JP4239854B2 - Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device - Google Patents

Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device Download PDF

Info

Publication number
JP4239854B2
JP4239854B2 JP2004054745A JP2004054745A JP4239854B2 JP 4239854 B2 JP4239854 B2 JP 4239854B2 JP 2004054745 A JP2004054745 A JP 2004054745A JP 2004054745 A JP2004054745 A JP 2004054745A JP 4239854 B2 JP4239854 B2 JP 4239854B2
Authority
JP
Japan
Prior art keywords
coil
spatial frequency
inspected
image
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004054745A
Other languages
Japanese (ja)
Other versions
JP2005241582A (en
Inventor
康宏 金子
隆 室崎
昭弘 大東
隆史 安面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004054745A priority Critical patent/JP4239854B2/en
Publication of JP2005241582A publication Critical patent/JP2005241582A/en
Application granted granted Critical
Publication of JP4239854B2 publication Critical patent/JP4239854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

本発明は、巻線コイルの良否判定方法及び良否判定装置に関し、特にコイルの外観を撮像して撮像画像に基づきコイルの良否を判定するコイル良否判定方法及び判定装置並びにコイル製造方法に関する。   The present invention relates to a winding coil quality determination method and quality determination apparatus, and more particularly to a coil quality determination method, determination apparatus, and coil manufacturing method for imaging the appearance of a coil and determining the quality of a coil based on a captured image.

従来の巻き取り済みの巻線コイルの外観検査(乱巻判定)は、以下に示すように行われていた。図1は従来のコイル良否検査方法の説明図である。図示するとおり、巻線コイルであるコイル50は、巻線部51とこの巻線部51が巻かれるボビン52からなるとする。ここでコイル50の側面の(例えば図1の例ではY−Z平面の)、巻線部51の縁部分53〜54間のコイルのシルエット画像をCCDカメラなどの撮像手段100を利用して撮像する。図2(B)及び(D)にこの撮像画像の例を示す。   A conventional appearance inspection (turbulent winding determination) of a wound winding coil has been performed as follows. FIG. 1 is an explanatory diagram of a conventional coil quality inspection method. As shown in the figure, a coil 50 that is a winding coil is composed of a winding part 51 and a bobbin 52 around which the winding part 51 is wound. Here, a silhouette image of the coil on the side surface of the coil 50 (for example, in the YZ plane in the example of FIG. 1) between the edge portions 53 to 54 of the winding portion 51 is imaged using an imaging means 100 such as a CCD camera. To do. FIGS. 2B and 2D show examples of this captured image.

図2(A)は良品コイルの場合のコイル50の側面図であり、図2(B)はそのシルエット画像である。一方、図2(C)は不良コイルの場合のコイル50の側面図であり、図2(D)はそのシルエット画像である。
図示するように、良品コイルの巻線はきれいにボビン52に巻き取られているため、そのシルエット画像の巻線部51の縁部分53〜54間に現れる凹凸の量Gは小さい。しかし、乱雑に巻き取られた不良コイルのシルエット画像では、コイル50側面の縁部分53〜54間に現れる凹凸の量Gが大きくなる。
FIG. 2A is a side view of the coil 50 in the case of a non-defective coil, and FIG. 2B is a silhouette image thereof. On the other hand, FIG. 2 (C) is a side view of the coil 50 in the case of a defective coil, and FIG. 2 (D) is a silhouette image thereof.
As shown in the figure, the winding of the non-defective coil is neatly wound around the bobbin 52, and therefore the amount of unevenness G appearing between the edge portions 53 to 54 of the winding portion 51 of the silhouette image is small. However, in the silhouette image of the defective coil wound up randomly, the amount G of unevenness appearing between the edge portions 53 to 54 on the side surface of the coil 50 increases.

そこで従来の検査方法では、被検査コイルの巻線部分の縁部分のシルエット画像の凹凸量Gを求め、凹凸量Gが所定の許容値以下のとき被検査コイルが良品であると判定し、凹凸量Gがこの許容値を超えているとき被検査コイルが不良品であると判定していた。   Therefore, in the conventional inspection method, the unevenness amount G of the silhouette image of the edge portion of the winding portion of the coil to be inspected is obtained, and when the unevenness amount G is equal to or less than a predetermined allowable value, it is determined that the coil to be inspected is a good product. When the amount G exceeds this allowable value, it was determined that the coil to be inspected was defective.

なお、本発明に関して記載すべき先行技術文献はない。出願人が知っている先行技術が文献公知発明に係るものではないからである。   There is no prior art document to be described regarding the present invention. This is because the prior art known to the applicant is not related to the literature known invention.

しかしコイルの巻き取りの乱れ(乱巻)は、巻線部51の縁部分の凹凸をあまり伴わずに、巻線の線列の乱れについてのみ生じることもある。図2(E)は乱巻が巻線の線列の乱れについて生じた場合の不良品コイルの側面図であり、図2(F)はそのシルエット画像である。   However, the coil winding disorder (turbulent winding) may occur only with respect to the disturbance of the winding line array, with little unevenness at the edge of the winding part 51. FIG. 2 (E) is a side view of a defective coil when turbulent winding occurs due to disturbance of the line train of windings, and FIG. 2 (F) is a silhouette image thereof.

図示するとおり、図2(E)に示す不良品コイルの巻線部51の線列は、図2(A)に良品コイルのそれと比べて大幅に乱れているが、その縁部分53〜54間には凹凸をあまり生じていない。このような乱巻の場合には、図2(F)に示す縁部分のシルエット画像の凹凸量Gが前述の許容値を超えるほど大きくならない。したがって上述の従来の検査方法では、線列の乱れについて生じるコイルの乱巻を判定できないという問題があった。   As shown in FIG. 2E, the line array of the winding portion 51 of the defective coil shown in FIG. 2E is greatly disturbed compared to that of the non-defective coil in FIG. There is not much unevenness. In the case of such a turbulent winding, the unevenness amount G of the silhouette image of the edge portion shown in FIG. 2 (F) does not increase so as to exceed the above-described allowable value. Therefore, the conventional inspection method described above has a problem in that it is not possible to determine the coil winding that occurs due to the disturbance of the line array.

また従来の検査方法では、コイルの側面の縁部分に現れる凹凸を検出するため、1つの撮像画像でコイルの1つの側面についてしか検査できなかった。したがってコイル50全周について検査をするためには、コイル50の他の側面についても、上述の撮像及び検査を繰り返さなければならず判定時間を要していた。   Further, in the conventional inspection method, since the unevenness appearing on the edge portion of the side surface of the coil is detected, only one side surface of the coil can be inspected with one captured image. Therefore, in order to inspect the entire circumference of the coil 50, the above-described imaging and inspection must be repeated for the other side surfaces of the coil 50, and a determination time is required.

上記問題点を鑑みて、本発明は、コイルの撮像画像を用いたコイルの良否検査を、より正確かつより高速に行うことが可能な、コイル良否判定方法及びコイル良否判定装置を提供することを目的とする。   In view of the above problems, the present invention provides a coil pass / fail determination method and a coil pass / fail determination apparatus capable of performing a coil pass / fail inspection using a captured image of a coil more accurately and at higher speed. Objective.

本発明の発明者らは、巻線が正しく巻かれた良品コイルの撮像画像には、巻線部分の画像に一定の繰り返しパターンが現れるという事実に着目した。
かかる見地に基づき、本発明では、既知の良品コイルの撮像画像の巻線部分に現れる繰り返しパターンに対応する空間周波数を予め求めておき、この空間周波数の付近に、被検査コイルの撮像画像の空間周波数成分が集まるか否かに基づいて、被検査コイルの良否を判定する。
The inventors of the present invention have focused on the fact that a certain repetitive pattern appears in the image of the winding portion in the captured image of the non-defective coil in which the winding is correctly wound.
Based on this viewpoint, in the present invention, a spatial frequency corresponding to a repetitive pattern appearing in a winding portion of a captured image of a known good coil is obtained in advance, and the space of the captured image of the coil to be inspected is near this spatial frequency. The quality of the coil to be inspected is determined based on whether or not frequency components are collected.

すなわち、本発明の第1形態に係るコイル良否判定方法は、被検査画像である被検査コイルの撮像画像を取得し、良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲を取得し、被検査画像の空間周波数成分の強度分布を生成し、取得した空間周波数範囲における、生成した強度分布の集まり具合を判断して、被検査コイルの良否を判定する。   That is, the coil pass / fail determination method according to the first aspect of the present invention acquires a captured image of a coil to be inspected which is an image to be inspected, acquires a spatial frequency range including a spatial frequency component appearing in the captured image of a non-defective coil, The intensity distribution of the spatial frequency component of the image to be inspected is generated, the degree of gathering of the generated intensity distribution in the acquired spatial frequency range is determined, and the quality of the inspected coil is determined.

本発明の第2形態に係るコイル製造方法は、上記の第1形態に係るコイル良否判定方法を使用して、製造したコイルの良否を判定する。   The coil manufacturing method according to the second aspect of the present invention uses the coil quality determination method according to the first aspect to determine the quality of the manufactured coil.

本発明の第3形態に係るコイル良否判定装置は、被検査画像である被検査コイルの撮像画像を取得する被検査画像取得部と、良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲を取得する空間周波数範囲取得部と、取得した被検査画像の空間周波数成分の強度分布を生成する空間周波数成分強度分布生成部と、取得した空間周波数範囲における生成される強度分布の集まり具合を判断して前記被検査コイルの良否を判定する判定部とを備えて構成される。   A coil pass / fail determination apparatus according to a third embodiment of the present invention includes an inspected image acquisition unit that acquires an image of an inspected coil that is an inspected image, and a spatial frequency range that includes a spatial frequency component that appears in the captured image of the non-defective coil. A spatial frequency range acquisition unit that acquires a spatial frequency component intensity distribution generation unit that generates an intensity distribution of a spatial frequency component of the acquired image to be inspected, and a determination of how the intensity distributions are generated in the acquired spatial frequency range And a determination unit that determines the quality of the coil to be inspected.

被検査画像の空間周波数成分の強度分布の生成は、被検査画像上の被検査範囲において被検査画像の空間周波数成分強度をそれぞれ求め、被検査範囲の各位置と各空間周波数とについて、空間周波数成分の強度分布を生成して行う。   The generation of the intensity distribution of the spatial frequency component of the inspected image is obtained by obtaining the spatial frequency component intensity of the inspected image in the inspected range on the inspected image, and for each position and each spatial frequency in the inspected range. Generate the intensity distribution of the components.

前記の被検査範囲は被検査画像上の1次元領域としてよい。このとき前記の空間周波数成分強度分布は、被検査範囲の各位置と各空間周波数とについて生成される2次元強度分布となる。また、前記の被検査範囲は被検査画像上の2次元領域としてもよい。このとき前記の空間周波数成分強度分布は、被検査範囲の各位置と各空間周波数とについて生成される3次元強度分布となる。   The inspection range may be a one-dimensional region on the inspection image. At this time, the spatial frequency component intensity distribution is a two-dimensional intensity distribution generated for each position of the inspection range and each spatial frequency. Further, the inspection range may be a two-dimensional region on the inspection image. At this time, the spatial frequency component intensity distribution is a three-dimensional intensity distribution generated for each position of the inspection range and each spatial frequency.

良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲における、被検査画像について生成された空間周波数成分強度分布の集まり具合の判断は、この空間周波数成分強度分布内の前記の空間周波数範囲において、所定の第1の閾値を超える強度の空間周波数成分の強度分布領域を求め、この強度分布領域の大きさが所定の第2の閾値を超えるか否かを判断して行ってもよい。強度分布が集まるにつれて、所定の閾値を超える強度の分布領域はより大きくなるからである。   In the spatial frequency range including the spatial frequency component appearing in the picked-up image of the non-defective coil, the determination of how the spatial frequency component intensity distribution generated for the image to be inspected is determined in the spatial frequency range in the spatial frequency component intensity distribution. Alternatively, an intensity distribution region of a spatial frequency component having an intensity exceeding a predetermined first threshold value may be obtained, and it may be determined by determining whether or not the size of the intensity distribution region exceeds a predetermined second threshold value. This is because as the intensity distribution gathers, the distribution area of the intensity exceeding the predetermined threshold becomes larger.

前記の被検査範囲が被検査画像上の1次元領域であるときには、第2の閾値との大小を比較する強度分布領域の大きさは面積となり、被検査範囲が被検査画像上の2次元領域であるときには、強度分布領域の大きさは体積となる。   When the inspection range is a one-dimensional region on the inspection image, the size of the intensity distribution region for comparing the magnitude with the second threshold is an area, and the inspection range is a two-dimensional region on the inspection image. Is, the size of the intensity distribution region is the volume.

前記集まり具合の判断は、上記に加えて、前記の強度分布領域の縁の大きさが、所定の第3の閾値より小さいか否かをさらに判断して行ってもよい。例えば、前記の被検査範囲が被検査画像上の1次元領域であるときには、強度分布領域の縁の大きさは強度分布領域の外周長とし、例えば被検査範囲が被検査画像上の2次元領域であるときには、強度分布領域の縁の大きさは強度分布領域の表面積とする。
強度分布がより集中し1点に集まるときには、所定の閾値を超える強度の分布領域の形状も円形又は球形に近付くため、分布領域自体の大きさに対する縁の大きさの比が小さくなるが、強度分布がより集まる程度が小さいときには、分布領域の形状が大きく歪んだりあるいは分裂するために、分布領域自体の大きさに対する縁の大きさの比が大きくなるからである。
In addition to the above, the determination of the degree of gathering may be performed by further determining whether the size of the edge of the intensity distribution region is smaller than a predetermined third threshold value. For example, when the inspection range is a one-dimensional region on the inspection image, the edge size of the intensity distribution region is the outer peripheral length of the intensity distribution region. For example, the inspection range is a two-dimensional region on the inspection image. In this case, the edge size of the intensity distribution region is the surface area of the intensity distribution region.
When the intensity distribution is more concentrated and gathered at one point, the shape of the distribution area whose intensity exceeds a predetermined threshold also approaches a circle or a sphere, so that the ratio of the edge size to the size of the distribution area itself is reduced. This is because when the distribution is less concentrated, the shape of the distribution region is greatly distorted or split, and the ratio of the size of the edge to the size of the distribution region itself increases.

さらにまた、前記被検査画像からの空間周波数成分強度の算出は、前記被検査画像の画像信号をウェーブレット変換して行うこととしてよい。   Furthermore, the calculation of the spatial frequency component intensity from the inspected image may be performed by wavelet transform of the image signal of the inspected image.

本発明に係るコイル良否判定方法及びコイル良否判定装置では、被検査コイルの撮像画像の巻線部分に現れる空間周波数成分が、既知の良品コイルの撮像画像の巻線部分に現れる繰り返しパターンに対応する空間周波数成分付近にどの程度集まるか、に基づいて良否を判断する。
したがって、被検査コイルの巻線に線列の乱れが生じれば、その巻線部分に現れる空間周波数成分は良品のそれとは異なった成分が検出されるため、線列の乱れのみの乱巻判定が可能になる。このように、従来の判定手法と比べて判定精度を向上させることが可能となる。
In the coil quality determination method and the coil quality determination device according to the present invention, the spatial frequency component appearing in the winding portion of the captured image of the coil to be inspected corresponds to the repetitive pattern appearing in the winding portion of the captured image of the known good coil. Pass / fail is determined based on how much is collected near the spatial frequency component.
Therefore, if the line winding is disturbed in the winding of the coil to be inspected, the spatial frequency component appearing in the winding is detected as a component different from that of the non-defective product. Is possible. Thus, the determination accuracy can be improved as compared with the conventional determination method.

本発明に係るコイル良否判定方法及びコイル良否判定装置に使用される被検査画像は、巻線部分に現れる繰り返しパターンを含んでいれば足りるため、従来のような側面画像だけでなく、コイルの上面画像(又は底面画像)を使用することとしてもよい。
コイルの上面画像(又は底面画像)を使用することにより、コイル全周について検査を1つの被検査画像のみで行うことができるため、良否判定に要する時間を削減することが可能となる。
The image to be inspected used in the coil quality determination method and the coil quality determination device according to the present invention only needs to include a repetitive pattern that appears in the winding portion. An image (or a bottom image) may be used.
By using the top surface image (or bottom surface image) of the coil, the entire circumference of the coil can be inspected with only one image to be inspected, so that the time required for pass / fail judgment can be reduced.

以下、図面を参照して本発明の実施形態を説明する。図3は、本発明の実施例に係るコイル良否判定装置の構成図である。コイル良否判定装置1は、良否を判定すべき被検査コイル50を撮像した画像信号(画像データ)である被検査画像を取得する被検査画像取得部2と、良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲を取得する空間周波数範囲取得部3と、被検査画像取得部2が取得した被検査画像の空間周波数成分の強度分布を生成する空間周波数成分強度分布生成部4と、空間周波数成分強度分布生成部4が強度分布を生成すべき被検査画像上の被検査範囲を取得又は設定する被検査範囲取得/設定部5と、空間周波数範囲取得部3が取得した前記空間周波数範囲における、空間周波数成分強度分布生成部4が生成した強度分布の集まり具合を判断して、被検査コイルの良否を判定する判定部6と、を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 3 is a configuration diagram of a coil pass / fail determination apparatus according to an embodiment of the present invention. The coil pass / fail determination apparatus 1 includes an inspected image acquisition unit 2 that acquires an inspected image that is an image signal (image data) obtained by imaging the inspected coil 50 that should be determined to pass or fail, and a spatial frequency that appears in the captured image of the non-defective coil. A spatial frequency range acquisition unit 3 that acquires a spatial frequency range including components, a spatial frequency component intensity distribution generation unit 4 that generates an intensity distribution of a spatial frequency component of the inspected image acquired by the inspected image acquisition unit 2, and a space The inspected range acquisition / setting unit 5 for acquiring or setting the inspected range on the inspected image for which the frequency component intensity distribution generating unit 4 should generate the intensity distribution, and the spatial frequency range acquired by the spatial frequency range acquiring unit 3 And a determination unit 6 that determines the degree of intensity distribution generated by the spatial frequency component intensity distribution generation unit 4 to determine whether the coil to be inspected is good or bad.

以下、図4並びに図5(A)及び図5(B)を参照してコイル良否判定方法を説明する。図4は本発明に係るコイル良否判定方法のフローチャートであり、図5(A)は良品コイルの被検査画像の例示であり、図5(B)はその空間周波数成分強度分布を示す図である。   Hereinafter, the coil quality determination method will be described with reference to FIGS. 4, 5 </ b> A, and 5 </ b> B. FIG. 4 is a flowchart of a coil pass / fail determination method according to the present invention, FIG. 5 (A) is an illustration of an inspected image of a non-defective coil, and FIG. 5 (B) is a diagram showing the spatial frequency component intensity distribution. .

ステップS101において、被検査画像取得部2は、CCDカメラ等により実現可能な外部の撮像手段100により撮像された被検査コイル50の被検査画像を、この撮像手段100から入力する。被検査画像の例を図5(A)の画像55に示す。画像55は、図1に示すコイル50を、XY平面について撮像した上面図である。   In step S <b> 101, the inspected image acquisition unit 2 inputs an inspected image of the inspected coil 50 captured by the external imaging unit 100 that can be realized by a CCD camera or the like from the imaging unit 100. An example of the inspection image is shown in an image 55 in FIG. An image 55 is a top view obtained by imaging the coil 50 shown in FIG. 1 with respect to the XY plane.

ステップS102において、空間周波数範囲取得部3は、良品コイルの撮像画像の巻線部分に現れる繰り返しパターンに対応する空間周波数成分を含む空間周波数の範囲fwを、外部の空間周波数範囲入力部(図示せず)から取得する。
このような空間周波数範囲fwは、例えば良品コイルの撮像画像の巻線部分に現れる繰り返しパターンに対応する空間周波数を中心とする所定の許容誤差範囲を有する周波数帯域として取得されてよい。
In step S102, the spatial frequency range acquisition unit 3 converts an external spatial frequency range input unit (not shown) into a spatial frequency range fw including a spatial frequency component corresponding to a repetitive pattern appearing in a winding portion of a captured image of a non-defective coil. )).
Such a spatial frequency range fw may be acquired as a frequency band having a predetermined allowable error range centered on a spatial frequency corresponding to a repetitive pattern appearing in a winding portion of a captured image of a non-defective coil, for example.

ステップS103において、被検査範囲取得/設定部5は、ステップS101にて取得した被検査画像55のうち、空間周波数成分強度分布生成部4が空間周波数成分の強度分布を生成するべき被検査範囲を、外部の被検査範囲入力部(図示せず)から取得し又は、自ら設定する。図5(A)の例では、被検査範囲として、被検査画像55上の1次元領域である検査ライン56が定められる。   In step S103, the inspected range acquisition / setting unit 5 selects the inspected range in which the spatial frequency component intensity distribution generation unit 4 should generate the intensity distribution of the spatial frequency component from the inspected image 55 acquired in step S101. Obtained from an external inspection range input unit (not shown) or set by itself. In the example of FIG. 5A, an inspection line 56 that is a one-dimensional region on the inspection image 55 is defined as the inspection range.

ステップS104において、空間周波数成分強度分布生成部4は、被検査画像取得部2が取得した被検査画像55のうち、被検査範囲取得/設定部5によって取得又は設定された被検査範囲における空間周波数成分の強度分布を生成する。
空間周波数成分強度分布生成部4は、被検査画像の輝度情報や明度情報に関して空間周波数成分の強度分布を生成することとしてよい。空間周波数成分強度分布生成部4は、前記の被検査範囲における被検査画像の画像信号(画像データ)の位置変化に伴う輝度(又は明度)の変化の示す波形を、ウェーブレット変換、フーリエ変換又は離散コサイン変換することにより、被検査画像の被検査範囲における空間周波数成分の強度分布を生成する。
In step S <b> 104, the spatial frequency component intensity distribution generation unit 4 determines the spatial frequency in the inspection range acquired or set by the inspection range acquisition / setting unit 5 out of the inspection image 55 acquired by the inspection image acquisition unit 2. Generate an intensity distribution of components.
The spatial frequency component intensity distribution generation unit 4 may generate an intensity distribution of the spatial frequency component regarding the luminance information and brightness information of the image to be inspected. The spatial frequency component intensity distribution generation unit 4 applies a wavelet transform, a Fourier transform, or a discrete waveform to a waveform indicating a change in luminance (or brightness) accompanying a change in position of an image signal (image data) of an image to be inspected in the inspection range. By performing cosine transform, an intensity distribution of spatial frequency components in the inspection range of the inspection image is generated.

例えば図5(A)の例では、空間周波数成分強度分布生成部4は、検査ライン56上における被検査画像の画像信号(画像データ)の位置変化に伴う輝度(又は明度)の変化の示す波形にウェーブレット変換等を施すことにより、検査ライン56上の各位置における空間周波数成分強度をそれぞれ求める。   For example, in the example of FIG. 5A, the spatial frequency component intensity distribution generation unit 4 has a waveform indicating a change in luminance (or brightness) accompanying a change in position of the image signal (image data) of the image to be inspected on the inspection line 56. Is subjected to wavelet transform or the like to obtain the spatial frequency component intensities at the respective positions on the inspection line 56.

そして、図5(B)に示すように、検査ライン56の方向の位置を第1の座標軸とし空間周波数を第2の座標軸とする2次元空間上に、検査ライン56上の各位置xにおける各周波数fの空間周波数成分強度を示す2次元強度分布を生成する。
なお、図5(B)において、濃い点描で表示されている領域は空間周波数成分強度が大きい領域を示し、白く表示されている領域は空間周波数成分強度が小さい領域を示す、中間の濃度の点描で表示されている領域は、中間の強度の領域を示す。以下の図6(B)及び図7(B)に示す空間周波数成分強度分布においても同様である。
Then, as shown in FIG. 5B, each position x at each position x on the inspection line 56 is set on a two-dimensional space having the position in the direction of the inspection line 56 as the first coordinate axis and the spatial frequency as the second coordinate axis. A two-dimensional intensity distribution indicating the intensity of the spatial frequency component of the frequency f is generated.
In FIG. 5B, the area displayed with a dark stippling indicates an area with a high spatial frequency component intensity, and the area displayed with white indicates an area with a low spatial frequency component intensity. The area indicated by indicates an intermediate intensity area. The same applies to the spatial frequency component intensity distributions shown in FIGS. 6B and 7B below.

ステップS105において、判定部6は、ステップS104で生成した強度分布のうちステップS102で取得した空間周波数範囲fw内で、空間周波数成分強度が第1の閾値T1を超える強度分布領域Rを求める。   In step S105, the determination unit 6 obtains an intensity distribution region R in which the spatial frequency component intensity exceeds the first threshold T1 within the spatial frequency range fw acquired in step S102 among the intensity distributions generated in step S104.

次にステップS106において、判定部6は、強度分布領域Rの大きさが第2の閾値T2より大きいか否かを判定する。
空間周波数範囲fwは、良品コイルの巻線部に現れる撮像画像の繰り返しパターンの空間周波数を含む周波数範囲であるので、もし、被検査コイル50の巻線が良好に巻き取られていれば、被検査コイル50の撮像画像にも同様の繰り返しパターンが現れて空間周波数範囲fw内に空間周波数成分が集まるため、強度分布領域Rの大きさも大きくなる。
Next, in step S106, the determination unit 6 determines whether or not the size of the intensity distribution region R is greater than the second threshold T2.
Since the spatial frequency range fw is a frequency range including the spatial frequency of the repeated pattern of the captured image appearing in the winding portion of the non-defective coil, if the winding of the coil 50 to be inspected is wound well, Since a similar repetitive pattern appears in the captured image of the inspection coil 50 and the spatial frequency components are collected in the spatial frequency range fw, the size of the intensity distribution region R is also increased.

したがって、判定部6は、強度分布領域Rの大きさが第2の閾値T2以下のとき、被検査コイル50が不良品であると判定する(S109)。反対に、判定部6は、強度分布領域Rの大きさが第2の閾値T2より大きいときには次の判断ステップS107に進むが、簡易に判定を行う場合はこの段階で被検査コイル50が良品であると判定してもよい。   Therefore, when the magnitude of the intensity distribution region R is equal to or smaller than the second threshold T2, the determination unit 6 determines that the inspected coil 50 is a defective product (S109). On the contrary, the determination unit 6 proceeds to the next determination step S107 when the magnitude of the intensity distribution region R is larger than the second threshold value T2, but when the determination is simply performed, the coil 50 to be inspected is a non-defective product at this stage. You may determine that there is.

図5(B)の例示のように、被検査範囲として1次元領域の検査ライン56が定められ、空間周波数成分強度分布が2次元強度分布として生成される場合には、強度分布領域Rの大きさは2次元領域Rの面積を使用することとしてよい。   As illustrated in FIG. 5B, when the inspection line 56 of the one-dimensional region is defined as the inspection range and the spatial frequency component intensity distribution is generated as the two-dimensional intensity distribution, the magnitude of the intensity distribution region R is large. The area of the two-dimensional region R may be used.

次にステップS107において、判定部6は、強度分布領域Rの縁の大きさが第3の閾値T3より小さいか否かを判定する。
もし、被検査コイル50の巻線が良好に巻き取られており巻線の線列にバラツキが少なければ、空間周波数範囲fw内に現れる空間周波数成分が1点に集中するため、強度分布領域Rは円形又は球形に近づく。したがって分布領域R自体の大きさに対する縁の大きさの比が小さくなる。
In step S107, the determination unit 6 determines whether the size of the edge of the intensity distribution region R is smaller than the third threshold T3.
If the winding of the coil 50 to be inspected is wound up well and there is little variation in the line of windings, the spatial frequency component appearing in the spatial frequency range fw is concentrated at one point, so that the intensity distribution region R Approaches a circle or sphere. Therefore, the ratio of the edge size to the size of the distribution region R itself is reduced.

したがって、判定部6は、強度分布領域Rの縁の大きさが第3の閾値T3より小さいとき、被検査コイル50が良品であると判定する(S108)。反対に、判定部6は、強度分布領域Rの縁の大きさが第3の閾値T3以上のとき被検査コイル50が不良品であると判定する(S109)。   Therefore, when the edge size of the intensity distribution region R is smaller than the third threshold T3, the determination unit 6 determines that the inspected coil 50 is a non-defective product (S108). On the other hand, the determination unit 6 determines that the inspected coil 50 is a defective product when the size of the edge of the intensity distribution region R is equal to or greater than the third threshold T3 (S109).

図5(B)の例示のように、被検査範囲として1次元領域の検査ライン56が定められ、空間周波数成分強度分布が2次元強度分布として生成される場合には、強度分布領域Rの縁の大きさは2次元領域Rの外周の長さを使用することとしてよい。   As illustrated in FIG. 5B, when the inspection line 56 of the one-dimensional region is defined as the inspection range and the spatial frequency component intensity distribution is generated as the two-dimensional intensity distribution, the edge of the intensity distribution region R The size of may be the length of the outer periphery of the two-dimensional region R.

図6(A)は不良コイルの被検査画像の第1の例示であり、図6(B)はその空間周波数成分強度分布を示す図である。
図6(A)の被検査画像に示すように巻線51の線列が大きく乱れることにより、図6(B)の強度分布において空間周波数範囲fw内に空間周波数成分が集まらなくなり、所定の強度閾値T1を超える強度分布領域Rの大きさ(この例では領域Rの面積)が非常に小さくなる。
したがって、図6(A)の被検査画像の例では、強度分布領域Rの大きさを所定の閾値T2と比較することにより被検査コイルの良否を判定することが可能である。
FIG. 6A is a first example of an image to be inspected of a defective coil, and FIG. 6B is a diagram showing the spatial frequency component intensity distribution.
As shown in the image to be inspected in FIG. 6A, the line array of the winding 51 is greatly disturbed, so that the spatial frequency components are not collected in the spatial frequency range fw in the intensity distribution of FIG. The magnitude of the intensity distribution region R exceeding the threshold value T1 (in this example, the area of the region R) becomes very small.
Therefore, in the example of the inspected image in FIG. 6A, it is possible to determine the quality of the inspected coil by comparing the size of the intensity distribution region R with the predetermined threshold T2.

図7(A)は不良コイルの被検査画像の第2の例示であり、図7(B)はその空間周波数成分強度分布を示す図である。
図7(A)の不良コイルは、図6(A)の不良コイルに比べて、巻線51の線列の乱れが少ない。したがって図7(B)の強度分布において空間周波数範囲fw内にも空間周波数成分が集まっており、所定の強度閾値T1を超える強度分布領域Rの大きさもある程度の大きさとなるため、強度分布領域Rの大きさによる良否判定が難しくなる。
FIG. 7A is a second example of an inspected image of a defective coil, and FIG. 7B is a diagram showing the spatial frequency component intensity distribution.
The defective coil in FIG. 7A has less disturbance in the line array of the winding 51 than the defective coil in FIG. Accordingly, in the intensity distribution of FIG. 7B, spatial frequency components are also collected in the spatial frequency range fw, and the intensity distribution region R exceeding the predetermined intensity threshold T1 has a certain size, so that the intensity distribution region R It becomes difficult to determine whether the quality is good or bad.

しかし、図7(B)の強度分布では、線列の乱れに起因して図5(B)の強度分布と比較して強度分布領域Rの形が歪んだり分裂している。このため、強度分布領域Rの大きさである領域Rの外周長が、図5(B)の強度分布の領域Rの外周長より大きくなる。   However, in the intensity distribution of FIG. 7B, the shape of the intensity distribution region R is distorted or split compared to the intensity distribution of FIG. For this reason, the outer peripheral length of the region R, which is the size of the intensity distribution region R, is larger than the outer peripheral length of the region R of the intensity distribution in FIG.

したがって、図7(A)の被検査画像の例では、強度分布領域Rの縁である外周長の大きさを所定の閾値T3と比較することにより被検査コイルの良否を判定することが可能である。   Therefore, in the example of the image to be inspected in FIG. 7A, it is possible to determine the quality of the inspected coil by comparing the size of the outer peripheral length, which is the edge of the intensity distribution region R, with the predetermined threshold T3. is there.

なお、被検査画像取得部2は、撮像手段100から被検査画像の画像信号(画像データ)を取得するためのインタフェースとして実現してもよく、撮像手段により撮像されフレキシブルディスク及びCDーROM等の記録媒体に記憶された被検査画像の画像データを読み取ることが可能なデータ入出力手段として実現してもよい。さらにコイル良否判定装置1は、被検査画像取得部2に被検査画像を与える撮像手段を備え、この撮像手段により被検査画像を取得することとしてもよい。   The inspected image acquisition unit 2 may be realized as an interface for acquiring the image signal (image data) of the inspected image from the image capturing unit 100, and is imaged by the image capturing unit such as a flexible disk and a CD-ROM. You may implement | achieve as a data input / output means which can read the image data of the to-be-inspected image memorize | stored in the recording medium. Furthermore, the coil pass / fail determination apparatus 1 may include an imaging unit that provides an inspection image to the inspection image acquisition unit 2, and may acquire the inspection image by the imaging unit.

また、空間周波数範囲取得部3に空間周波数範囲を提供する空間周波数範囲入力部(図示せず)は、オペレータが空間周波数範囲を入力するためのユーザインタフェース装置として実現してよい。
この空間周波数範囲入力部は、既知の良品コイルの巻線部分を含む撮像画像を入力して、入力画像に含まれる空間周波数成分の強度分布に基づき空間周波数範囲を算出して、空間周波数範囲取得部3に提供することとしてよい。
The spatial frequency range input unit (not shown) that provides the spatial frequency range to the spatial frequency range acquisition unit 3 may be realized as a user interface device for an operator to input the spatial frequency range.
The spatial frequency range input unit inputs a captured image including a winding portion of a known good coil, calculates the spatial frequency range based on the intensity distribution of the spatial frequency component included in the input image, and acquires the spatial frequency range It may be provided to part 3.

細かい繰り返しパターンを含む巻線部分の撮像画像部分は、コイル50のその他の部位や背景の画像部分と比べてやや高い空間周波数成分を含んでいる。したがって空間周波数範囲入力部は、入力された良品コイルの撮像画像の空間周波数成分の強度分布を求め、所定の周波数より高い空間周波数領域において、良品コイルの撮像画像の空間周波数成分が最も多く分布する周波数帯を、空間周波数範囲取得部3に提供する空間周波数範囲として算出してよい。
さらにコイル良否判定装置1は、このような空間周波数範囲入力部を自身に備えることとしてもよい。
The captured image portion of the winding portion including the fine repetitive pattern includes a spatial frequency component that is slightly higher than other portions of the coil 50 and the background image portion. Therefore, the spatial frequency range input unit obtains the intensity distribution of the spatial frequency component of the captured image of the input non-defective coil, and the spatial frequency component of the captured image of the non-defective coil is most distributed in a spatial frequency region higher than a predetermined frequency. The frequency band may be calculated as a spatial frequency range provided to the spatial frequency range acquisition unit 3.
Furthermore, the coil quality determination device 1 may include such a spatial frequency range input unit.

また、被検査範囲取得/設定部5に、被検査画像上の被検査範囲(図5の例では検査ライン56)を提供する被検査範囲入力部(図示せず)は、オペレータが被検査範囲を入力するためのユーザインタフェース装置として実現してよい。コイル良否判定装置1は、このような被検査範囲入力部を自身に備えることとしてもよい。   In addition, an inspection range input unit (not shown) that provides the inspection range acquisition / setting unit 5 with an inspection range on the inspection image (inspection line 56 in the example of FIG. 5) is displayed by the operator. It may be realized as a user interface device for inputting. The coil pass / fail determination apparatus 1 may include such an inspected range input unit.

また、被検査範囲取得/設定部5は、被検査範囲を自ら設定することとしてよい。例えば、被検査範囲取得/設定部5は、被検査コイル50の撮像画像中で、やや高い空間周波数成分を含んでいる巻線部51の画像部分の領域を抽出して、被検査範囲が巻線部51の画像部分の領域を含むように設定してもよい。   Further, the inspected range acquisition / setting unit 5 may set the inspected range by itself. For example, the inspected range acquisition / setting unit 5 extracts a region of the image portion of the winding unit 51 that includes a slightly higher spatial frequency component from the captured image of the inspected coil 50, and the inspected range is wound. You may set so that the area | region of the image part of the line part 51 may be included.

またステップS103において被検査画像上に設定される被検査範囲は、2次元検査領域であってもよい。このときステップS104において作成される空間周波数成分強度分布は、2次元の被検査範囲の第1の方向に関する位置を第1の座標軸とし、この被検査範囲の第2の方向に関する位置を第2の座標軸とし、空間周波数を第3の座標軸とする3次元空間上に、2次元被検査範囲の各位置xにおける各周波数fの空間周波数成分強度を示す3次元強度分布となる。   Further, the inspection range set on the inspection image in step S103 may be a two-dimensional inspection region. At this time, the spatial frequency component intensity distribution created in step S104 uses the position of the two-dimensional inspection range in the first direction as the first coordinate axis, and the position of the inspection range in the second direction as the second direction. A three-dimensional intensity distribution indicating the spatial frequency component intensity of each frequency f at each position x in the two-dimensional inspection range is formed on the three-dimensional space having the coordinate axis and the spatial frequency as the third coordinate axis.

上記3次元座標の各点に算出される空間周波数成分強度は、被検査範囲の第1の方向に関する第1の周波数成分強度と、被検査範囲の第2の方向に関する第2の空間周波数成分強度とを有するベクトル値となる。S104において作成される3次元強度分布は、このような各ベクトル値の絶対値を示すスカラ値の分布としてよい。   The spatial frequency component intensity calculated at each point of the three-dimensional coordinates includes a first frequency component intensity related to the first direction of the inspection range and a second spatial frequency component intensity related to the second direction of the inspection range. Is a vector value. The three-dimensional intensity distribution created in S104 may be a scalar value distribution indicating the absolute value of each vector value.

また、2次元検査領域を被検査範囲とする場合、ステップS106において、第2の閾値T2と比較される強度分布領域Rの大きさは体積としてよく、ステップS107において第3の閾値T3と比較される強度分布領域Rの縁の大きさは、強度分布領域Rの表面積としてよい。   Further, when the two-dimensional inspection region is set as the inspection range, the size of the intensity distribution region R compared with the second threshold value T2 in step S106 may be a volume, and compared with the third threshold value T3 in step S107. The size of the edge of the intensity distribution region R may be the surface area of the intensity distribution region R.

また、上記ステップS104などで行われる、被検査コイル50の撮像画像である被検査画像や、良品コイルの撮像画像に含まれる空間周波数成分の算出は、以下のような方法(本出願において、「画像シフト法」と記すこととする)によって算出することとしてもよい。
すなわち、撮像画像の各位置について、この位置を含む微少範囲の画像信号(画像データ)と、この位置からあるシフト量だけ変位した位置の同範囲の画像信号(画像データ)とを比較してその差分を算出する。このシフト量を徐々に変化させてゆき、差分が最も小さくなる(両者の画像信号が最も類似する)シフト量を、このシフト方向における空間周波数として算出する。
In addition, the calculation of the spatial frequency component included in the image to be inspected, which is an image captured by the coil 50 to be inspected, and the image captured by the non-defective coil, performed in step S104 and the like is performed as follows (in this application, “ It may be calculated by “image shift method”.
That is, for each position of the captured image, a minute range of image signals (image data) including this position is compared with an image signal (image data) of the same range at a position displaced from this position by a certain shift amount. Calculate the difference. The shift amount is gradually changed, and the shift amount with the smallest difference (both image signals are most similar) is calculated as the spatial frequency in the shift direction.

また、被検査画像において、巻線部分51を撮像した画像部分の位置及び範囲が予め判明している場合には(例えば撮像中の被検査コイル50と撮像手段100の相対位置が固定されている場合などには)、上記ステップS105にて、判定部6は、被検査範囲のうち巻線部分51を撮像した画像部分を含む範囲を取得又は設定して、この範囲内及び空間周波数範囲fw内の範囲である検査ウインドウを定めて、検査ウインドウ内でのみ空間周波数成分強度が第1の閾値T1を超える強度分布領域Rを求めることとしてよい。   Further, in the image to be inspected, when the position and range of the image portion obtained by imaging the winding portion 51 are known in advance (for example, the relative position between the coil 50 to be inspected and the image pickup means 100 is fixed). In such a case, in step S105, the determination unit 6 acquires or sets a range including an image portion obtained by imaging the winding portion 51 in the inspection range, and within this range and the spatial frequency range fw. It is possible to determine an intensity distribution region R in which the spatial frequency component intensity exceeds the first threshold value T1 only within the inspection window.

例えば図5(A)及び(B)、図6(A)及び(B)、並びに図7(A)及び(B)の例では、判定部6は、検査ライン56上のうち、巻線部分51を撮像した画像部分を含む範囲Xw1及びXw2を取得又は設定して、範囲Xw1及びXw2内、並びに空間周波数範囲fw内の範囲である、それぞれの検査ウインドウ61及び62の内部でのみ強度分布領域Rを求める。   For example, in the examples of FIGS. 5A and 5B, FIGS. 6A and 6B, and FIGS. 7A and 7B, the determination unit 6 is a winding portion on the inspection line 56. The range Xw1 and Xw2 including the image portion obtained by imaging 51 is acquired or set, and the intensity distribution regions are only within the respective inspection windows 61 and 62, which are the ranges within the ranges Xw1 and Xw2 and the spatial frequency range fw. Find R.

また、空間周波数成分分布生成部4、被検査範囲取得/設定部5、判定部6及び被検査範囲入力部は、1つの被検査画像において、被検査範囲の位置を順次変えてステップS103〜ステップS109のステップを繰り返し、被検査画像の各位置について上述のコイル良否判定方法を行ってもよい。このように被検査範囲を変えて判定を複数回行うことにより、判定精度を向上させることが可能となる。
このとき、被検査範囲取得/設定部5は、複数の被検査範囲を被検査画像上で位置を変えて繰り返して設定することとしてよい。
In addition, the spatial frequency component distribution generation unit 4, the inspection range acquisition / setting unit 5, the determination unit 6, and the inspection range input unit sequentially change the position of the inspection range in one inspection image, from step S103 to step S103. The above-described coil pass / fail determination method may be performed for each position of the image to be inspected by repeating step S109. Thus, it is possible to improve the determination accuracy by performing the determination a plurality of times while changing the inspection range.
At this time, the inspected range acquisition / setting unit 5 may repeatedly set a plurality of inspected ranges by changing positions on the inspected image.

上記説明では、被検査コイル50の上面を撮像した被検査画像について説明を行ったが、コイル側面を撮像した撮像画像もコイル50の巻線部51の繰り返しパターンが現れるので、コイル側面を撮像した撮像画像を被検査画像として使用してもよい。   In the above description, the inspection image obtained by imaging the upper surface of the coil 50 to be inspected has been described. However, since the repeated pattern of the winding portion 51 of the coil 50 appears in the captured image obtained by imaging the coil side surface, the coil side surface was imaged. A captured image may be used as an inspection image.

本発明に係るコイル良否判定装置1及びコイル良否判定方法はコイル製造工程の最終工程に使用されて、製造されたコイルの良否を判定するために使用されてよい。   The coil pass / fail determination apparatus 1 and the coil pass / fail determination method according to the present invention may be used in the final step of the coil manufacturing process and used to determine the pass / fail of the manufactured coil.

従来のコイル良否検査方法の説明図である。It is explanatory drawing of the conventional coil quality inspection method. (A)は、良品コイルの側面図であり、(B)はそのシルエット画像であり、(C)は不良コイルの側面図(その1)であり、(D)はそのシルエット画像であり、(E)は不良コイルの側面図(その2)であり、(F)はそのシルエット画像である。(A) is a side view of a non-defective coil, (B) is a silhouette image thereof, (C) is a side view (part 1) of a defective coil, (D) is a silhouette image thereof, ( E) is a side view (part 2) of the defective coil, and (F) is a silhouette image thereof. コイル良否判定装置。Coil pass / fail judgment device. 本発明に係るコイル良否判定方法を示すフローチャートである。It is a flowchart which shows the coil quality determination method which concerns on this invention. (A)は良品コイルの被検査画像であり、(B)はその空間周波数成分強度分布を示す図である。(A) is an inspected image of a non-defective coil, and (B) is a diagram showing the spatial frequency component intensity distribution. (A)は不良コイルの被検査画像(その1)であり、(B)はその空間周波数成分強度分布を示す図である。(A) is a to-be-inspected image of a defective coil (part 1), and (B) is a diagram showing the spatial frequency component intensity distribution. (A)は不良コイルの被検査画像(その2)であり、(B)はその空間周波数成分強度分布を示す図である。(A) is a to-be-inspected image (part 2) of a defective coil, and (B) is a diagram showing the spatial frequency component intensity distribution.

符号の説明Explanation of symbols

1…コイル良否判定装置
2…被検査画像取得部
3…被検査範囲取得/設定部
4…空間周波数取得部
5…空間周波数成分強度分布生成部
6…判定部
50…コイル
51…巻線部
100…撮像手段
DESCRIPTION OF SYMBOLS 1 ... Coil quality determination apparatus 2 ... Tested image acquisition part 3 ... Test range acquisition / setting part 4 ... Spatial frequency acquisition part 5 ... Spatial frequency component intensity distribution generation part 6 ... Determination part 50 ... Coil 51 ... Winding part 100 ... Imaging means

Claims (5)

被検査画像である被検査コイルの撮像画像を取得し、
良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲を取得し、
前記被検査画像内の所定の直線上における輝度変化の各空間周波数成分の強度を、前記所定の直線上の各位置において算出し、
空間周波数方向及び前記所定の直線上の位置方向をそれぞれ座標軸とする空間上の、前記取得した空間周波数範囲内において、前記空間周波数成分の強度が所定の第1の閾値を超える領域である強度領域を決定し、
前記強度領域の面積が所定の第2の閾値を超えるか否かを判断し、
前記強度領域の面積が前記所定の第2の閾値を超えるとき、前記被検査コイルが良品であると判定する、コイル良否判定方法。
Obtain a captured image of the inspected coil that is the inspected image,
Obtain the spatial frequency range including the spatial frequency component that appears in the captured image of the non-defective coil,
Calculating the intensity of each spatial frequency component of the luminance change on the predetermined line in the inspected image at each position on the predetermined line;
An intensity region that is an area in which the intensity of the spatial frequency component exceeds a predetermined first threshold in the acquired spatial frequency range on the space having the spatial frequency direction and the position direction on the predetermined straight line as coordinate axes, respectively. Decide
Determining whether the area of the intensity region exceeds a predetermined second threshold;
A coil pass / fail determination method in which when the area of the intensity region exceeds the predetermined second threshold, the coil to be inspected is determined to be non-defective.
前記強度領域の外周長が所定の第3の閾値より小さいか否かをさらに判断し、It is further determined whether or not the outer peripheral length of the intensity region is smaller than a predetermined third threshold,
前記強度領域の面積が前記所定の第2の閾値を超えかつ前記強度領域の外周長が前記所定の第3の閾値より小さいとき、前記被検査コイルが良品であると判定し、When the area of the intensity region exceeds the predetermined second threshold and the outer peripheral length of the intensity region is smaller than the predetermined third threshold, the coil to be inspected is determined to be non-defective,
前記強度領域の面積が前記所定の第2の閾値以下であるか又は前記強度領域の外周長が前記所定の第3の閾値以上のとき、前記被検査コイルが不良品であると判定する請求項1に記載のコイル良否判定方法。The area of the intensity region is equal to or less than the predetermined second threshold value, or the coil to be inspected is determined to be defective when the outer circumference length of the intensity region is equal to or greater than the predetermined third threshold value. The coil pass / fail judgment method according to 1.
請求項1又は2に記載のコイル良否判定方法を使用して、製造したコイルの良否を判定することを特徴とするコイル製造方法。 A coil manufacturing method, wherein the quality of a manufactured coil is determined using the coil quality determination method according to claim 1 . 被検査画像である被検査コイルの撮像画像を取得する、被検査画像取得部と
良品コイルの撮像画像に現れる空間周波数成分を含む空間周波数範囲を取得する、空間周波数範囲取得部と、
前記被検査画像内の所定の直線上における輝度変化の各空間周波数成分の強度を、前記所定の直線上の各位置において算出する、空間周波数成分強度算出部と、
空間周波数方向及び前記所定の直線上の位置方向をそれぞれ座標軸とする空間上の、前記取得した空間周波数範囲内において、前記空間周波数成分の強度が所定の第1の閾値を超える領域である強度領域を決定し、前記強度領域の面積が所定の第2の閾値を超えるか否かを判断し、前記領域の面積が前記所定の第2の閾値を超えるとき、前記被検査コイルが良品であると判定する判定部と、
を備えるコイル良否判定装置。
An image to be inspected which is an image to be inspected, an image to be inspected to acquire an image to be inspected, and a spatial frequency range acquiring unit to acquire a spatial frequency range including a spatial frequency component appearing in the imaged image of the non-defective coil;
A spatial frequency component intensity calculator that calculates the intensity of each spatial frequency component of the luminance change on the predetermined line in the inspection image at each position on the predetermined line;
An intensity region that is an area in which the intensity of the spatial frequency component exceeds a predetermined first threshold in the acquired spatial frequency range on the space having the spatial frequency direction and the position direction on the predetermined straight line as coordinate axes, respectively. And determining whether or not the area of the intensity region exceeds a predetermined second threshold, and when the area of the region exceeds the predetermined second threshold, the coil to be inspected is a non-defective product A determination unit for determining;
A coil pass / fail judgment device comprising:
前記判定部は、前記強度領域の外周長が所定の第3の閾値より小さいか否かをさらに判断し、The determination unit further determines whether or not an outer peripheral length of the intensity region is smaller than a predetermined third threshold;
前記強度領域の面積が前記所定の第2の閾値を超えかつ前記強度領域の外周長が前記所定の第3の閾値より小さいとき、前記被検査コイルが良品であると判定し、When the area of the intensity region exceeds the predetermined second threshold and the outer peripheral length of the intensity region is smaller than the predetermined third threshold, the coil to be inspected is determined to be non-defective,
前記強度領域の面積が前記所定の第2の閾値以下であるか又は前記強度領域の外周長が前記所定の第3の閾値以上のとき、前記被検査コイルが不良品であると判定する請求項4に記載のコイル良否判定装置。The area of the intensity region is equal to or less than the predetermined second threshold value, or the coil to be inspected is determined to be defective when the outer circumference length of the intensity region is equal to or greater than the predetermined third threshold value. 4. The coil pass / fail judgment device according to 4.
JP2004054745A 2004-02-27 2004-02-27 Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device Expired - Fee Related JP4239854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054745A JP4239854B2 (en) 2004-02-27 2004-02-27 Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054745A JP4239854B2 (en) 2004-02-27 2004-02-27 Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device

Publications (2)

Publication Number Publication Date
JP2005241582A JP2005241582A (en) 2005-09-08
JP4239854B2 true JP4239854B2 (en) 2009-03-18

Family

ID=35023444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054745A Expired - Fee Related JP4239854B2 (en) 2004-02-27 2004-02-27 Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device

Country Status (1)

Country Link
JP (1) JP4239854B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253490B2 (en) * 2014-04-14 2017-12-27 三菱電機株式会社 Winding inspection method and winding inspection apparatus
JP6687293B2 (en) * 2017-03-06 2020-04-22 三菱電機株式会社 Winding device and winding inspection method

Also Published As

Publication number Publication date
JP2005241582A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP6213662B2 (en) Surface texture indexing device, surface texture indexing method and program
CN106052591B (en) Measuring device, measurement method, system and article production method
WO2014103719A1 (en) Defect inspection method and defect inspection device
CN111083365B (en) Method and device for rapidly detecting optimal focal plane position
JP2009025221A (en) Method and device for inspecting defects
JP2018029251A (en) Inspection apparatus, inspection method, and program
WO2012056638A1 (en) Pattern measuring method, pattern measuring apparatus, and program using same
JP2018029250A (en) Signal processor, signal processing method, and program
JP4538421B2 (en) Charged particle beam equipment
CN117274258B (en) Method, system, equipment and storage medium for detecting defects of main board image
US6330066B1 (en) Height measuring apparatus and method and testing apparatus using the height measuring apparatus
CN117637513B (en) Method, device, equipment and storage medium for measuring critical dimension
JP3961438B2 (en) PATTERN MEASURING DEVICE, PATTERN MEASURING METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
JP2006113073A (en) System and method for pattern defect inspection
JP3752849B2 (en) Pattern defect inspection apparatus and pattern defect inspection method
JP4239854B2 (en) Coil pass / fail judgment method, coil manufacturing method, and coil pass / fail judgment device
JP7098743B2 (en) Charged particle beam system
JP2009204382A (en) Mtf measuring method and mtf measuring instrument
TWI760417B (en) Three-dimensional shape measurement method using scanning white interference microscope
KR102039103B1 (en) Methods and apparatus for image processing, and laser scanning ophthalmoscope having an image processing apparatus
CN113012121B (en) Method and device for processing bare chip scanning result, electronic equipment and storage medium
JPH0915506A (en) Method and device for image processing
JP2008145121A (en) Three-dimensional shape measuring apparatus
JP2011191244A (en) Evaluation method of optical unit
JP5207250B2 (en) Image processing apparatus, imaging apparatus, and image processing program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4239854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees