JP4240351B2 - Evaporation concentration device - Google Patents

Evaporation concentration device Download PDF

Info

Publication number
JP4240351B2
JP4240351B2 JP2000126215A JP2000126215A JP4240351B2 JP 4240351 B2 JP4240351 B2 JP 4240351B2 JP 2000126215 A JP2000126215 A JP 2000126215A JP 2000126215 A JP2000126215 A JP 2000126215A JP 4240351 B2 JP4240351 B2 JP 4240351B2
Authority
JP
Japan
Prior art keywords
condensed water
raw water
water
flow rate
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000126215A
Other languages
Japanese (ja)
Other versions
JP2001300512A (en
Inventor
洋治 百目鬼
雅之 西垣内
秀文 坪井
剣志 戸川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000126215A priority Critical patent/JP4240351B2/en
Publication of JP2001300512A publication Critical patent/JP2001300512A/en
Application granted granted Critical
Publication of JP4240351B2 publication Critical patent/JP4240351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液体を蒸発させて濃縮させる蒸発濃縮装置に係り、更に詳しくは、凝縮水の熱エネルギーを利用し熱交換器を使用して原水を予熱することで装置稼動に必要なエネルギーを低減させることのできる蒸発濃縮装置に関する。
【0002】
【従来の技術】
従来公知の蒸発濃縮装置における原水及び凝縮水の供給、排出方法としては、装置内の液面制御で行う方法(特開平9−57001号公報、特開平10−118402号公報等)、或いは原水の供給側での流量計測及び流量調整する方法(特許第1117733号)などが知られている。
これら従来技術の問題点は、原水の供給量または凝縮水の排出量のどちらか一方を制御するため、原水を凝縮水で予熱するために設けた熱交換器内における熱エネルギーの授受バランスが崩れることである。
このため、原水の供給温度にばらつきが生じ、減圧下での蒸発濃縮処理では供給温度が高い場合は装置内で突沸するという問題が発生し、供給温度が低い場合には蒸発量が低下するためヒータによる加熱など余分なエネルギーを使用する問題が生じる。突沸が発生するとミストや発泡による凝縮水の汚染が生じて、装置を一時停止または回避するための運転に移行せざるを得ない。いずれにしても、安定した装置稼働が得られないため、余分な稼働エネルギーを使用することになる。
【0003】
例えば、蒸発濃縮装置内の液面制御を用いた流量制御方法では、供給される原水の流量は調整されず、装置内の原水が一定量になると供給停止するといった断続的な供給となり、原水の供給温度にばらつきを生じる。また、原水の供給側で供給量を測定し流量調整制御する方法においても、長期の稼働により蒸発濃縮装置内の配管や熱交換器にスケール等の異物が付着し、伝熱効率が低下したり、濃縮工程が進むにつれ、単位時間当たりの蒸発量が減少するため、得られる凝縮水量も減少することになる。
したがって、流量計で原水の供給量を調整しただけでは、凝縮水量の低下のような経時的流量変化に対応できないため、原水と凝縮水の流量バランスが崩れてしまうことになる。同様に真空蒸発処理の場合では各機器取付部及び配管継手部等からの洩れにより装置内の真空度が下がり、当初の処理温度では原水が沸騰せず凝縮水量が減少したりして、突然、排出される凝縮水が蒸発濃縮装置の初期で得られる凝縮水量以下になる事態も発生することがある。
原水を凝縮水で予熱する熱交換器において、仮に凝縮水の流量が低下し原水との流量バランスが崩れると、下記(式1)から明らかなように、凝縮水の流量G2が低下した場合、原水の流量G1が変化しなければ(t2-t1)は低下することがわかる。つまり、原水が熱交換器より排出された時の温度t2が下がることを示し、低い温度のまま原水は処理タンクに移送され、ヒータで余分なエネルギーを用いて加熱しなければならない。
Q=G1C1(t2−t1)=G2C2(t1’−t2’) (式1)
Q;熱交換器における単位時間の伝熱量
G1;原水の流量 G2;凝縮水の流量
C1:原水の比熱 C2;凝縮水の比熱
t1;原水が熱交換器に流入する前の温度
t2;原水が熱交換器より排出された時の温度
t1';凝縮水が熱交換器に流入する前の温度
t2';凝縮水が熱交換器より排出される時の温度
【0004】
【発明が解決しようとする課題】
本発明は、蒸発濃縮装置の凝縮水の流量を計測し原水の供給量を調整することで、熱交換器部分での流量のバランスがくずれず、また、余分なエネルギーを消費することなのない蒸発濃縮装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
すなわち本発明は、濃縮すべき原水を原水から排出される凝縮水で予熱する熱交換器を備えた蒸発濃縮装置において、排出される凝縮水の排出量を計測する手段と原水を供給する際に供給量を計測する手段、前記排出量及び供給量を調整するための手段並びに、これらの手段を制御する制御手段を有し、前記凝縮水の排出量と原水の供給量とが同じになるように制御することを特徴とする蒸発濃縮装置に関する。
【0006】
【発明の実施の形態】
以下、本発明の実施の態様を示す蒸発濃縮装置の概略フロー図を基に説明する。図1の蒸発濃縮装置は、原水1を貯溜する処理タンク5、装置内を減圧する真空ポンプ16、原水1を加熱するためのヒータ7、原水1を凝縮水14で予熱するための熱交換器4、減圧下から凝縮水14を引抜くための回転数制御による流量調整可能な凝縮水ポンプ12、凝縮水14の流量を計測するための上限レベル計18、下限レベル計19が設置された凝縮水タンク11、原水1の流量を計測調整するための流量計3及び流量調整弁2、凝縮水ポンプ12の排出量を計測するための流量計13、これらの機器を制御する制御部22を備えた蒸気圧縮式濃縮装置である。
本発明において、蒸発濃縮する方法は蒸気圧縮式だけに限定されず、凝縮水の液温が原水より高い液温で排出され原水を凝縮水で予熱する、あるいは凝縮水を原水で冷却することが可能な他の蒸発濃縮装置でもよい。
【0007】
凝縮水14の流量を計測する方法は、電磁流量計や渦流量計などの信号出力可能な流量計であればよい。図1の場合は、凝縮水タンク11に設けた上限レベル計18と下限レベル計19の間を凝縮水14が上昇、若しくは下降する時間を計測し、レベル計間の一定容積と計測した時間より制御部22で流量を算出する。このとき使用するレベル計は液面を感知できるものであれば、その方法及び手段は問わない。
運転開始時の動作は、凝縮水タンク11に溜まる凝縮水を上限レベル計18が検知するまでは凝縮水ポンプ12による凝縮水14の引抜きは行わず、検知後に引抜きを開始する。仮に装置の最大凝縮水の排出量がF(L/min)であった場合、F+α(L/min)の流量で凝縮水タンク11より凝縮水14の引抜きを開始する。このとき、αの値は0<α<Fとする。上限レベル計18、下限レベル計19間の容積をW(L)とすれば、W/α(min)の時間で下限レベル19まで引抜くことができる。また、下限レベル計19が検知後の引抜き量をF−α(L/min)とすると、容積W(L)を満たす時間はW/α(min)を要する。これらW/α(min)を実際の上限レベル計18、下限レベル計19の検知するまでの時間を計測し次式より実際の排出量が計算できる。
V1=(F+α)−W/T1 (式2)
V2=(F−α)+W/T2 (式3)
【0008】
(式2)は凝縮水タンク11から容積W(L)を引抜いた時に用いる計算式、(式3)は容積W(L)が満たされる時に用いる計算式で、V1及びV2(L/min)は実際の装置から得られている排出量、T1(min)は容積W(L)を引抜くために要した実際の時間、T2(min)は容積W(L)が満たされる時に要した実際の時間である。そこで、算出したV1及びV(L/min)を比較し大きい方の数値をV0(L/min)とし、V0(L/min)からF(L/min)を引いて算出された数値を新たなαとし装置を運転させる。
算出した数値を基に原水1の供給量を流量調整弁2の開度変更と流量計3を用いて自動的に調整すれば、連続的に流量制御しながら原水1の供給することが可能となり、供給される原水1と排出される凝縮水14の流量バランスは±αの精度で保つことができる。
αは実際の装置から得られた排出量V1及びV2を監視しながら0に近づけることで流量バランスの精度を向上させることができる。そこで、(式2)、(式3)で算出した流量となるように原水1の流量を調節することによって、熱交換器4から排出される原水1の温度低下を防止することができる。
【0009】
原水1と凝縮水14を熱交換する熱交換器4は、プレート式、多重管式、蛇管式などを用いてもよく、効率よく原水1と凝縮水14を熱交換する手段であればよい。また、原水や凝縮水の流量を調節する方法に絞り弁やニードルバルブ、回転数制御可能なポンプなどを用い、望ましくは制御部22より算出した凝縮水14の流量に合わせて自動的に調節できる機構を設けるのが好ましい。
このように本発明の蒸発濃縮装置は、凝縮水14の流量が変化しても原水1の流量を制御部22によって自動で流量を制御することができるため、熱交換器4での流量バランスが崩れず、効率を落とすことなく原水1を予熱することができ、装置が原水1を加熱するエネルギーの消費量を増加させることなく安定した運転をすることができる。
【0010】
【実施例】
以下に本発明の実施例を図1に示した蒸発濃縮装置の概略フローを基に説明するが本発明はこれに限定されるものではない。。
図1の蒸発濃縮装置は、蒸気圧縮式を用いた蒸発濃縮装置である。本実施例では、加工部品の脱脂洗浄装置から排水されるリンス廃水を原水とした。原水1は流量計3より得られる信号を制御部22で検知し、流量調整弁2の開度を調整することにより流量調整される。
熱交換器4に流入した原水1は、凝縮水14と熱交換されて昇温し、配管を通り処理タンク6へと流入する。処理タンク5へ原水1を供給する方法は、処理タンク5を含めた装置内を真空ポンプ16で19.99kPaに減圧したのち流量調整弁2を開くことで装置内に吸込まれ、ポンプ等の動力を必要せず、原水1を供給することができる。
【0011】
処理タンク5に入った原水1は循環ポンプ6によりヒータ7に送られ加熱された後、配管を通り熱交換器8に流入し処理タンク5へ戻る。この一連の循環工程で原水1の温度を装置立上げ時はヒータ7を使用して60℃まで温度上昇させる。60℃に達した原水1は19.99kPaの減圧下で蒸発を開始し、水蒸気は処理タンク5内に充満される。水蒸気は気水分離器9で水蒸気と液滴に分離され、水蒸気のみが配管を通り圧縮機10に吸引される。
吸引された水蒸気は、圧縮機10により圧縮されて65〜70℃の過熱蒸気となって熱交換器8に送られる。定常運転になると原水1は熱交換器8内部でこの過熱蒸気によって昇温されることになり、ヒータ7の稼働率は低減される。
過熱蒸気は熱交換器8内部で凝縮され、凝縮水14として気水分離器15を通り凝縮水タンク11に送られる。非凝縮性ガスと凝縮しきれない微量の水蒸気は真空ポンプ16により大気中に排出される。
【0012】
凝縮水タンク11に集められた凝縮水14の温度は60〜65℃であり、凝縮水14はインバータで回転数制御された凝縮水ポンプ12で熱交換器4に送られ、原水1と熱交換される。原水1の温度は25〜30℃であったが、熱交換器4から排出された時の温度は55〜60℃まで昇温することを確認した。この時の原水1と凝縮水14の流量は、凝縮水タンク11に設けられた上限レベル計18と下限レベル計19によって凝縮水14の増減の時間を測定することによって、制御部22で凝縮水流量を算出し、原水1と凝縮水14の流量が同じとなるよう制御部22によって流量調整弁2と凝縮水ポンプ12を制御する。
また、熱交換器4については設計時に原水の温度、凝縮水の温度、及び処理能力より求める凝縮水の流量より、機器の選定が可能である。温度が25〜30℃となった凝縮水14は、流量計13で排出量を計測した後、装置外に排出される。なお、流量計13は、凝縮水タンク11内で測定、算出した流量と比較し誤動作の有無も確認させている。また、処理タンク5内の濃縮された原水は、濃縮水ポンプ20によって装置外に排出される。
上記一連の工程を連続して行うことで処理タンク5の温度は、昇温された原水1が流入するため、極端な温度変化もなく安定した蒸発濃縮処理が可能となる。
【0013】
【発明の効果】
本発明によれば、蒸発濃縮装置から排出される凝縮水の流量が変化した場合でも、変化に応じた原水を蒸発濃縮装置に供給することができ、熱交換器での流量のバランスが崩れず、目的温度まで達していない原水を加熱する操作はなくなり、省エネルギーに優れた蒸発濃縮装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例を示す蒸発濃縮装置の概略フロー図である。
【符号の説明】
1.原水 2.流量調整弁 3.流量計
4.熱交換器 5.処理タンク 6.循環ポンプ
7.ヒータ 8.熱交換器 9.気水分離器
10.圧縮機 11.凝縮水タンク 12.凝縮水ポンプ
13.流量計 14.凝縮水 15.気水分離器
16.真空ポンプ 18.上限レベル計 19.下限レベル計
20.濃縮水ポンプ 21.濃縮水 22.制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an evaporating and concentrating apparatus for evaporating and concentrating a liquid. More specifically, the heat energy of condensed water is used to preheat raw water using a heat exchanger, thereby reducing the energy required for operating the apparatus. It is related with the evaporative concentration apparatus which can be made.
[0002]
[Prior art]
As a method for supplying and discharging raw water and condensed water in a conventionally known evaporative concentration apparatus, a method of controlling the liquid level in the apparatus (JP-A-9-57001, JP-A-10-118402, etc.), or raw water A method for measuring and adjusting the flow rate on the supply side (Japanese Patent No. 1117733) is known.
The problem with these prior arts is that either the supply amount of raw water or the discharge amount of condensed water is controlled, so that the balance of heat energy transfer in the heat exchanger provided to preheat the raw water with condensed water is lost. That is.
For this reason, the supply temperature of the raw water varies, and the evaporation concentration process under reduced pressure causes a problem of bumping in the apparatus when the supply temperature is high, and the evaporation amount decreases when the supply temperature is low. There arises a problem of using extra energy such as heating by a heater. When bumping occurs, contamination of condensed water due to mist and foaming occurs, and it is necessary to shift to an operation for temporarily stopping or avoiding the apparatus. In any case, since a stable device operation cannot be obtained, extra operating energy is used.
[0003]
For example, in the flow rate control method using the liquid level control in the evaporative concentration device, the flow rate of the supplied raw water is not adjusted, and the supply is stopped when the raw water in the device reaches a certain amount. Variations in supply temperature. Also, in the method of measuring the supply amount on the raw water supply side and controlling the flow rate, foreign substances such as scales adhere to the piping and heat exchanger in the evaporation concentrator due to long-term operation, and heat transfer efficiency decreases, As the concentration process proceeds, the amount of evaporation per unit time decreases, so the amount of condensed water obtained also decreases.
Therefore, just adjusting the supply amount of raw water with a flow meter cannot cope with a change in flow rate over time such as a decrease in the amount of condensed water, so that the flow rate balance between raw water and condensed water is lost. Similarly, in the case of vacuum evaporation treatment, the degree of vacuum in the device decreases due to leakage from each equipment mounting part and pipe joint, etc., and the raw water does not boil at the initial treatment temperature, the amount of condensed water decreases, suddenly, A situation may occur in which the condensed water discharged is less than or equal to the amount of condensed water obtained at the initial stage of the evaporative concentration apparatus.
In a heat exchanger that preheats raw water with condensed water, if the flow rate of condensed water drops and the flow rate balance with raw water is disrupted, as is clear from the following (Equation 1), when the flow rate G2 of condensed water decreases, It can be seen that (t2-t1) decreases if the flow rate G1 of the raw water does not change. That is, the temperature t2 when the raw water is discharged from the heat exchanger is lowered, and the raw water must be transferred to the treatment tank at a low temperature and heated with extra energy using a heater.
Q = G1C1 (t2-t1) = G2C2 (t1'-t2 ') (Formula 1)
Q: heat transfer amount per unit time in heat exchanger G1; flow rate of raw water G2; flow rate of condensed water C1: specific heat of raw water C2; specific heat of condensed water
t1; Temperature before raw water flows into the heat exchanger
t2: Temperature when raw water is discharged from the heat exchanger
t1 '; temperature before the condensed water flows into the heat exchanger
t2 ′; temperature at which condensed water is discharged from the heat exchanger [0004]
[Problems to be solved by the invention]
The present invention measures the flow rate of the condensed water in the evaporative concentrator and adjusts the supply amount of the raw water so that the flow rate balance in the heat exchanger is not lost, and the evaporation does not consume extra energy. An object is to provide a concentrator.
[0005]
[Means for Solving the Problems]
That is, the present invention provides a means for measuring the discharge amount of the condensed water to be discharged and the raw water in the evaporative concentration apparatus having a heat exchanger for preheating the raw water to be concentrated with the condensed water discharged from the raw water. Means for measuring supply amount, means for adjusting the discharge amount and supply amount, and control means for controlling these means so that the discharge amount of the condensed water and the supply amount of raw water are the same. The present invention relates to an evaporative concentration apparatus characterized in that
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, explanation will be made based on a schematic flow diagram of an evaporative concentration apparatus showing an embodiment of the present invention. 1 is a processing tank 5 for storing raw water 1, a vacuum pump 16 for decompressing the inside of the apparatus, a heater 7 for heating raw water 1, and a heat exchanger for preheating raw water 1 with condensed water 14. 4. Condensation with a condensate pump 12 capable of adjusting the flow rate by rotational speed control for extracting the condensed water 14 from under reduced pressure, an upper limit level meter 18 for measuring the flow rate of the condensed water 14, and a lower limit level meter 19 A water tank 11, a flow meter 3 and a flow rate adjustment valve 2 for measuring and adjusting the flow rate of the raw water 1, a flow meter 13 for measuring the discharge amount of the condensed water pump 12, and a control unit 22 for controlling these devices are provided. Vapor compression type concentrator.
In the present invention, the method of evaporating and concentrating is not limited to the vapor compression method, and the condensed water is discharged at a higher liquid temperature than the raw water, and the raw water is preheated with the condensed water, or the condensed water is cooled with the raw water. Other possible evaporation concentrators may be used.
[0007]
The method for measuring the flow rate of the condensed water 14 may be a flow meter capable of outputting a signal, such as an electromagnetic flow meter or a vortex flow meter. In the case of FIG. 1, the time during which the condensed water 14 rises or falls between the upper limit level meter 18 and the lower limit level meter 19 provided in the condensed water tank 11 is measured. The controller 22 calculates the flow rate. As long as the level meter used at this time can sense the liquid level, its method and means are not limited.
The operation at the start of operation does not perform the extraction of the condensed water 14 by the condensed water pump 12 until the upper limit level meter 18 detects the condensed water accumulated in the condensed water tank 11, and starts the extraction after the detection. If the maximum condensate discharge amount of the apparatus is F (L / min), the condensate water 14 starts to be extracted from the condensate tank 11 at a flow rate of F + α (L / min). At this time, the value of α is 0 <α <F. If the volume between the upper limit level meter 18 and the lower limit level meter 19 is W (L), it can be pulled out to the lower limit level 19 in a time of W / α (min). When the lower limit level meter 19 detects the amount of extraction after detection as F-α (L / min), the time for filling the volume W (L) requires W / α (min). By measuring the time until the actual upper limit level meter 18 and lower limit level meter 19 detect these W / α (min), the actual emission amount can be calculated from the following equation.
V1 = (F + α) −W / T1 (Formula 2)
V2 = (F−α) + W / T2 (Formula 3)
[0008]
(Equation 2) is a calculation formula used when the volume W (L) is extracted from the condensed water tank 11, and (Equation 3) is a calculation formula used when the volume W (L) is satisfied. V1 and V2 (L / min) Is the discharge amount obtained from the actual device, T1 (min) is the actual time required to extract the volume W (L), and T2 (min) is the actual time required when the volume W (L) is satisfied Is the time. Therefore, the calculated V1 and V (L / min) are compared, the larger value is set as V0 (L / min), and the value calculated by subtracting F (L / min) from V0 (L / min) is newly added. Set the α to operate.
If the supply amount of the raw water 1 is automatically adjusted using the flow rate adjustment valve 2 and the opening of the flow regulating valve 2 based on the calculated numerical value, the raw water 1 can be supplied while continuously controlling the flow rate. The flow rate balance between the supplied raw water 1 and the discharged condensed water 14 can be maintained with an accuracy of ± α.
α can be made close to 0 while monitoring the discharge amounts V1 and V2 obtained from the actual apparatus, thereby improving the accuracy of the flow rate balance. Therefore, by adjusting the flow rate of the raw water 1 so as to be the flow rate calculated by (Equation 2) and (Equation 3), the temperature drop of the raw water 1 discharged from the heat exchanger 4 can be prevented.
[0009]
The heat exchanger 4 that exchanges heat between the raw water 1 and the condensed water 14 may be a plate type, a multi-pipe type, a serpentine type, or the like, as long as it is a means for efficiently exchanging heat between the raw water 1 and the condensed water 14. In addition, a throttle valve, a needle valve, a pump capable of controlling the number of revolutions, etc. are used as a method for adjusting the flow rate of the raw water or the condensed water, and preferably it can be automatically adjusted according to the flow rate of the condensed water 14 calculated by the controller 22. A mechanism is preferably provided.
As described above, the evaporative concentration apparatus of the present invention can automatically control the flow rate of the raw water 1 by the control unit 22 even if the flow rate of the condensed water 14 is changed, so that the flow rate balance in the heat exchanger 4 is balanced. The raw water 1 can be preheated without collapsing, and the apparatus can be stably operated without increasing the amount of energy consumed by the apparatus for heating the raw water 1.
[0010]
【Example】
Hereinafter, an embodiment of the present invention will be described based on a schematic flow of the evaporative concentration apparatus shown in FIG. 1, but the present invention is not limited to this. .
The evaporative concentration apparatus in FIG. 1 is an evaporative concentration apparatus using a vapor compression type. In this example, the rinse waste water drained from the degreasing and cleaning device for processed parts was used as raw water. The flow rate of the raw water 1 is adjusted by detecting a signal obtained from the flow meter 3 with the control unit 22 and adjusting the opening degree of the flow rate adjusting valve 2.
The raw water 1 that has flowed into the heat exchanger 4 is heat-exchanged with the condensed water 14 to rise in temperature, and flows into the treatment tank 6 through the piping. The raw water 1 is supplied to the processing tank 5 by reducing the pressure in the apparatus including the processing tank 5 to 19.99 kPa with the vacuum pump 16 and then opening the flow rate adjusting valve 2 to suck in the apparatus. Therefore, the raw water 1 can be supplied.
[0011]
The raw water 1 entering the processing tank 5 is sent to the heater 7 by the circulation pump 6 and heated, and then flows into the heat exchanger 8 through the piping and returns to the processing tank 5. In this series of circulation steps, the temperature of the raw water 1 is raised to 60 ° C. using the heater 7 when the apparatus is started up. The raw water 1 that has reached 60 ° C. starts to evaporate under a reduced pressure of 19.99 kPa, and the treatment tank 5 is filled with water vapor. The water vapor is separated into water vapor and droplets by the steam separator 9, and only the water vapor passes through the pipe and is sucked into the compressor 10.
The sucked water vapor is compressed by the compressor 10, becomes superheated steam of 65 to 70 ° C., and is sent to the heat exchanger 8. In the steady operation, the raw water 1 is heated by the superheated steam inside the heat exchanger 8, and the operating rate of the heater 7 is reduced.
The superheated steam is condensed inside the heat exchanger 8 and sent as condensed water 14 to the condensed water tank 11 through the steam separator 15. A non-condensable gas and a trace amount of water vapor that cannot be condensed are discharged into the atmosphere by the vacuum pump 16.
[0012]
The temperature of the condensed water 14 collected in the condensed water tank 11 is 60 to 65 ° C., and the condensed water 14 is sent to the heat exchanger 4 by the condensed water pump 12 whose rotational speed is controlled by the inverter, and exchanges heat with the raw water 1. Is done. Although the temperature of the raw | natural water 1 was 25-30 degreeC, it confirmed that the temperature when discharged | emitted from the heat exchanger 4 rose to 55-60 degreeC. The flow rate of the raw water 1 and the condensed water 14 at this time is determined by measuring the time of increase / decrease of the condensed water 14 with the upper limit level meter 18 and the lower limit level meter 19 provided in the condensed water tank 11, and the condensed water is controlled by the control unit 22. The flow rate is calculated, and the flow rate adjusting valve 2 and the condensed water pump 12 are controlled by the control unit 22 so that the flow rates of the raw water 1 and the condensed water 14 become the same.
The heat exchanger 4 can be selected from the condensate flow rate determined from the raw water temperature, condensate temperature, and processing capacity at the time of design. The condensed water 14 having a temperature of 25 to 30 ° C. is discharged out of the apparatus after measuring the discharge amount with the flow meter 13. The flow meter 13 compares the flow rate measured and calculated in the condensed water tank 11 with the presence or absence of malfunction. The concentrated raw water in the processing tank 5 is discharged out of the apparatus by the concentrated water pump 20.
By continuously performing the above-described series of steps, the temperature of the treatment tank 5 flows into the raw water 1 that has been raised, so that stable evaporation and concentration treatment can be performed without any extreme temperature change.
[0013]
【The invention's effect】
According to the present invention, even when the flow rate of the condensed water discharged from the evaporative concentrator changes, the raw water corresponding to the change can be supplied to the evaporative concentrator, and the balance of the flow rate in the heat exchanger is not disturbed. The operation of heating the raw water that has not reached the target temperature is eliminated, and an evaporative concentration apparatus excellent in energy saving can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic flow diagram of an evaporative concentration apparatus showing an embodiment of the present invention.
[Explanation of symbols]
1. Raw water 2. Flow control valve 3. Flow meter 4. Heat exchanger 5. Treatment tank 6. Circulation pump 7. Heater 8. Heat exchanger 9. Gas / water separator 10. Compressor 11. Condensate water tank 12. Condensate pump 13. Flow meter 14. Condensate 15. Steam separator 16. Vacuum pump 18. Upper limit level meter 19. Lower limit level meter 20. Concentrated water pump 21. Concentrated water 22. Control unit

Claims (3)

濃縮すべき原水を原水から排出される凝縮水で予熱する熱交換器を備えた蒸発濃縮装置において、排出される凝縮水の排出量を計測する手段と原水を供給する際に供給量を計測する手段、前記排出量及び供給量を調整するための手段、並びにこれらの手段を制御する制御手段を有し、前記凝縮水の排出量と原水の供給量とが同じになるように制御することを特徴とする蒸発濃縮装置。In an evaporative concentrator equipped with a heat exchanger that preheats the raw water to be concentrated with the condensed water discharged from the raw water, a means for measuring the amount of condensed water discharged and the supply amount when supplying the raw water Means for adjusting the discharge amount and the supply amount, and a control means for controlling these means, and controlling the discharge amount of the condensed water and the supply amount of the raw water to be the same. Evaporative concentration device characterized. 排出される凝縮水の排出量を計測する手段が、一定容積の容器に凝縮水が増減する時間を計測し算出することを特徴とする請求項1に記載の蒸発濃縮装置。  2. The evaporative concentration apparatus according to claim 1, wherein the means for measuring the amount of condensed water discharged measures and calculates the time during which the condensed water increases or decreases in a container having a constant volume. 蒸発濃縮装置が減圧下で濃縮処理を行う蒸気圧縮式濃縮装置であることを特徴とする請求項1又は2に記載の蒸発濃縮装置。  The evaporative concentration apparatus according to claim 1 or 2, wherein the evaporative concentration apparatus is a vapor compression type concentration apparatus that performs a concentration process under reduced pressure.
JP2000126215A 2000-04-20 2000-04-20 Evaporation concentration device Expired - Fee Related JP4240351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000126215A JP4240351B2 (en) 2000-04-20 2000-04-20 Evaporation concentration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126215A JP4240351B2 (en) 2000-04-20 2000-04-20 Evaporation concentration device

Publications (2)

Publication Number Publication Date
JP2001300512A JP2001300512A (en) 2001-10-30
JP4240351B2 true JP4240351B2 (en) 2009-03-18

Family

ID=18636035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126215A Expired - Fee Related JP4240351B2 (en) 2000-04-20 2000-04-20 Evaporation concentration device

Country Status (1)

Country Link
JP (1) JP4240351B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462939B2 (en) * 2010-05-27 2014-04-02 日立Geニュークリア・エナジー株式会社 Power generation and seawater desalination complex plant
JP5805937B2 (en) * 2010-08-16 2015-11-10 オルガノ株式会社 Waste water treatment method and waste water treatment equipment
JP2012239967A (en) * 2011-05-18 2012-12-10 Ihi Corp System and method for desalination of seawater
KR101670878B1 (en) * 2015-01-16 2016-10-31 대우조선해양 주식회사 MEG Regeneration System
KR101805491B1 (en) * 2015-11-23 2017-12-07 대우조선해양 주식회사 MEG Regeneration System
JP2018122266A (en) * 2017-02-02 2018-08-09 鹿島環境エンジニアリング株式会社 Concentration system and concentration method

Also Published As

Publication number Publication date
JP2001300512A (en) 2001-10-30

Similar Documents

Publication Publication Date Title
US5605054A (en) Apparatus for reclaiming refrigerant
CN105174219B (en) The system that a kind of use vacuum type Membrane Materials system concentrates watery hydrochloric acid
JP4240351B2 (en) Evaporation concentration device
JP2008183512A (en) Vacuum distillation regenerating apparatus
JPH078703A (en) Vacuum concentrating apparatus
JP6744868B2 (en) Multi-stage distillation system and its operating method
JP2010264335A (en) Plant for slurry treatment
CN110393934A (en) MVR circulating and evaporating system and method for evaporating
KR102422412B1 (en) High efficiency low temperature concentrator
CN108553926A (en) Feed liquid piece-rate system and feed liquid separation method
CN211158626U (en) High-efficient single-effect evaporation process system
KR102253752B1 (en) Apparatus for concentrating vacuum evaporation with stable maintenance of water level
JP4361203B2 (en) Steam heating device
JP4096130B2 (en) Waste hydrochloric acid treatment method
CN103495291B (en) The depassing unit of divided gas flow impurity from nuclear power station circulating coolant
JP2016128727A (en) Steam generation system
CN220283681U (en) Low-temperature evaporation full-quantization processing device
JP3941017B2 (en) Liquid concentration method
CN219308317U (en) Tetrahydrofuran dewatering system
CN109297010A (en) A kind of power-equipment condensation water recovery system with water vapour compressor
CN208952712U (en) A kind of condenser
JP4409715B2 (en) Steam heating device
JP6593729B1 (en) Separation equipment for mixture in liquid
JP5047426B2 (en) Steam heating device
CN219674918U (en) Shell side pressure regulating system of positive pressure bypass condenser of steam turbine

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040106

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A681

Effective date: 20040106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081218

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees