの間の摩擦係数を著しく低下させて、プローブ本体6の回転を円滑化するとともに、前記プローブ本体6の底面6bsと前記押さえブロック5の上辺面5usの磨耗を防止する。
【0045】
なお、前記図22(a−1)、(b−1)に示すように、前記押さえブロック5に該押さえブロック5の長手方向に伸びる1乃至複数の冷媒通路5chを設けて、該冷媒通路に冷却水等の冷媒を流通させて、前記押さえブロック5、特にその下部を冷却すれば、攪拌ピン先端部の温度を下げ、該攪拌ピンの周囲に形成される塑性流動固相の幅が狭くなり、前記押さえブロック5の頂角稜線5el近傍の斜面5saおよび5sbへの被接合材料例えばアルミニウム等の付着が少なくなるとともに、前記押さえブロック5自体の温度上昇が少なくなるので、冷却を行わない場合に比べて押さえブロック5の熱容量が小さくてすみ、押さえブロック5を小型化できるという効果もある。
【0046】
また、前記請求項1〜請求項5の何れか1項に記載の本発明に係る内すみ摩擦攪拌接合用プローブの実施の形態において、攪拌ピン7の材質は、工具鋼等被接合材より硬度が高く、耐磨耗性のある材料が良く、例えば、被接合材がアルミニウム合金材の場合は通常の工具鋼で十分である。
前記押さえブロック5は、その上辺面5us、攪拌ピン挿通用貫通孔5h の内面および頂角稜線5elを含む斜面5sa、5sbの各々が、前記プローブ本体6の下面6bs、攪拌ピン7の外周面および一対の被接合材1a 、1b のそれぞれの内面1ai、1biの各々と接触・摺動するので磨耗しやすい。従って、前記押さえブロック5は耐磨耗性の高い材料か、耐磨耗性表面処理を施したもので形成することが望ましく、例えば、超硬合金、セラミックス、あるいは、工具鋼にセラミックスやTiC等の表面被覆を施したもの等が望ましい。
【0047】
以上、本発明の実施の形態について述べたが、本発明は前記の実施の形態に限られるものではなく、その構成の要旨を逸脱しない範囲内で他の実施の形態を含むものであることは言うまでもない。
【0048】
【発明の効果】
本発明の内すみ擦攪拌接合用プローブおよびそれを用いた内すみ摩擦攪拌接合方法によれば、以下のような優れた効果が得られる。
従来の溶融溶接方法に比較して、
(1)接合ビード表面が平坦・美麗で、切削もしくは研削加工により平滑に仕上げる必要がない。
(2)ポロシティを始めとした溶接部欠陥が発生しにくい。また、ヒューム、スパッタ等の発生が少なく、作業環境の悪化を招いたり、スパッタ除去作業等が必要になる事がない。ヒュームによる作業環境の悪化を防止するため、局部集塵装置等を必要とすることもなく、設備コスト・作業コストが低い。
(3)残留応力や局部加熱による変形が小さく、溶接後の焼鈍や変形矯正を必要とすることがない。
(4)アルミニウム、チタニウム、銅等の酸化しやすい金属の溶接が容易に可能で、溶接装置が複雑、高価で、溶接技術が難しいMIG溶接やTIG溶接等の不活性ガスシールド溶接法や、真空中電子ビーム溶接法、レーザ溶接法等にくらべてコストおよび技術の難易度において優れる。
【0049】
また、外すみ摩擦攪拌接合方法に比べて、
(1)すみ継手の被接合材の端部の複雑な加工形状、厳しい加工精度を要求されることはない。
(2)すみ継手の内すみ角度が任意のすみ継手を容易に形成可能である。
(3)接合線を内すみ側に形成でき、さらに接合線は側面側ではなくすみ部に形成されるので外観が良好である。
【図面の簡単な説明】
【図1】 請求項1に係る本発明の内すみ擦攪拌接合用プローブの実施の形態の斜視図である。
【図2】 図1の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図1のA−A線矢視断面図である。
【図3】 図1の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図1のB−B線矢視断面図である。
【図4】 請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの一実施の形態の斜視図である。
【図5】 図4、図7の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図4のC−C線矢視断面図、兼、図7のC' −C' 線矢視断面図である。
【図6】 図4の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図4のD−D線矢視断面図である。
【図7】 請求項2に係る本発明の内すみ摩擦攪拌接合用プローブの別の実施の形態の斜視図である。
【図8】 図7の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図7のD' −D' 線矢視断面図である。
【図9】 請求項3に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態の斜視図である。
【図10】 (a)は図9のG−G線矢視断面図と、(b)は図9のH−H線矢視断面図である。
【図11】 (a)は図9の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図9のE−E線矢視断面図、(b)は(a)の要部詳細図である。
【図12】 図9の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図9のF−F線矢視断面図である。
【図13】 請求項4に係る本発明の内すみ摩擦攪拌接合用プローブの実施の形態の斜視図である。
【図14】 (a)は図13の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図13のJ−J線矢視断面図、(b)は(a)の二点鎖線の円で囲んだ要部の拡大図である。
【図15】 図13の内すみ摩擦攪拌接合用プローブとこれを用いた摩擦攪拌接合方法を示す図13のK−K線矢視断面図である。
【図16】 本発明の請求項1〜3、請求項6〜7の実施の形態を適用して一対の被接合材ですみ継手を形成する場合の、被接合部材の形状と配置を示す端面図である。
【図17】 本発明の請求項1〜3、請求項6〜7の実施の形態を適用して一対の被接合材ですみ継手を形成する場合の、被接合材の他の形状と配置を示す端面図である。
【図18】 本発明の請求項4、請求項8の実施の形態を適用して一対の被接合材ですみ継手を形成する場合の、被接合材の形状と配置を示す端面図である。
【図19】 (a)は請求項1、請求項2のいずれかに係る本発明の内すみ摩擦攪拌接合用プローブを用いた請求項6に係る本発明の内すみ摩擦攪拌接合方法の実施の形態を示す斜視図、(b)は形成されたすみ継手の接合部の仕上り状況を示す断面図である。
【図20】 (a)は請求項3に係る本発明の内すみ摩擦攪拌接合用プローブを用いた請求項7に係る本発明の内すみ摩擦攪拌接合方法の実施の形態を示す斜視図、(b)は形成されたすみ継手の接合部の仕上り状況を示す断面図である。
【図21】 (a)は請求項4に係る本発明の内すみ摩擦攪拌接合用プローブを用いた請求項8に係る本発明の内すみ摩擦攪拌接合方法の実施の形態を示す斜視図、(b)は形成されたすみ継手の接合部の仕上り状況を示す断面図である。
【図22】 請求項5に係る本発明の内すみ摩擦攪拌接合用プローブの二つの実施の形態を示し、(a−1)は図1のA−A線矢視断面図、(a−2)は(a−1)のM−M線矢視図、(b−1)は図9のE−E線矢視断面図、(b−2)は(b−1)のN−N線矢視図である。
【図23】 従来の溶融溶接によるすみ継手の例を示す断面図である。
【図24】 従来の外すみ摩擦攪拌接合方法の例を示す斜視図である。
【図25】 従来の外すみ摩擦攪拌接合方法を適用する場合の一対の被接合材の加工形状と配置を示し、(a)、(b)は内すみ角度βが鈍角の場合を、(c)は内すみ度βが鋭角の場合を示す端面図である。
【符号の説明】
1a,1b 被接合材
2 被接合面
3 すみ継手
1 〜44 内すみ摩擦攪拌接合用プローブ
5 押さえブロック
5el 頂角稜線
5us 上辺面
5ls 下面
5h 攪拌ピン挿通用貫通孔
5sa、5sb 押さえブロック斜面
11a 逆円錐台状空洞
11b 逆円筒容器状空洞
12、513 円形孔
6 プローブ本体
6l プローブ本体下部大径部
6bs 円形下面
7 攪拌ピン
7t 攪拌ピン上部
7b 攪拌ピン先端部(下部)
8 裏当て部材
9 塑性流動固相部
10 接合部
11 逆円錐台部
12 大径円盤部
12g 溝
13 大径円盤部
13bs 凹面円形下面
14 溝
15 潤滑材貯留部
15go 潤滑材供給溝
15gc 潤滑材供給溝
15h 潤滑材供給孔
30a,30b 母材(被接合材)
31 開先
32 溶接ビード
33 被接合面
34 裏当
35 回転プローブ
35b 凹面円形下面
36 攪拌ピン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an inner corner friction stir welding probe and an inner corner angle friction stir welding method using the same, and can form a beautiful corner joint with no irregularities on the fillet surface and a corner joint of any angle. The present invention relates to an inner corner friction stir welding probe and an inner corner angle friction stir welding method using the same. Moreover, the material of the material to be joined may be one that can be applied by ordinary friction stir welding, and the aluminum alloy material is particularly easy to apply.
[0002]
[Prior art]
When forming a corner joint, that is, a base joint (material to be joined) in an L shape at a substantially right angle, the corner weld joint is formed by the conventional melt welding method, as shown in FIGS. ), As shown in FIG. 23 (d), a groove 31 is provided in two base materials (materials to be joined) 30a and 30b, and a weld bead 32 is formed by fusion welding from the outside. As shown in FIG. 2, there is an inner fillet welding method in which a fillet joint is welded from the inside.
[0003]
Japanese Patent Application Laid-Open No. 9-508073 discloses a friction stir welding method, and further describes forming a two-member corner joint using the friction stir welding method. That is, as shown in FIG. 24, the end surface of the substantially horizontal material to be bonded 30b is brought into contact with the side surface of the upper end portion of the substantially vertical material to be bonded 30a to form the surface to be bonded 33. A rotating probe 35 having a backing 34 abutted against the inner corner of the material to be bonded 30b, a concave circular lower surface 35b at the lower portion, and a stirring pin 36 protruding downward from the center of the concave bottom surface by a predetermined height. The agitating pin 36 is pushed into the members to be joined 30a and 30b of the surface to be joined while rotating, and the concave circular lower surface 35b is pushed into the pair of members to be joined by a predetermined pressing force indicated by the arrow Fp. An outer corner friction stir welding method is disclosed in which a joint is formed by joining the surface to be joined by moving along the surface to be joined 33 while pressing downward so as to contact 30a and 30b.
[0004]
[Problems to be solved by the invention]
As shown in FIG. 23, when forming a corner joint by fusion welding, there are the following problems.
(1) Concavities and convexities are generated on the surface of the weld bead, and depending on the application of the joining material, it may be necessary to finish the weld bead smoothly by cutting or grinding, particularly in the case of outer corner welding.
(2) Defects in welds such as porosity are likely to occur. Further, there are many occurrences of fumes, spatters and the like, which leads to deterioration of the working environment and the need for spatter removal work. Further, in order to prevent the working environment from deteriorating due to fume, a local dust collector or the like is required, and the equipment cost increases.
(3) Deformation due to local heating or residual stress is large, and annealing after welding or deformation correction may be required.
(4) For welding of easily oxidizable metals such as aluminum, titanium, copper, etc., an inert gas shield welding method such as MIG welding or TIG welding, in which the welding equipment is complicated and expensive, and the welding technique is difficult, or electron beam in vacuum Welding methods, laser welding methods, etc. must be applied.
[0005]
According to the outer friction stir welding method shown in FIG. 24, it is possible to reduce or eliminate the problems of the above-described method by fusion welding, but there are the following problems.
(1) Although a substantially right angle corner joint can be formed, a stirring pin is provided on the bottom surface of the probe main body of the friction stir welding probe and is integrally connected to the rotation axis of the probe main body and perpendicular to the bottom surface. Because the friction stir welding probe is used,
a) As shown in FIGS. 25A and 25B, when the internal angle β of the pair of materials to be bonded 30a and 30b is an obtuse angle exceeding 90 °, any one of the pair of materials to be bonded 30a and 30b It is possible to form a bonded surface 33va or 33vb perpendicular to the outer surface and passing through the inner bottom line, and the distance w from the bonded surface of the outer surface to the outer corner ridge line of the pair of bonded materials30aW30bIs larger than the bottom radius of the probe main body of the friction stir welding probe, external angle friction stir welding is possible. However, the required processing shape of the end portion of the plate member 30a or 30b is complicated and strict processing accuracy is required.
b) Compared with the conventional fusion welding method, although it is very slight, the unevenness | corrugation appears on the surface of a junction part. Moreover, this joining part became the side of the material to be joined and could not be joined at the corner.
[0006]
The present invention eliminates the above-mentioned problems of the prior art, has almost no drawbacks of fusion welding, and does not produce joining marks on the outer surface as in the case of off-axis friction stir welding, and is arranged at an arbitrary angle. It is an object of the present invention to provide an internal corner friction stir welding probe and an inner corner friction stir welding method using the same, which can easily form a pair of joined joints of the materials to be joined by friction stir welding from the inside.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a first means,
A pair of materials to be bonded that have been processed in advance so as to have an inclined surface with a predetermined angle α / 2 that is arbitrarily determined with respect to the inner surface of the bonded material at the end of the bonded material. An inner corner friction stir welding probe that forms a joined surface so as to form a corner joint having a predetermined inner corner angle α determined, and friction stir welds the surface to be joined from the inner corner of the corner joint;
The two sides contacting the inner corner of the corner joint have an inverted isosceles triangular prism piece shape having the same apex angle α, and the upper side of the inverted isosceles triangular prism piece from one point on the apex ridge line of the inverted isosceles triangular prism piece A holding block having a stirring pin insertion through hole having a central axis perpendicular to the surface;
A probe body having a bottom surface having a diameter larger than the inner diameter of the upper side surface portion of the through hole for inserting the stirring pin of the holding block;
The probe body is integrally connected to the bottom surface of the probe body coaxially with the rotation axis of the probe body, and is rotatably inserted into the agitation pin insertion through-hole of the holding block, and has a predetermined length from the apex ridge line of the holding block. It was comprised so that it might consist of the stirring pin which protruded only by the length.
[0008]
In the inner friction stir welding probe of the present invention comprising the above first means, as the second means,
A portion of the stirring pin that is close to the upper side surface by a predetermined distance from the apex ridge line of the through hole for inserting the stirring pin of the holding block, and a surface parallel to the upper side surface at the site and the holding block The upper surface has a diameter equal to the width between the pair of intersecting lines intersecting with the isosceles surface, the inclined surface is in contact with the inner corner surface of the pair of materials constituting the corner joint, and the diameter of the lower surface is the stirring While providing an inverted frustoconical portion connected to the tip of the stirring pin equal to the outer diameter of the tip of the pin,
You may comprise so that the cavity part by which the said inverted truncated cone part of the said stirring pin is fitted may be provided in the said apex-angle ridgeline side of the said through-hole for stirring pin insertion of the said holding block.
[0009]
In the inner friction stir welding probe of the present invention comprising the above first means, as the third means,
The stirring pin has a top surface having a diameter larger than the inner diameter of the through hole for inserting the stirring pin, at a portion that is closer to the upper side surface of the pressing block by a predetermined distance than the apex ridge line of the pressing block, While providing a large-diameter disk portion having a circular lower surface having the same diameter as the upper surface at a predetermined position between the upper surface and the apex ridgeline,
The large-diameter disk portion is fitted around the top-side ridge line side of the stirring pin insertion through-hole of the holding block in contact with the upper surface and a part of the outer peripheral surface of the large-diameter disk portion of the stirring pin. A circular hole, and a height position of the circular lower surface of the large-diameter disk portion between the outer peripheral surface of the large-diameter disk portion of the pressing block and one end surface in the longitudinal direction of the pressing block. You may comprise so that the lower surface parallel to the upper side surface of a pressing block may be formed.
[0010]
In the inner friction stir welding probe of the present invention comprising the above first means, as the fourth means,
The stirring pin has a circular lower surface having a diameter larger than the inner diameter of the stirring pin insertion through hole at a position of the apex ridge line of the holding block, and an outer peripheral surface is an inner corner portion of the pair of members to be joined. While providing a large-diameter disk part having an upper surface at a height position higher than the height intersecting the inner surface of
A circular hole that is in contact with the upper surface of the large-diameter disk part of the stirring pin and is fitted with the large-diameter disk part is provided around the stirring pin insertion through-hole of the holding block on the apex angle ridge line side. May be configured.
[0011]
In the inner corner friction stir welding probe according to any one of the present inventions, as a fifth means,
Lubricant supply that provides a lubricant reservoir on the upper side surface of the holding block or the lower part of the probe body and supplies the lubricant between the bottom surface of the probe body and the upper side surface of the holding block from the lubricant reservoir You may comprise so that a channel | path may be provided.
[0012]
In the inner friction stir welding method of the present invention, in order to solve the above problems, as a sixth means,
The internal joint friction stir welding probe described in the first means or the second means is used for a pair of joined joints arranged so that the inner surfaces form a predetermined angle α that is arbitrarily determined. The inner corner friction stir welding method formed by
The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
While forming the joined surface by contacting the inclined surfaces of the pair of materials to be joined so that the inner surfaces form the angle α,
While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of materials to be joined,
While rotating the probe main body and the stirring pin of the inner corner friction stir welding probe, the tip of the stirring pin is pushed into the material to be joined of the surface to be joined,
While pressing the probe body in the direction of the inner corner formed by the pair of materials to be joined, pressing the slope including the apex ridge line of the pressing block against the inner corner portion,
The inner corner friction stir welding probe is moved along the joined line.
[0013]
  In the inner friction stir welding method of the present invention, in order to solve the above problem, as a seventh means,
  Inner rim formed by using the inner friction friction stir welding probe as described in the third means, a pair of joints of the materials to be joined arranged so that the inner surfaces form a predetermined angle α that is arbitrarily determined. Friction stir welding method
  The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
  While forming the joined surface by contacting the inclined surfaces of the pair of materials to be joined so that the inner surfaces form the angle α,
  While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of materials to be joined,
  in frontWhile rotating the probe main body and the stirring pin of the inner friction friction stir welding probe, the tip of the stirring pin and the lower part of the large-diameter disk portion are pushed into the material to be joined of the joined surface portion,
  While pressing the probe main body in the direction of the inner corner formed by the pair of materials to be joined, pressing the slope including the apex ridge line of the pressing block against the inner corner,
  While the lower surface of the holding block is positioned behind the stirring pinThe inner corner friction stir welding probe is moved along the joined line.
[0014]
In the inner friction stir welding method of the present invention, in order to solve the above problems, as an eighth means,
Inner rim formed by using the inner friction friction stir welding probe according to the fourth means, a pair of joints of the materials to be joined arranged so that the inner surfaces form a predetermined angle α that is arbitrarily determined. Friction stir welding method
The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
a) When the bonded surfaces are formed by bringing the inclined surfaces of the pair of bonded materials into contact with each other on the inner surface side end position of the inclined surfaces of the bonded materials, the inner side edge of the bonded surfaces The outer peripheral dimension of the longitudinal section is slightly larger than the outer peripheral dimension of the longitudinal section of the large-diameter disk portion of the inner corner friction stir welding probe, and the direction of the joined line In order to form a groove extending to the end of the pair of materials to be joined, a groove having a right-angled triangular cross section is engraved,
After forming the bonded surfaces by bringing the inclined surfaces of the ends of the pair of bonded materials into contact with each other so that the inner surfaces form the angle α,
Or
b) Forming the surfaces to be joined by contacting the inclined surfaces of the ends of the pair of materials to be joined so that the inner surfaces form the angle α,
At the position of the inner side edge of the bonded surface, there is a bottom surface perpendicular to the bonded surface, and the outer peripheral size of the vertical cross section is the outer peripheral size of the vertical cross section of the large-diameter disk portion of the inner corner friction stir welding probe After engraving a groove that is slightly larger than that extending in the direction of the joined line,
While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of members to be joined,
While rotating the probe main body and the stirring pin of the inner corner friction stir welding probe, the tip portion of the stirring pin ahead of the large-diameter disk portion is pushed into the workpiece to be joined,
The probe body is pressed in the direction of the inner corner formed by the pair of materials to be joined, and the slope including the apex ridge line of the pressing block is formed on the inner corner portion of the large-diameter disk portion of the stirring pin. While pressing the circular lower surface against the bottom surface of the groove formed at the inner end side position of the bonded surface,
The inner corner friction stir welding probe is moved along the joined line.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 to FIG. 3 show an embodiment of an internal corner friction stir welding probe of the present invention according to claim 1 and an embodiment of an inner corner friction stir welding method of the present invention according to claim 6. This will be described below with reference to FIGS. 16, 17, and 19.
FIG. 1 is a perspective view of an internal corner friction stir welding probe of the present embodiment, and FIG. 2 is an AA of FIG. 1 showing an inner corner friction stir welding probe of FIG. 1 and a friction stir welding method using the same. FIG. 3 is a sectional view taken along the line B-B of FIG. 1 showing the inner corner friction stir welding probe of FIG. 1 and a friction stir welding method using the same. FIG. 16 and FIG. FIG. 16 is an end view showing the shape and arrangement when a joint is formed with a pair of materials to be joined by applying the embodiment of FIG.1,t2Are equal to each other, FIG.1,t219 (a) shows a case where a corner joint is formed by using, for example, the pair of materials shown in FIG. 16 using the inner corner friction stir welding probe shown in FIGS. FIG. 19B is a cross-sectional view showing the finished state of the joint portion of the formed corner joint.
[0016]
In one embodiment of the internal friction stir welding probe of the present invention according to claim 1 shown in the above figure, the end portions of the materials to be joined 1a and 1b are connected to the inner surfaces 1ai and 1bi of the materials to be joined 1a and 1b, respectively. A predetermined angle α which is arbitrarily determined by bringing the inclined surfaces 1as and 1bs of the pair of members 1a and 1b processed in advance so as to have inclined surfaces 1as and 1bs having a predetermined angle α / 2 respectively. An inner angle friction stir welding probe 4 is formed so that the welded surface 2 is formed so as to form a corner joint 3 and the joint surface 2 is friction stir welded from the inner corner of the corner joint 3.1The
The corner joint surface 1ai of the corner joint 3 has a reverse isosceles triangular prism piece-like outer shape in which two sides in contact with each other are equal, and the inverted isosceles triangular prism piece is formed from one point on the apex ridge 5el of the inverted isosceles triangle pole piece. A holding block 5 having a stirring pin insertion through hole 5h having a central axis perpendicular to the upper side surface 5us;
A probe body 6 having a circular bottom surface 6bs having a diameter larger than the inner diameter of the upper side surface portion of the through hole 5h for inserting the stirring pin of the holding block 5;
An agitation pin upper portion 7t that is integrally connected to the circular bottom surface 6bs of the probe body 6 coaxially with the rotation axis of the probe body 6 and rotatably inserted into the agitation pin insertion through hole 5h of the holding block 5; The stirring pin 7 is integrally connected to the stirring pin upper portion 7t, protrudes from the apex ridge 5el of the holding block 5 by a predetermined length, and includes a stirring pin tip 7b having a screw-shaped stirring blade. Basically composed.
[0017]
Next, the inner corner friction stir welding probe 4 of the present invention according to claim 1 configured as described above.1And the internal friction stir welding probe 41An embodiment of the inner corner friction stir welding method of the present invention according to claim 6 will be described below.
(1) As shown in FIG. 16, each thickness t1, T2The ends of the pair of materials to be joined 1a and 1b having the same length are arranged so that the pair of materials to be joined 1a and 1b form a predetermined angle α whose inner surfaces 1ai and 1bi are arbitrarily determined. Is formed in advance so as to have slopes 1as and 1bs that form an angle α / 2 with respect to the inner surfaces 1ai and 1bi of the materials to be joined 1a and 1b, respectively.
In addition, as shown in FIG.1, T2The difference in thickness Δt= T2-T1When the corner joint 3 is formed using a pair of materials to be joined 1a and 1b, a large thickness t is preliminarily processed so as to have the inclined surfaces 1as and 1bs similar to the above.2The thickness Δ from the edge 1boe of the outer surface 1bo at the end surface 1bes of the material 1b to be joinedtThe slope 1bs may be formed starting from a position away from the inner surface 1bi.
(2) The inclined surfaces 1as and 1bs of the respective ends of the pair of materials to be bonded 1a and 1b are brought into contact with each other so that the inner surfaces 1ai and 1bi make the angle α, thereby forming the surface 2 to be bonded. Form.
(3) The slopes 1as and 1bs of the pair of members to be joined 1a and 1b are subjected to internal frictional stirring by the backing member 8 in contact with the outer surface 1ao and 1bo of the pair of members 1a and 1b. Hold to maintain contact during bonding.
(4) The inner corner friction stir welding probe 41While rotating the probe body 6 and the stirring pin 7, the tip of the stirring pin 7 is pushed into the materials to be bonded 1 a and 1 b around the bonded surface 2. In the case of this embodiment, at the joining start position, by processing the volume of the stirring pin volume of the material that has been solidified plastically by opening a prepared hole with the same diameter as the stirring pin lower portion 7bt in the joined portion. Is no longer necessary.
Next, the probe body 6 is pressed in the direction of the inner corner formed by the pair of materials to be joined 1a and 1b (the direction of the arrow Fp), and the inclined surface 5sa including the apex ridge 5el of the pressing block 5, The inner corner friction stir welding probe 4 while pressing 5sb against the pair of inner surfaces 1ai and 1bi of the inner joint portion of the inner corner portion.1Is moved in the direction of the arrow (t) along the line to be joined 2tl (the upper end line of the face 2 to be joined).
As a result, frictional heat is generated between the rotating stirring pin 7 and the materials to be joined 1a and 1b around the surface to be joined 2, and the temperature rises. Part 9 is formed. When the sensible heat of the plastic flow solid phase part 9 after the stirring pin 7 moves in the direction of the arrow (t) is taken away by the surroundings and the temperature is lowered to a temperature at which plastic flow does not occur, The joined materials 1a and 1b are joined to form a joined portion 10 as shown in FIGS. 3 and 19B.
Note that the circular bottom surface 6bs of the probe body 6 applies a pressing force Fp applied to the stirring pin 7 and the holding block 5, and at the same time, the plastic flow solids in the gap between the through hole 5h of the holding block 5 and the upper portion 7t of the stirring pin. Even if the phase portion 9 flows in, it has an effect of preventing it from flowing out between the circular bottom surface 6bs and the upper side surface 5us of the pressing block 5.
[0018]
According to the embodiment of the present invention as described above, there are almost no drawbacks associated with fusion welding, and the processing shape for forming the joint surface at the end of the material to be joined is complicated as in the case of off-axis friction stir welding. In addition, a pair of materials to be joined arranged at a predetermined angle that does not have the disadvantage that high accuracy is required, the joint is not in the corner, and the uneven joint is on the side of the material to be joined. The corner joint can be easily formed by friction stir welding from the inside.
[0019]
Next, an embodiment of the inner corner friction stir welding probe of the present invention according to claim 2 and an embodiment of the inner corner friction stir welding method of the present invention according to claim 6 will be described with reference to FIGS. This will be described below with reference to FIGS. 6, 16, 17, and 19.
4 is a perspective view of the inner corner friction stir welding probe of the present embodiment, and FIG. 5 is a CC line of FIG. 4 showing the inner corner friction stir welding probe of FIG. 4 and the friction stir welding method using the same. 6 is a sectional view taken along the line D-D in FIG. 4 showing the inner corner friction stir welding probe and the friction stir welding method using the same, and FIGS. 16 and 17 are as described above. It is. FIG. 19A shows friction stir welding for forming a corner joint using the pair of materials shown in FIG. 16, for example, using the inner corner friction stir welding probe shown in FIGS. The perspective view which shows a method, FIG.19 (b) is sectional drawing which shows the finishing condition of the junction part of the formed corner joint.
[0020]
An embodiment of the inner corner friction stir welding probe of the present invention according to claim 2 shown in the above figure is the same as the inner corner friction stir welding probe of the present invention according to claim 1 shown in FIGS. 41This embodiment differs from the first embodiment in the following points.
That is, a portion of the stirring pin 7 that is close to the upper side surface 5us of the pressing block 5 by a predetermined distance from the apex ridge line 5el of the pressing block 5 and a surface parallel to the upper side surface 5us at the portion. Diameter D equal to the width between a pair of intersecting lines intersecting the isosceles surfaces 5sa and 5sb of the holding block11The inclined surface is in contact with the inner corner surfaces 1ai and 1bi of the pair of materials to be joined 1a and 1b constituting the corner joint, and the lower surface is the outer diameter d of the tip portion 7b of the stirring pin.7bAnd an inverted truncated cone part 11 connected to the tip end part 7b of the stirring pin
Around the top angle ridge 5el side of the stirring pin insertion through hole 5h of the holding block 5, the top surface 11us of the inverted truncated cone portion 11 of the stirring pin 7 and a part of the outer peripheral surface 11s are in contact. Cavity 5 having an inverted truncated cone shape on which the inverted truncated cone part 11 is fitted.11aIs basically configured.
[0021]
In order to assemble the agitation pin 7 composed of the agitation pin upper part 7t, the inverted truncated cone part 11 and the agitation pin tip part 7b, the following is constituted. That is,
a) In order to make the stirring pin 7 attachable to and detachable from the holding block 5, the central portion of the holding block 5 above the inverted truncated cone portion 11 has an inner diameter equal to the inner diameter of the through hole 5h for inserting the stirring pin. The outer diameter is the diameter D of the upper surface 11us of the truncated cone part 11.11Slightly larger outer diameter D5ipThe hollow cylinder 5ip is detachably attached to the center of the pressing block 5 and fixed to the pressing block 5.
b) Further, in order to enable the hollow cylinder 5ip and the stirring pin 7 to be separated and integrated, the hollow cylinder 5ip is formed in a split mold, or the upper end of the stirring pin upper portion 7t is connected to the probe. It is configured to be screwed to the lower end of the main body 6 so as to be detachable.
[0022]
The inner corner friction stir welding probe 4 of the present invention according to claim 2 configured as described above.2The embodiment of the inner corner friction stir welding method of the present invention according to the sixth aspect of the present invention using the operation of the present embodiment is the inner friction stir welding probe 4 of the present invention according to the first aspect of the present invention.1And the internal friction stir welding probe 41Since the operation and effect of the internal angle friction stir welding method according to the sixth aspect of the present invention are substantially the same as those of the embodiment of the present invention, the description thereof is omitted.
[0023]
However, according to the embodiment of the internal corner friction stir welding probe according to the first aspect of the present invention, as shown in FIG. 2 and FIG. A slight gap between the outer peripheral surface and the inner surface of the lower end portion of the stirring pin insertion through hole 5h of the holding block 5, and the inner surfaces 1ai, 1bi of the pair of materials to be joined 1a, 1b, which are not necessarily high in smoothness. And the isosceles surfaces 5sa and 5sb of the pressing block 5 in contact therewith may enter a slight gap.
On the other hand, according to the above embodiment of the internal angle friction stir welding probe of the present invention according to claim 2, as shown in FIGS. 5 and 6, the stir pin 7 of the inner corner friction stir welding probe Since the conical circumferential surface 11s of the inverted truncated cone part 11 is rotated and pressed against the inner surfaces 1ai and 1bi of the pair of materials to be joined 1a and 1b, the inverted truncated cone part 11 generally made of hard metal is used. Due to the conical circumferential surface 11s, some unevenness of the inner surfaces 1ai and 1bi of the pair of materials to be joined 1a and 1b is smoothed and smoothened, and the degree of adhesion with the conical circumferential surface 11s of the truncated cone part 11 is increased. The outer diameter D of the upper surface 11us of the truncated cone part 1111Are formed larger than the inner diameter of the agitation pin insertion through hole 5h at the upper part of the holding block 5, and the inner surfaces 1ai, 1bi of the truncated cone part 11 and the pair of materials to be joined 1a, 1b, There is almost no possibility of entering a slight gap between the outer periphery of the stirring pin upper portion 7t and the inner periphery of the stirring pin insertion through hole 5h of the holding block 5.
[0024]
Next, another embodiment and action of the inner corner friction stir welding probe according to the second aspect of the present invention will be described below with reference to FIGS. 7, 5, 8, 16, 17, and 9. Explained.
7 is a perspective view of the inner corner friction stir welding probe of the present embodiment, and FIG. 5 is a C′-C in FIG. 7 showing the inner corner friction stir welding probe of FIG. 7 and the friction stir welding method using the same. FIG. 8 is a sectional view taken along the arrow D′-D ′ of FIG. 7 showing the inner corner friction stir welding probe and the friction stir welding method using the same. 19 is as described above.
[0025]
Another embodiment of the inner corner friction stir welding probe of the present invention according to claim 2 shown in the above figure is the inner corner friction stir welding of the present invention according to claim 2 shown in FIGS. Embodiment 4 for probe2Is different from the following.
That is, an embodiment 4 of the inner corner friction stir welding probe of the present invention according to claim 2 shown in FIGS.2, The upper surface 11us of the inverted truncated cone portion 11 of the stirring pin 7 and a part of the outer peripheral surface 11s are disposed around the side of the apex ridge 5el of the through hole 5h for inserting the stirring pin of the holding block 5. An inverted frustoconical cavity 5 in contact with the inverted frustoconical part 1111aWas basically configured.
On the other hand, the fourth embodiment of the probe for internal corner friction stir welding is described.2 'In the presser block 5, the periphery of the stirring pin insertion through hole 5h on the apex ridge 5el side is in contact with the upper surface 11us of the inverted truncated cone portion 11 of the stirring pin 7, and the same as the upper surface 11us. An inverted cylindrical container-like cavity 5 having an inner peripheral surface with a diameter and into which the inverted truncated cone part 11 is fitted.11bIs basically configured.
For this reason, the inverted cylindrical container-like cavity 511bAs shown in FIG. 8, there is a space 5 between the inner peripheral surface of the inner surface, the side surface of the inverted truncated cone portion 11, and the inner surfaces 1as and 1bs of the pair of materials to be joined 1a and 1b.11pWill be formed.
[0026]
The inner corner friction stir welding probe 4 of the present invention according to claim 2 configured as described above.2 'The embodiment of the inner corner friction stir welding method of the present invention according to the sixth aspect of the present invention using the operation of the present embodiment is the inner friction stir welding probe 4 of the present invention according to the second aspect of the present invention.2And the internal friction stir welding probe 42The embodiment and operation / effect of the internal angle friction stir welding method of the present invention according to claim 6 using the above are substantially the same except for the following points.
[0027]
That is, the space 5 shown in FIG.11pThe volume of the agitating pin tip 7b pushed into the joined surface portion without forming a pilot hole around the joined surface 2 of the joining start portion as in the case of the above-described embodiment. Minute plastic flow solid phase metal is the space 511pThe friction stir welding starts smoothly.
Further, the space 5 is formed by the side surface 11s of the rotating inverted truncated cone part 11.11pThe agitating and frictional heat generating action of the plastic flow solid phase metal is improved, and the joining becomes easier.
[0028]
Next, an embodiment of the inner corner friction stir welding probe of the present invention according to claim 3 and an embodiment of the inner corner friction stir welding method of the present invention according to claim 7 will be described with reference to FIGS. This will be described below with reference to FIGS. 12, 16, 17, and 20. FIG.
9 is a perspective view of the inner corner friction stir welding probe of the present embodiment, FIG. 10A is a cross-sectional view taken along line GG in FIG. 9, and FIG. 10B is a line HH in FIG. FIG. 11A is a cross-sectional view taken along the arrow, FIG. 11A is a cross-sectional view taken along the line E-E in FIG. 9 showing the inner stirrer friction stir welding probe and the friction stir welding method using the probe, and FIG. FIG. 12 is a cross-sectional view taken along the line FF in FIG. 9 showing the inner corner friction stir welding probe and the friction stir welding method using the same in FIG. FIG. 17 is as described above. FIG. 20A shows a friction stir welding method for forming a corner joint using the pair of plate members shown in FIG. 16, for example, using the inner corner friction stir welding probe shown in FIGS. FIG. 20B is a cross-sectional view showing the finished state of the joined portion of the formed corner joint.
[0029]
One embodiment of the inner corner friction stir welding probe of the present invention according to claim 3 shown in the above figure is the inner corner friction stir welding joint of the present invention according to claim 1 shown in FIGS. Probe 41This embodiment differs from the first embodiment in the following points.
That is, the apex ridge 5 of the holding block 5 of the stirring pin 7elA diameter D larger than the inner diameter of the agitation pin insertion through hole 5h at a portion closer to the upper side surface 5us of the holding block 5 by a predetermined distance.12And a diameter D of the upper surface at a predetermined position between the upper surface 12us and the apex ridge 5el.12A large-diameter disk portion 12 having a circular lower surface 12bs having the same diameter as
A circular hole 5 that is in contact with the upper surface 12us of the large-diameter disk portion 12 of the stirring pin 7 and a part of the outer peripheral surface around the top edge ridge line 5el side of the through hole 5h for inserting the stirring pin of the holding block 512Provided,
Further, the presser block 5 is positioned at the height position of the circular lower surface 12bs of the large-diameter disk portion 12 from the outer peripheral surface 12cs of the large-diameter disk portion 12 to the end face 5es in the longitudinal direction of the presser block 5. The block 5 is basically configured to have a lower surface 5 ls parallel to the upper surface 5 us of the block 5.
The circular lower surface 12bs is formed in a concave shape, and accommodates the plastic fluid solid phase metal that overflows due to the pressing of the lower agitating pin 7b into the surface to be joined at the start of joining, together with the stirring and heat generation of the plastic fluid solid phase metal.
[0030]
In addition, what is necessary is just to determine the position of the up-down direction of the large diameter disc part 12 of said stirring pin 7 as follows.
That is, in FIGS. 11A and 11B, the height from the upper end line 2tl of the bonded surface 2 to the lower surface 12bs of the large-diameter disk portion 12 is h.12bThe height from the lower surface 12bs to the height position at which the outer peripheral surface of the large-diameter disk portion 12 intersects each of the inclined surfaces 5sa and 5sb of the holding block 5 is h.12c, A space having an inverted triangular cross section between the lower surface 12bs of the large-diameter disk portion 12, the inner surfaces 1ai and 1bi of the pair of bonded materials 1a and 1b, and the upper end line 2tl of the bonded surface 2. When the cross-sectional area of 10u is Av, a longitudinal section on both lower sides of the large-diameter disk portion 12 formed by the lower surface 12bs, the outer peripheral surface 12cs, and the inclined surfaces 5sa and 5sb of the holding block 5 is formed. The height h is set so that the sum of the cross-sectional areas Aa and Ab of the space 12a and 12b in the plane triangle is substantially equal to the cross-sectional area Av.12bAnd h12cDecide.
Further, the position of the upper surface 12us of the large-diameter disk portion 12 is such that the outer surface 12cs of the large-diameter disk portion 12 intersects with the slopes 5sa and 5sb of the holding block 5 to the height from the upper surface 12us. H12tWhen this height is12cTo the extent that they are approximately equal to each other.
[0031]
Next, the inner corner friction stir welding probe 4 of the present invention according to claim 3 configured as described above.ThreeAnd the internal friction stir welding probe 4ThreeAn embodiment of the inner corner friction stir welding method of the present invention according to claim 7 using the above will be described below.
The items (1) to (3) include the inner corner friction stir welding probe 4 according to the first aspect of the present invention.1And the internal friction stir welding probe 41Since this is the same as the items (1) to (3) described in the embodiment and operation of the inner corner friction stir welding method of the present invention according to claim 6, it is omitted.
(4) As shown in FIGS. 12 and 20 (a), the inner corner friction stir welding probe 4 is used.ThreeThe inner corner friction stir welding probe 4 is located on the side of the holding block 5 having the apex ridge 5el.ThreeThe lower surface 5 ls of the pressing block 5 is arranged in the inner corner formed by the pair of materials to be joined 1 a and 1 b in front of the moving direction indicated by the arrow (t) of
While rotating the probe body 6 and the stirring pin 7, the tip 7 of the stirring pin 7bAnd the lower outer peripheral portion of the large-diameter disk portion 12 is pushed into the materials to be joined 1a and 1b around the surface to be joined 2;
The probe body 6 is pressed in the direction of the inner corner formed by the pair of materials to be joined 1a and 1b (the direction of the arrow Fp), and the slopes 5sa and 5sb including the apex ridge 5el of the pressing block 5 are While pressing against the pair of material surfaces 1ai and 1bi of the inner corner,
The inner corner friction stir welding probe 4ThreeIs moved in the direction of the arrow (t) along the line to be bonded 2tl (the upper end line of the surface to be bonded 2).
[0032]
As a result, friction is generated between the rotating stirring pin tip 7b, the lower outer peripheral surface 12cs and the concave circular lower surface 12bs of the large-diameter disk portion 12, and the bonded materials 1a and 1b around the bonded surface 2. Heat is generated and the temperature rises, and a plastic flow solid phase portion 9 is formed around the tip end portion 7b of the stirring pin, the lower outer peripheral surface 12cs of the large-diameter disk portion 12, and the concave circular lower surface 12bs.
At this time, as described with reference to FIG. 11B, the cross-sectional area Av of the space 10u having the inverted triangular section and the spaces 12a and 12b having the vertical section on both sides of the lower portion of the large-diameter disk portion 12 are obtained. The height h so that the sum of the cross-sectional areas Aa and Ab is substantially equal.12bAnd h12cTherefore, the volume equivalent amount of the plastic flow solid phase portion displaced by the lower outer peripheral portion of the large-diameter disk portion 12 is between the lower surface 5 ls of the holding block 5 and the upper end line 2 tl of the bonded surface 2. The space 10u having an inverted triangular cross-section is formed.
And when the stirring pin 7 moves in the direction of the arrow (t), the sensible heat of the plastic flow solid phase part 9 is taken away by the surroundings, the temperature is lowered, and when the temperature is lowered to a temperature at which plastic flow does not occur, A pair of workpieces 1a and 1b are joined to each other, including a solid phase filled in a space 10u having an inverted triangular shape as shown in FIG. 12 and FIG. Disk part diameter D12Further, the height h described with reference to FIG.12cIn addition, the joint 10 having grooves 12g having substantially the same cross section is formed.
[0033]
In the embodiment of the inner corner friction stir welding probe according to the third aspect of the present invention, the outer diameter of the upper surface 12 us of the large-diameter disk portion 12 is inserted into the stirring pin at the upper portion of the holding block 5. Since it is formed larger than the inner diameter of the through-hole 5h, the plastic flow solid phase 9 is slightly between the outer peripheral surface of the stirring pin upper portion 7t and the inner peripheral surface of the stirring pin insertion through-hole 5h of the holding block 5. There is almost no possibility of entering a gap.
[0034]
Next, an embodiment of the internal friction stir welding probe of the present invention according to claim 4 and an embodiment of the internal friction stir welding method of the present invention according to claim 8 will be described with reference to FIGS. This will be described below with reference to FIGS.
FIG. 13 shows the inner corner friction stir welding probe 4 of the present embodiment.Four14 (a) is a cross-sectional view taken along line JJ in FIG. 13 showing the inner corner friction stir welding probe and the friction stir welding method using the same in FIG. 13, and FIG. 14 (b) is a diagram. 14 (a) is an enlarged view of a main part surrounded by a broken-line circle, FIG. 15 is a view of the inner corner friction stir welding probe of FIG. 13 and a friction stir welding method using the same, as seen from the arrows KK in FIG. FIG. 18 is a sectional view, FIG. 18 is an end view showing the shape and arrangement in the case where the present embodiment is applied to form a joint with a pair of materials to be joined, and FIG. 21A is shown in FIGS. FIG. 21B is a perspective view showing a friction stir welding method for forming a joint with a pair of materials to be joined shown in FIG. 18 using the inner corner friction stir welding probe, and FIG. It is sectional drawing which shows the junction part finishing condition of a coupling.
[0035]
The inner corner friction stir welding probe 4 of the present invention according to claim 4 shown in the above figure.FourIn one embodiment, the inner corner friction stir welding probe 4 of the present invention according to claim 1 shown in FIGS.1This embodiment differs from the first embodiment in the following points.
Diameter D of the stirring pin 7 larger than the inner diameter of the through hole 5h for inserting the stirring pin at the position of the apex ridge 5el of the holding block 513A large diameter having an upper surface 13us at a height position higher than a height at which the outer peripheral surface 13cs intersects the inner surfaces 1ai and 1bi of the inner corners of the pair of members 1a and 1b. While providing the disk part 13,
A circular hole in contact with the upper surface 13us of the large-diameter disk portion 13 of the stirring pin 7 and a part of the outer peripheral surface 13cs around the stirring pin insertion through-hole 5h side of the holding block 5 513Is basically configured.
[0036]
Next, the inner corner friction stir welding probe 4 of the present invention according to claim 4 configured as described above.FourAnd the internal friction stir welding probe 4FourAn embodiment of the inner corner friction stir welding method of the present invention according to claim 8 using the above will be described below.
(1) As shown in FIG. 16, the ends of the pair of materials to be joined 1a, 1b are formed at an angle α / 2 with respect to the inner surfaces 1ai, 1bi of the materials 1a, 1b of the materials to be joined. Processing is performed in advance so as to have slopes 1as and 1bs.
(2) One of the following steps is performed.
a) The inclined surfaces 1as and 1bs of the pair of materials to be bonded 1a and 1b are brought into contact with the end positions on the inner surfaces 1ai and 1bi of the inclined surfaces 1as and 1bs of the bonded materials 1a and 1b, respectively. When the joined surface 2 is formed, the outer diameter of the large-diameter disk portion 13 is perpendicular to each of the inclined surfaces 1as and 1bs at the position of the inner surface 1ai and 1bi side of the inclined surfaces 1as and 1bs. D13A bottom surface 14bs that is slightly larger than the bottom surface, and has side walls 14sw that are orthogonal to the bottom surface 14bs from the end of the bottom surface 14bs and reach the inner surfaces 1ai and 1bi of the materials 1a and 1b, respectively, In order to form a groove 14 extending in the direction of the upper end line of the bonded surface 2, a groove having a right-angled triangular section is engraved at the end of the pair of bonded materials,
The to-be-joined surface 2 is formed by bringing the inclined surfaces 1as and 1bs of the ends of the pair of to-be-joined (plate) materials 1a and 1b into contact with each other so that the inner surfaces 1ai and 1bi form an angle α.
b) The inclined surfaces 1as and 1bs at the ends of the pair of materials to be bonded 1a and 1b are brought into contact with each other so that the inner surfaces 1ai and 1bi of the materials to be bonded 1a and 1b form an angle α. 2
The outer diameter D of the large-diameter disk portion 13 of the stirring pin 7 that is perpendicular to the bonded surface 2 and has a width at the position of the inner corner side end of the bonded surface 2.13It has a slightly larger bottom surface 14bs, and includes side surfaces 14sw perpendicular to the bottom surface 14bs from both ends of the bottom surface 14bs and reaching the inner surfaces 1ai and 1bi of the pair of materials to be bonded 1a and 1b. A groove 14 extending in the direction of 2 tl (the upper end line of the bonded surface 2) is formed.
(3) The contact surfaces 2 of the pair of materials to be bonded 1a and 1b are kept in contact by the backing member 8 in contact with the outer surface 1ao and 1bo of the pair of materials to be bonded 1a and 1b.
(4) The inner corner friction stir welding probe 4FourWhile rotating the probe main body 6 and the stirring pin 7, the tip portion 7b of the stirring pin 7 ahead of the large-diameter disk portion 13 is pushed into the bonded materials 1a and 1b on the bonded surface portion,
The probe body 6 is pressed in the direction of the inner corner formed by the pair of materials to be joined 1a and 1b (the direction indicated by the arrow Fp), and the inclined surfaces 5sa and 5sb including the apex ridge 5el of the pressing block 5 are formed. While pressing the concave circular lower surface 13bs of the large-diameter disk portion 13 of the stirring pin 7 against the bottom surface 14bs of the groove 14 formed at the inner corner side end portion of the surface 2 to be joined to the inner corner portion, respectively. ,
The inner corner friction stir welding probe 4FourIs moved along the joined line 2tl (the upper end line of the joined surface 2).
[0037]
As a result, the inner friction friction stir welding probe 4 according to the first aspect of the present invention is provided.1And the internal friction stir welding probe 41Similarly to the description of the embodiment of the internal friction stir welding method according to the sixth aspect of the present invention, the joint 10 as shown in FIGS. 15 and 19 is formed on the bottom surface 14bs of the groove 14. Formed below.
[0038]
According to the embodiment of the inner corner friction stir welding probe of the present invention according to claim 4 and the inner corner friction stir welding method of the present invention according to claim 8 using the probe, Since the large-diameter disk portion 13 is formed so as to have the concave circular lower surface 13bs, the plastic flow solid phase 9 does not leak into the groove 14 around the concave circular lower surface 13bs.
In this embodiment, since the groove 14 is formed in the inner corner portion in advance, when the portion below the bottom surface 14bs of the groove is seen, the normal friction stir welding technique can be used as it is. The presence of the holding block 5 facilitates the guide for holding and moving the probe in the unstable inner corner.
[0039]
Next, an embodiment of the inner corner friction stir welding probe according to the fifth aspect of the present invention and its operation will be described with reference to the drawings.
FIG. 22 (a-1) shows the inner corner friction stir welding probe 4 according to the first aspect of the present invention.11 is a cross-sectional view taken along line AA in FIG. 1 and FIG. 22A-2 is a view taken along line MM in FIG. .
[0040]
In the embodiment of the inner corner friction stir welding probe of the present invention according to claim 5 shown in FIGS. 22 (a-1) and (a-2), the inner corner friction stir welding probe 4 is provided.1A ring upper protrusion 15ol having a predetermined height is erected at a position spaced from the lower outer peripheral surface 6los of the probe main body 6 on the upper side surface 5us of the pressing block 5, and the ring upper protrusion 15ol and the A lubricant reservoir 15 surrounded by the lower outer peripheral surface 6los of the probe body 6 and the upper side surface 5us of the pressing block 5 is provided.
Furthermore, the bottom surface 6bs of the probe main body 6 starts at a position slightly away from the outer periphery of the agitation pin insertion through hole 5h of the holding block 5, reaches the lower outer peripheral surface 6los of the probe main body 6 and is lubricated. One or a plurality of lubricant supply grooves 15go communicating with the agent reservoir 15 are formed, and the lubricant supply grooves 15go are formed from the lubricant reservoir 15 to the bottom surface 6bs of the probe body 6 and the upper side surface of the pressing block 5. A lubricant supply passage for supplying a lubricant is formed between 5 us.
Note that the distance from the lower outer peripheral surface 6los of the probe body 6 to the inner surface of the ring upper protrusion 15ol and the height of the ring upper protrusion 15ol are such that the volume of the lubricant reservoir 15 is at least a predetermined length or more. What is necessary is just to make it become the volume which can store the quantity of the lubricant consumed when forming a corner joint.
[0041]
In the embodiment of the inner corner friction stir welding probe according to the fifth aspect of the present invention configured as described above, if the lubricant is stored in the lubricant reservoir 15, the lubricant reservoir 15 The lubricant that has entered the lubricant supply groove 15go is applied thinly to the entire surface of the bottom surface 6bs of the probe body 6 and the upper side surface 5us of the pressing block 5 in contact with the probe body 6 as the probe body 6 rotates. Therefore, the friction coefficient between the bottom surface 6bs of the probe main body 6 and the upper side surface 5us of the holding block 5 is remarkably reduced to facilitate the rotation of the probe main body 6 and the bottom surface of the probe main body 6. Wear of 6bs and the upper side surface 5us of the pressing block 5 is prevented.
[0042]
Next, another embodiment of the internal friction stir welding probe of the present invention according to claim 5 and its operation will be described below with reference to the drawings.
FIG. 22 (b-1) shows the inner corner friction stir welding probe 4 according to the third aspect of the present invention.Three9 is a cross-sectional view taken along line EE in FIG. 9 when the present invention according to claim 5 is applied, and FIG. 22B-2 is a view taken along line NN in FIG. .
[0043]
In the embodiment of the inner corner friction stir welding probe of the present invention according to claim 5 shown in FIGS. 22 (b-1) and (b-2), the inner corner friction stir welding probe 4 is provided.ThreeA cylindrical outer wall 15pl of a predetermined height is erected on the outer peripheral end of the upper surface 6lus of the lower large-diameter portion 6l of the probe body 6, and the cylindrical outer wall 15pl, the upper outer periphery 6uos of the probe body 6 and the probe A lubricant reservoir 15 is provided that is surrounded by the upper surface 6 lus of the lower large diameter portion 6 l of the main body 6. Furthermore, the probe main body 6 starts on the bottom surface 6bs of the holding block 5 at a position slightly away from the outer periphery of the agitation pin insertion through hole 5h, and slightly inward from the lower outer peripheral surface 6los of the probe main body 6. One or more lubricant supply grooves 15gc that stop at a position are formed, and one or more lubricant supply holes 15h that communicate with the lubricant supply groove 15gc from the bottom surface of the lubricant reservoir 15 are formed. A lubricant supply passage for supplying a lubricant from the lubricant reservoir 15 between the bottom surface 6bs of the probe body 6 and the upper side surface 5us of the pressing block 5 is formed.
[0044]
In the embodiment of the inner corner friction stir welding probe according to the fifth aspect of the present invention configured as described above, if the lubricant is stored in the lubricant reservoir 15, the lubricant reservoir 15 The lubricant supplied to the lubricant supply groove 15gc communicated with each of the lubricant supply holes 15h via one or more lubricant supply holes 15h from the probe main body 6 rotates along with the rotation of the probe main body 6. Since a thin film is formed by applying a thin film on the substantially entire surface of the bottom surface 6bs and the upper side surface 5us of the pressing block 5 in a range in contact with the bottom surface, friction between the bottom surface 6bs of the probe body 6 and the upper side surface 5us of the pressing block 5 is formed. The coefficient is remarkably reduced to facilitate the rotation of the probe body 6 and to prevent the bottom surface 6bs of the probe body 6 and the upper side surface 5us of the pressing block 5 from being worn.
[0045]
22 (a-1) and 22 (b-1), the holding block 5 is provided with one or more refrigerant passages 5ch extending in the longitudinal direction of the holding block 5, and If a coolant such as cooling water is circulated to cool the holding block 5, particularly the lower part thereof, the temperature of the tip of the stirring pin is lowered, and the width of the plastic flow solid phase formed around the stirring pin becomes narrower. In the case where the material to be joined, such as aluminum, is less adhered to the slopes 5sa and 5sb in the vicinity of the apex ridge 5el of the pressing block 5, and the temperature rise of the pressing block 5 itself is reduced, so that cooling is not performed. In comparison, the heat capacity of the holding block 5 can be reduced, and the holding block 5 can be downsized.
[0046]
Further, in the embodiment of the inner corner friction stir welding probe according to any one of claims 1 to 5, the material of the stirring pin 7 is harder than the material to be joined such as tool steel. For example, when the material to be joined is an aluminum alloy material, ordinary tool steel is sufficient.
The holding block 5 has an upper side surface 5us, an inner surface of the stirring pin insertion through hole 5h, and slopes 5sa and 5sb including the apex ridge 5el, respectively, a lower surface 6bs of the probe body 6, an outer peripheral surface of the stirring pin 7, and Since the inner surfaces 1ai and 1bi of the pair of materials 1a and 1b are contacted and slid, they are easily worn. Accordingly, the holding block 5 is preferably formed of a highly wear-resistant material or a wear-resistant surface treatment. For example, cemented carbide, ceramics, tool steel, ceramics, TiC, etc. Those having a surface coating are desirable.
[0047]
As mentioned above, although embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to the said embodiment, and includes other embodiment within the range which does not deviate from the summary of the structure. .
[0048]
【The invention's effect】
According to the inner friction stir welding probe of the present invention and the inner corner friction stir welding method using the same, the following excellent effects can be obtained.
Compared to conventional fusion welding methods,
(1) The joining bead surface is flat and beautiful, and it is not necessary to finish it smoothly by cutting or grinding.
(2) Defects in welds such as porosity are unlikely to occur. In addition, there is little generation of fumes, spatters, etc., and the work environment is not deteriorated and spatter removal work is not required. In order to prevent the working environment from deteriorating due to fume, there is no need for a local dust collector and the equipment cost and work cost are low.
(3) Residual stress and deformation due to local heating are small, and annealing after welding and deformation correction are not required.
(4) Inert gas shield welding methods such as MIG welding and TIG welding, in which welding of easily oxidizable metals such as aluminum, titanium, copper, etc. is easy, welding equipment is complicated and expensive, and welding technology is difficult, vacuum Compared to medium electron beam welding, laser welding, etc., it is superior in cost and technical difficulty.
[0049]
In addition, compared to the outer corner friction stir welding method,
(1) There is no requirement for a complicated machining shape and severe machining accuracy at the end of the material to be joined of the corner joint.
(2) A corner joint with an inner corner angle of the corner joint can be easily formed.
(3) Since the joining line can be formed on the inner corner side, and the joining line is formed not on the side surface but on the corner portion, the appearance is good.
[Brief description of the drawings]
FIG. 1 is a perspective view of an embodiment of an internal friction stir welding probe according to the present invention. FIG.
2 is a cross-sectional view taken along the line AA of FIG. 1 showing the inner corner friction stir welding probe of FIG. 1 and the friction stir welding method using the same.
3 is a cross-sectional view taken along the line B-B in FIG. 1 showing the internal friction stir welding probe of FIG. 1 and the friction stir welding method using the same.
FIG. 4 is a perspective view of one embodiment of an inner corner friction stir welding probe according to a second aspect of the present invention.
5 is a cross-sectional view taken along the line CC in FIG. 4 showing the inner corner friction stir welding probe of FIG. 4 and FIG. 7 and the friction stir welding method using the same; FIG.'-C'FIG.
6 is a sectional view taken along the line D-D in FIG. 4 showing the inner corner friction stir welding probe of FIG. 4 and the friction stir welding method using the same.
FIG. 7 is a perspective view of another embodiment of the inner corner friction stir welding probe according to the second aspect of the present invention.
FIG. 8D shows an internal corner friction stir welding probe of FIG. 7 and a friction stir welding method using the same.'-D'FIG.
FIG. 9 is a perspective view of an embodiment of an inner corner friction stir welding probe according to a third aspect of the present invention.
10A is a cross-sectional view taken along line GG in FIG. 9, and FIG. 10B is a cross-sectional view taken along line HH in FIG.
11A is a cross-sectional view taken along the line E-E in FIG. 9 and shows a friction stir welding probe using the inner corner friction stir welding probe in FIG. 9, and FIG. 11B is a cross-sectional view of FIG. FIG.
12 is a cross-sectional view taken along the line FF in FIG. 9 showing the internal friction stir welding probe of FIG. 9 and the friction stir welding method using the same.
FIG. 13 is a perspective view of an embodiment of an inner corner friction stir welding probe according to a fourth aspect of the present invention.
14A is a cross-sectional view taken along the line JJ of FIG. 13 showing the inner corner friction stir welding probe of FIG. 13 and a friction stir welding method using the probe, and FIG. It is an enlarged view of the principal part enclosed with the dashed-dotted line circle.
15 is a cross-sectional view taken along the line KK in FIG. 13 showing the inner corner friction stir welding probe of FIG. 13 and the friction stir welding method using the same.
FIG. 16 is an end face showing the shape and arrangement of a member to be joined when a pair of joined members is formed by applying the embodiments of claims 1 to 3 and claims 6 to 7 of the present invention; FIG.
FIG. 17 shows other shapes and arrangements of materials to be joined when a pair of materials to be joined is formed by applying the embodiments of claims 1 to 3 and claims 6 to 7 of the present invention. FIG.
FIG. 18 is an end view showing the shape and arrangement of a material to be joined when a pair of materials to be joined is formed by applying the embodiments of claims 4 and 8 of the present invention.
FIG. 19 (a) shows the implementation of the inner corner friction stir welding method of the present invention according to claim 6 using the inner corner friction stir welding probe of the present invention according to either one of claims 1 and 2; The perspective view which shows a form, (b) is sectional drawing which shows the finishing condition of the junction part of the formed corner joint.
20 (a) is a perspective view showing an embodiment of the inner corner friction stir welding method of the present invention according to claim 7 using the inner corner friction stir welding probe of the present invention according to claim 3. FIG. b) is a cross-sectional view showing the finished state of the joint portion of the formed corner joint.
FIG. 21 (a) is a perspective view showing an embodiment of the inner corner friction stir welding method of the present invention according to claim 8 using the inner corner friction stir welding probe of the present invention according to claim 4; b) is a cross-sectional view showing the finished state of the joint portion of the formed corner joint.
22 shows two embodiments of the inner corner friction stir welding probe of the present invention according to claim 5, wherein (a-1) is a cross-sectional view taken along line AA in FIG. ) Is a cross-sectional view taken along line MM in (a-1), (b-1) is a cross-sectional view taken along line EE in FIG. 9, and (b-2) is a line NN in (b-1). It is an arrow view.
FIG. 23 is a cross-sectional view showing an example of a corner joint by conventional fusion welding.
FIG. 24 is a perspective view showing an example of a conventional outer corner friction stir welding method.
FIGS. 25A and 25B show the processing shape and arrangement of a pair of materials to be joined when a conventional outer corner friction stir welding method is applied. FIGS. 25A and 25B show the case where the inner corner angle β is an obtuse angle. ) Is an end view showing a case where the degree of internal corner β is an acute angle.
[Explanation of symbols]
1a, 1b Joined material
2 Surface to be joined
3 Corner joint
41~ 4Four  Inner corner friction stir welding probe
5 Holding block
5el apex ridgeline
5us upper side
5ls bottom
5h Through hole for stirring pin insertion
5sa, 5sb holding block slope
511a      Inverted frustoconical cavity
511b      Inverted cylindrical container cavity
512513  Circular hole
6 Probe body
6l Probe body lower large diameter part
6bs circular bottom
7 Stirring pin
7t stirring pin top
7b Stirring pin tip (bottom)
8 Backing member
9 Plastic flow solid phase part
10 joints
11 Reverse truncated cone part
12 Large diameter disk
12g groove
13 Large diameter disk
13bs concave circular bottom
14 groove
15 Lubricant reservoir
15go Lubricant supply groove
15gc Lubricant supply groove
15h Lubricant supply hole
30a, 30b Base material (material to be joined)
31 groove
32 Weld Bead
33 Surface to be joined
34 Back
35 Rotating probe
35b Concave circular bottom surface
36 Stirring pin

Claims (8)

被接合材端部を被接合材の内面に対して任意に決められる所定の角度α/2の斜面を有するように予め加工された一対の被接合材の、前記斜面同士を接触させて任意に決められる所定の内すみ角度αのすみ継手を形成するように被接合面を形成し、前記すみ継手の内すみから前記被接合面を摩擦攪拌接合する内すみ摩擦攪拌接合用プローブであって、
前記すみ継手の内すみ部表面に接する二辺が等しく頂角角度αの逆二等辺三角柱片形状を備え、該逆二等辺三角柱片の頂角稜線上の一点から該逆二等辺三角柱片の上辺面に垂直な中心軸を有する攪拌ピン挿通用貫通孔を備えた押さえブロックと、
該押さえブロックの前記攪拌ピン挿通用貫通孔の上辺面部内径より大径の底面を備えたプローブ本体と、
該プローブ本体の底面に該プローブ本体の回転軸と同軸に一体に接続され、前記押さえブロックの前記攪拌ピン挿通用貫通孔に回転自在に挿通されて、押さえブロックの前記頂角稜線から所定の長さだけ突出した攪拌ピンと、からなることを特徴とする内すみ摩擦攪拌接合用プローブ。
A pair of materials to be bonded that have been processed in advance so as to have an inclined surface with a predetermined angle α / 2 that is arbitrarily determined with respect to the inner surface of the bonded material at the end of the bonded material. An internal corner friction stir welding probe for forming a corner joint to form a corner joint with a predetermined inner corner angle α determined, and friction stir welding the surface to be joined from the inner corner of the corner joint,
The two sides contacting the inner corner of the corner joint have an inverted isosceles triangular prism piece shape having the same apex angle α, and the upper side of the inverted isosceles triangular prism piece from one point on the apex ridge line of the inverted isosceles triangular prism piece A holding block having a stirring pin insertion through hole having a central axis perpendicular to the surface;
A probe body having a bottom surface having a diameter larger than the inner diameter of the upper side surface portion of the through hole for inserting the stirring pin of the holding block;
The probe body is integrally connected to the bottom surface of the probe body coaxially with the rotation axis of the probe body, and is rotatably inserted into the agitation pin insertion through-hole of the holding block, and has a predetermined length from the apex ridge line of the holding block. An inner corner friction stir welding probe characterized by comprising a stirring pin protruding in length.
前記攪拌ピンの、前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線より所定の距離だけ前記上辺面に近づいた部位に、該部位で前記上辺面に平行な面と前記押さえブロックの二等辺面とが交差する一対の交差線間の幅に等しい直径の上面を有し、斜面が前記すみ継手を構成する一対の被接合材の内すみ部表面に接し、下面の直径が前記攪拌ピンの先端部の外径に等しく該攪拌ピンの先端部に繋がる逆円錐台部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側に、前記攪拌ピンの前記逆円錐台部が嵌装される空洞部を設けたこと、を特徴とする請求項1に記載の内すみ摩擦攪拌接合用プローブ。
A portion of the stirring pin that is close to the upper side surface by a predetermined distance from the apex ridge line of the through hole for inserting the stirring pin of the holding block, and a surface parallel to the upper side surface at the site and the holding block The upper surface has a diameter equal to the width between the pair of intersecting lines intersecting with the isosceles surface, the inclined surface is in contact with the inner corner surface of the pair of materials constituting the corner joint, and the diameter of the lower surface is the stirring While providing an inverted frustoconical portion connected to the tip of the stirring pin equal to the outer diameter of the tip of the pin,
The cavity part in which the said inverted truncated cone part of the said stirring pin is fitted was provided in the said apex angle ridgeline side of the said through-hole for insertion of the stirring pin of the said holding | suppressing block. Internal corner friction stir welding probe.
前記攪拌ピンの、前記押さえブロックの前記頂角稜線より所定の距離だけ該押さえブロックの前記上辺面に近づいた部位に、前記攪拌ピン挿通用貫通孔の内径より大きな直径を有する上面を有し、該上面と前記頂角稜線との間の所定の位置に上面の直径と同じ直径の円形下面を有する大径円盤部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側の周囲に、前記攪拌ピンの前記大径円盤部の上面と外周面の一部とに接し該大径円盤部が嵌装される円形孔を設け、さらに前記押さえブロックの前記大径円盤部の外周面から前記押さえブロックの長手方向の一端面までの間の、前記大径円盤部の前記円形下面の高さ位置に、前記押さえブロックの上辺面に平行な下面を形成したこと、を特徴とする請求項1に記載の内すみ摩擦攪拌接合用プローブ。
The stirring pin has a top surface having a diameter larger than the inner diameter of the through hole for inserting the stirring pin, at a portion that is closer to the upper side surface of the pressing block by a predetermined distance than the apex ridge line of the pressing block, While providing a large-diameter disk portion having a circular lower surface having the same diameter as the upper surface at a predetermined position between the upper surface and the apex ridgeline,
The large-diameter disk portion is fitted around the top-side ridge line side of the stirring pin insertion through-hole of the holding block in contact with the upper surface and a part of the outer peripheral surface of the large-diameter disk portion of the stirring pin. A circular hole, and a height position of the circular lower surface of the large-diameter disk portion between the outer peripheral surface of the large-diameter disk portion of the pressing block and one end surface in the longitudinal direction of the pressing block. The inner corner friction stir welding probe according to claim 1, wherein a lower surface parallel to the upper side surface of the holding block is formed.
前記攪拌ピンの、前記押さえブロックの前記頂角稜線の位置に前記攪拌ピン挿通用貫通孔の内径より大きな直径を有する円形下面を有し、外周面が前記の一対の被接合部材の内すみ部の内面と交差する高さ以上の高さ位置に上面を有する大径円盤部を設けるとともに、
前記押さえブロックの前記攪拌ピン挿通用貫通孔の前記頂角稜線側の周囲に、前記攪拌ピンの前記大径円盤部の上面に接し該大径円盤部が嵌装される円形孔を設けたこと、を特徴とする請求項1に記載の内すみ摩擦攪拌接合用プローブ。
The stirring pin has a circular lower surface having a diameter larger than the inner diameter of the stirring pin insertion through hole at a position of the apex ridge line of the holding block, and an outer peripheral surface is an inner corner portion of the pair of members to be joined. While providing a large-diameter disk part having an upper surface at a height position higher than the height intersecting the inner surface of
A circular hole that is in contact with the upper surface of the large-diameter disk portion of the stirring pin and is fitted into the large-diameter disk portion is provided around the top-side ridge line side of the stirring pin insertion through-hole of the holding block. The inner corner friction stir welding probe according to claim 1.
前記押さえブロックの上辺面または前記プローブ本体下部に潤滑剤貯留部を設けるとともに、該潤滑剤貯留部から前記プローブ本体の底面と前記押さえブロックの上辺面との間に潤滑剤を供給する潤滑剤供給通路を設けたこと、を特徴とする請求項1〜請求項4のいずれか1項に記載の内すみ摩擦攪拌接合用プローブ。Lubricant supply that provides a lubricant reservoir on the upper side surface of the holding block or the lower part of the probe body and supplies the lubricant between the bottom surface of the probe body and the upper side surface of the holding block from the lubricant reservoir inner corner friction stir welding probe according to any one of claims 1 to 4, characterized in that a passage. 内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、請求項1または請求項2に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法であって、
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
内面同士が前記の角度αをなすように前記一対の被接合材の前記斜面同士を接触させて被接合面を形成するとともに、
前記一対の被接合材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同志の接触を保ちつつ、
前記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの先端部を前記被接合面部の被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみ部に押し付けながら、
前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とする内すみ擦攪拌接合方法。
The corner joint of the pair of the bonding material arranged to form a predetermined angle α which inner surfaces are arbitrarily determined, formed by the inner corner friction stir welding probe according to Motomeko 1 or claim 2 An inner corner friction stir welding method,
The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
While forming the joined surface by contacting the inclined surfaces of the pair of materials to be joined so that the inner surfaces form the angle α,
While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of materials to be joined,
While rotating the probe main body and the stirring pin of the inner corner friction stir welding probe, the tip of the stirring pin is pushed into the material to be joined of the joined surface portion,
While pressing the probe body in the direction of the inner corner formed by the pair of materials to be joined, pressing the slope including the apex ridge line of the pressing block against the inner corner portion,
Said inner corner friction stir welding probe is moved along the joint line, the inner corner friction stir welding method characterized by.
内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、請求項3に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法であって、
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
内面同士が前記の角度αをなすように前記一対の被接合材の前記斜面同士を接触させて被接合面を形成するとともに、
前記一対の被接合材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同士の接触を保ちつつ、
記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの先端部および前記大径円盤部の下部を被接合面部の被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみに押し付けながら、
前記押さえブロックの前記下面を前記攪拌ピンの後方に位置させつつ前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とする内すみ摩擦攪拌接合方法。
The corner joint of the pair of the bonding material arranged to form a predetermined angle α which inner surfaces are arbitrarily determined, corners inner formed using an inner corner friction stir welding probe according to Motomeko 3 Friction Stir welding method,
The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
While forming the joined surface by contacting the inclined surfaces of the pair of materials to be joined so that the inner surfaces form the angle α,
While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of materials to be joined,
While rotating the probe body and the stirring pin before Kenai corner friction stir welding probe, pushing the lower portion of the front end portion and the large-diameter disc portion of the stirring pin in the welded material to be joined surface portion,
While pressing the probe main body in the direction of the inner corner formed by the pair of materials to be joined, pressing the slope including the apex ridge line of the pressing block against the inner corner,
An inner corner friction stir welding method, wherein the inner corner friction stir welding probe is moved along a line to be welded while the lower surface of the pressing block is positioned behind the stirring pin .
内面同士が任意に決められる所定の角度αをなすように配置された一対の被接合材のすみ継手を、請求項4に記載の内すみ摩擦攪拌接合用プローブを用いて形成する内すみ摩擦攪拌接合方法であって、
前記一対の被接合材の端部を、被接合材の内面に対して角度α/2をなすような斜面を有するように予め加工し、
a)前記被接合材の前記斜面の内面側端部位置に、前記一対の被接合材の前記斜面同士を接触させて被接合面を形成した場合に、該被接合面の内すみ側端の位置に、該被接合面に垂直な底面を有し、縦断面の外周寸法が前記内すみ摩擦攪拌接合プローブの大径円盤部の縦断面の外周寸法よりも僅かに大きく、被接合ラインの方向に伸びる溝が形成されるように、前記一対の被接合材の各々の端部に断面形状が直角三角形の溝を刻設しておき、内面同士が前記の角度αをなすように前記一対の被接合材の端部の前記斜面同士を接触させて被接合面を形成した後、
または、
b)内面同士が前記の角度αをなすように前記一対の被接合材の端部の前記斜面同志を接触させて被接合面を形成し、前記の被接合面の内すみ側端の位置に、該被接合面に垂直な底面を有し、縦断面の外周寸法が前記内すみ摩擦攪拌接合プローブの大径円盤部の縦断面の外周寸法よりも僅かに大きく、被接合ラインの方向に伸びる溝を刻設した後、

前記一対の被接合部材の外すみ部表面に接する裏当て部材によって、前記一対の被接合材の被接合面同士の接触を保ちつつ、
前記内すみ摩擦攪拌接合用プローブの前記プローブ本体および前記攪拌ピンを回転させながら、前記攪拌ピンの前記大径円盤部より先の先端部を被接合面部の前記被接合材中に押し込み、
前記プローブ本体を前記一対の被接合材が形成する内すみの方向に押圧して、前記押さえブロックの前記頂角稜線を含む斜面を前記内すみ部に、前記攪拌ピンの前記大径円盤部の円形下面を前記被接合面の内すみ側端部位置に形成された前記の溝の底面に、各々押し付けつつ、
前記内すみ摩擦攪拌接合用プローブを被接合ラインに沿って移動させる、ことを特徴とする内すみ摩擦攪拌接合方法。
The corner joint of the pair of the bonding material arranged to form a predetermined angle α which inner surfaces are arbitrarily determined, corners inner formed using an inner corner friction stir welding probe according to Motomeko 4 Friction Stir welding method,
The end portions of the pair of materials to be joined are processed in advance so as to have a slope that forms an angle α / 2 with respect to the inner surface of the materials to be joined.
a) When the bonded surfaces are formed by bringing the inclined surfaces of the pair of bonded materials into contact with each other on the inner surface side end position of the inclined surfaces of the bonded materials, the inner side edge of the bonded surfaces The outer peripheral dimension of the longitudinal section is slightly larger than the outer peripheral dimension of the longitudinal section of the large-diameter disk portion of the inner corner friction stir welding probe, and the direction of the joined line A groove having a right triangle is engraved at each end of each of the pair of materials to be bonded so that the inner surfaces form the angle α. After forming the bonded surface by contacting the slopes of the end of the bonded material,
Or
b) The inclined surfaces of the end portions of the pair of materials to be bonded are brought into contact with each other so that the inner surfaces form the angle α, thereby forming a surface to be bonded, and at the position of the inner side edge of the surface to be bonded. The outer peripheral dimension of the longitudinal section is slightly larger than the outer peripheral dimension of the longitudinal section of the large-diameter disk portion of the inner corner friction stir welding probe and extends in the direction of the joined line. After engraving the groove,

While maintaining the contact between the surfaces to be joined of the pair of materials to be joined by the backing member in contact with the outer surface of the pair of members to be joined,
While rotating the probe main body and the stirring pin of the inner corner friction stir welding probe, the tip portion of the stirring pin ahead of the large-diameter disk portion is pushed into the workpiece to be joined,
The probe body is pressed in the direction of the inner corner formed by the pair of materials to be joined, and the slope including the apex ridge line of the pressing block is formed on the inner corner portion of the large-diameter disk portion of the stirring pin. While pressing the circular lower surface against the bottom surface of the groove formed at the inner end side position of the bonded surface,
An inner corner friction stir welding method, wherein the inner corner friction stir welding probe is moved along a line to be welded.
JP14030598A 1998-05-22 1998-05-22 Inner corner friction stir welding probe and inner corner friction stir welding method using the same Expired - Lifetime JP4240579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14030598A JP4240579B2 (en) 1998-05-22 1998-05-22 Inner corner friction stir welding probe and inner corner friction stir welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14030598A JP4240579B2 (en) 1998-05-22 1998-05-22 Inner corner friction stir welding probe and inner corner friction stir welding method using the same

Publications (2)

Publication Number Publication Date
JPH11320128A JPH11320128A (en) 1999-11-24
JP4240579B2 true JP4240579B2 (en) 2009-03-18

Family

ID=15265705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14030598A Expired - Lifetime JP4240579B2 (en) 1998-05-22 1998-05-22 Inner corner friction stir welding probe and inner corner friction stir welding method using the same

Country Status (1)

Country Link
JP (1) JP4240579B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814027B2 (en) 2009-10-09 2014-08-26 Nippon Light Metal Company, Ltd. Rotation tool for joining inner corner and joining inner corner method using the same

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU733140B2 (en) 1998-09-29 2001-05-10 Hitachi Limited A friction stir welding method
US6237835B1 (en) * 2000-02-29 2001-05-29 The Boeing Company Method and apparatus for backing up a friction stir weld joint
KR100815654B1 (en) * 2000-05-08 2008-03-20 브라이엄 영 유니버시티 Friction stir welding using a superabrasive tool
JP4467723B2 (en) * 2000-06-30 2010-05-26 昭和電工株式会社 Friction stir welding method
US9511445B2 (en) * 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US9266191B2 (en) 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
US9511446B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation In-situ interlocking of metals using additive friction stir processing
US7455212B2 (en) * 2005-11-29 2008-11-25 General Electric Company Deposition friction stir welding process and assembly
US7793816B2 (en) 2007-09-07 2010-09-14 Alcoa Inc. Friction stir welding apparatus
JP5149607B2 (en) * 2007-12-13 2013-02-20 株式会社日立製作所 Friction stirrer and friction stir process
WO2009109667A1 (en) 2008-03-03 2009-09-11 Fundacion Fatronik Tool for the friction stir welding of two metal items with an angled joint having a pin and a wedge-shaped shoulder
US7854362B2 (en) 2008-03-14 2010-12-21 Alcoa Inc. Advanced multi-shouldered fixed bobbin tools for simultaneous friction stir welding of multiple parallel walls between parts
CN102085598B (en) * 2009-12-03 2015-10-14 鸿富锦精密工业(深圳)有限公司 Friction stirring connecting method
KR20170002686A (en) 2011-08-19 2017-01-06 니폰게이긴조쿠가부시키가이샤 Friction stir welding method
DE102011054685A1 (en) * 2011-10-21 2013-04-25 Innovations- und Informationszentrum Schneiden und Fügen e.V. Welding process of workpiece e.g. pipe, involves introducing electric current from welding tool to workpiece after making contact between immersed agitation point of welding tool and plasticized material of workpiece
JP5849678B2 (en) * 2011-12-15 2016-02-03 株式会社Ihi Friction stir welding equipment
JP5987396B2 (en) * 2012-03-27 2016-09-07 株式会社Ihi Friction stir welding equipment
JP5987398B2 (en) * 2012-03-27 2016-09-07 株式会社Ihi Friction stir welding equipment
JP5987397B2 (en) * 2012-03-27 2016-09-07 株式会社Ihi Friction stir welding equipment
CN102922125B (en) * 2012-10-26 2015-08-19 江苏科技大学 The method of filled type friction stir welding welding T connector medial angle weld seam and device
DE102014001050A1 (en) 2014-01-28 2015-07-30 Grenzebach Maschinenbau Gmbh Method and apparatus for friction stir welding for materials of different thickness and fillet welds
US8857696B1 (en) * 2014-04-01 2014-10-14 King Fahd University Of Petroleum And Minerals Method and tool for friction stir welding
JP2016128177A (en) * 2015-01-09 2016-07-14 株式会社Ihi Friction agitation joining device
JP2016150356A (en) * 2015-02-17 2016-08-22 株式会社Ihi Frictional agitation tool
EP3299108A4 (en) 2015-05-18 2019-01-23 IHI Corporation Friction stir welding device and friction stir welding method
JP2019025490A (en) 2017-07-25 2019-02-21 日本軽金属株式会社 Joining method
AU2018359514C1 (en) 2017-10-31 2021-05-27 MELD Manufacturing Corporation Solid-state additive manufacturing system and material compositions and structures
CN111230281A (en) * 2018-11-29 2020-06-05 南京理工大学 Efficient static shaft shoulder stirring head for high-strength aluminum alloy variable-angle joint
JP7341824B2 (en) * 2019-09-27 2023-09-11 川崎重工業株式会社 Double-acting friction stir point welding device and operating method of double-acting friction stir point welding device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814027B2 (en) 2009-10-09 2014-08-26 Nippon Light Metal Company, Ltd. Rotation tool for joining inner corner and joining inner corner method using the same

Also Published As

Publication number Publication date
JPH11320128A (en) 1999-11-24

Similar Documents

Publication Publication Date Title
JP4240579B2 (en) Inner corner friction stir welding probe and inner corner friction stir welding method using the same
US7784667B2 (en) Apparatus and method for friction stir welding using a consumable pin tool
JP3523983B2 (en) Friction star welding tool and method
US4902872A (en) Process for the production of a shaped part from pieces of sheet metal of different thicknesses
WO2020044663A1 (en) Method for manufacturing heat transfer plate
US5813592A (en) Friction stir welding
US6772935B2 (en) Method and device for friction stir welding with simultaneous cooling
JP4056587B2 (en) Method of forming joints by friction stir welding
JP7070389B2 (en) Joining method
JP6927068B2 (en) How to manufacture a liquid-cooled jacket
JP2000246465A (en) Tool for friction agitation joining
JP3978257B2 (en) Workpiece joining method by friction stir welding
JPH11267857A (en) Friction joining method
JP3891642B2 (en) Friction stir welding method
JP3317192B2 (en) Friction welding method and vehicle structure
JP4161581B2 (en) Friction stir welding method
JP3452044B2 (en) Friction stir tool, joining method using the same, and method for removing fine voids on casting surface
JP3289650B2 (en) Friction welding method
WO2021149272A1 (en) Liquid-cooled jacket manufacturing method and friction stir welding method
JP3311736B2 (en) Friction welding equipment
JP3859559B2 (en) Manufacturing method of bonded joint, bonded joint, friction stir welding method, bonding apparatus and cutting tool
JP2003290937A (en) Tool for friction agitation joining and friction agitation joining method
JP2021112757A (en) Manufacturing method for liquid-cooled jacket
WO2023166925A1 (en) Friction stir welding method
JP2021154321A (en) Joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20080710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

EXPY Cancellation because of completion of term