JP2008145121A - Three-dimensional shape measuring apparatus - Google Patents

Three-dimensional shape measuring apparatus Download PDF

Info

Publication number
JP2008145121A
JP2008145121A JP2006329233A JP2006329233A JP2008145121A JP 2008145121 A JP2008145121 A JP 2008145121A JP 2006329233 A JP2006329233 A JP 2006329233A JP 2006329233 A JP2006329233 A JP 2006329233A JP 2008145121 A JP2008145121 A JP 2008145121A
Authority
JP
Japan
Prior art keywords
optical system
pattern
image
dimensional
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006329233A
Other languages
Japanese (ja)
Inventor
Daisaku Mochida
大作 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006329233A priority Critical patent/JP2008145121A/en
Publication of JP2008145121A publication Critical patent/JP2008145121A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2545Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with one projection direction and several detection directions, e.g. stereo
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional shape measuring apparatus realizing both high measurement accuracy and a wide measurement range. <P>SOLUTION: A narrow band filter is inserted into an optical system to project a two-dimensional grid pattern 3 onto a device under test 2. Then the grid pattern on the device 2 is acquired as an image through the use of a plurality of light reception lenses 4 and imaging elements 5. The gravity position of longitudinal and horizontal lines of the two-dimensional grid pattern 3 is detected by image processing, and positions of respective grid points on the image are obtained from the gravity position. In doing so, a focal position of a projective lens 6 and a focal position of the light reception lens 4 are determined so that the focus of an imaging optical system aligns with an image focus location of the pattern 3. By taking the same procedures while successively switching over filters, data in a range where focal depths of focal positions of the projective lens and the light reception lens overlap can be acquired since they have different focal positions depending on the wavelength band of the projective lens and the light reception lens. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はアクティブステレオ法を基に、三角測量を用いて物体の三次元形状を測定する三次元形状測定装置に関するものである。   The present invention relates to a three-dimensional shape measuring apparatus that measures the three-dimensional shape of an object using triangulation based on the active stereo method.

近年、様々な分野において被検物の三次元形状および位置を非接触で測定する必要性が高まりつつある。物体の三次元形状を非接触で測定する方法には大別して二種類の方法がある。   In recent years, there is an increasing need for non-contact measurement of the three-dimensional shape and position of a test object in various fields. There are two types of methods for measuring the three-dimensional shape of an object in a non-contact manner.

一方は、計測の補助となる特定の電磁波を照射することなく測定を行う受動的な方法で、他方は、計測のために対象物に特定の電磁波を照射し、そこから情報を得ることで測定を行う能動的な方法である。受動的な方法にはレンズ焦点法、ステレオ法などがあり、一般に汎用的で物体の形状や大きさ等の制限が少ないというメリットがある。一方、能動的な方法には、光レーダー法、アクティブステレオ法、モアレトポグラフィ法、照度差ステレオ法、干渉法などがあり、一般に受動的な方法に対して精度が高いというメリットがある。   One is a passive method that performs measurement without irradiating a specific electromagnetic wave to assist measurement, and the other is a measurement by irradiating a specific electromagnetic wave to an object for measurement and obtaining information from it. Is an active way to do. A passive method includes a lens focus method, a stereo method, and the like, which are generally versatile and have an advantage that there are few restrictions on the shape and size of an object. On the other hand, active methods include an optical radar method, an active stereo method, a moire topography method, an illuminance difference stereo method, an interference method, and the like, and generally have an advantage of higher accuracy than a passive method.

高精度を必要とする測定には通常アクティブステレオ法などが使用される。アクティブステレオ法では代表的な方法としてスリット投影法がある。これはプロジェクタからスリット光を投影し、被検物の表面に映るスリット像の位置をカメラの画像上で検出することにより、三角測量を用いて物体の三次元情報を得るという方法である。スリット光をスキャンすることにより、物体全体の三次元形状を得ることができる。   For measurements that require high accuracy, the active stereo method is usually used. As a representative method in the active stereo method, there is a slit projection method. This is a method of obtaining three-dimensional information of an object using triangulation by projecting slit light from a projector and detecting the position of a slit image reflected on the surface of a test object on a camera image. By scanning the slit light, the three-dimensional shape of the entire object can be obtained.

この方法では空間分解能はスキャンするステップに依存し、高い分解能を得るためにはステップを細かくする必要がある。これを改善する方法として、特定のパターン光を投影するグレイコードパターン投影法や、特開2001−330417号公報(特許文献1)に記載されるカラーパターン光投影法がある。これらの方法は特定のパターンを投影して被検物を細かく分割し、分割されたパートごとに三角測量を行うものである。投影するパターンを工夫することで、スリット投影法のスキャン回数よりも少ない投影回数で被検物の分割数を多くすることが可能となる。
特開2001−330417号公報
In this method, the spatial resolution depends on the scanning step, and it is necessary to make the step finer in order to obtain a high resolution. As a method for improving this, there are a gray code pattern projection method for projecting a specific pattern light and a color pattern light projection method described in Japanese Patent Laid-Open No. 2001-330417 (Patent Document 1). In these methods, a specific pattern is projected to finely divide the test object, and triangulation is performed for each divided part. By devising the pattern to be projected, it is possible to increase the number of divisions of the test object with the number of projections smaller than the number of scans of the slit projection method.
JP 2001-330417 A

上記のステップを細かくする方法や、グレイコードパターン投影法やカラーパターン光投影法等では、高い空間分解能を達成することは可能であるが、各ポイントごとの測定精度そのものを向上させることはできない。測定精度を向上させるためには測定光学系に使用する集光レンズの被検物側開口数をできるだけ大きくとることが望ましいが、開口数を大きくすると今度は被検物側の焦点深度が浅くなってしまい、測定範囲を狭めてしまうという問題があった。   High spatial resolution can be achieved by the above-described method of making the steps fine, the gray code pattern projection method, the color pattern light projection method, and the like, but the measurement accuracy per point cannot be improved. In order to improve measurement accuracy, it is desirable to make the numerical aperture on the specimen side of the condenser lens used in the measurement optical system as large as possible. However, if the numerical aperture is increased, the depth of focus on the specimen side will become shallower. As a result, there is a problem of narrowing the measurement range.

本発明はこのような事情に鑑みてなされたもので、高い測定精度と広い測定範囲を両立させる三次元形状測定装置を提供することを課題とする。   This invention is made | formed in view of such a situation, and makes it a subject to provide the three-dimensional shape measuring apparatus which makes high measurement accuracy and a wide measurement range compatible.

前記課題を解決するための第1の手段は、二次元格子パターンを被検物に投影する投影装置と、前記被検物上に投影された前記二次元格子パターンを受光する複数の受光手段を備えた三次元形状測定装置であって、前記投影装置を構成する投影光学系、および前記受光手段を構成する受光光学系が多焦点レンズであることを特徴とする三次元形状測定装置である。   The first means for solving the problem includes a projection device that projects a two-dimensional lattice pattern onto a test object, and a plurality of light receiving means that receive the two-dimensional lattice pattern projected onto the test object. A three-dimensional shape measuring apparatus, comprising: a projection optical system that constitutes the projection apparatus; and a light receiving optical system that constitutes the light receiving means is a multifocal lens.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記多焦点レンズは軸上色収差を用いて多焦点を形成するものであることを特徴とするものである。   A second means for solving the above-mentioned problem is the first means, wherein the multifocal lens forms a multifocal point using axial chromatic aberration.

前記課題を解決するための第3の手段は、前記第1の手段であって、前記多焦点レンズは偏光を用いて多焦点を形成するものであることを特徴とするものである。   A third means for solving the above-mentioned problem is the first means, wherein the multifocal lens forms a multifocal point using polarized light.

前記課題を解決するための第4の手段は、前記第1の手段から第3の手段のいずれかであって、投影される前記二次元格子パターンは、線の行、列数を識別できるように、線に特定のパターンを持つことを特徴とするものである。   A fourth means for solving the problem is any one of the first to third means, and the projected two-dimensional lattice pattern can identify the number of rows and columns of lines. In addition, the line has a specific pattern.

本発明によれば、高い測定精度と広い測定範囲を両立させる三次元形状測定装置を提供することができる。   According to the present invention, it is possible to provide a three-dimensional shape measuring apparatus that achieves both high measurement accuracy and a wide measurement range.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の例を模式的に示す図である。パターン投影装置1から二次元格子パターン3を被検物2に投影し、その像を複数の受光光学系4により各撮像素子5上に撮像するシステムになっている。撮像素子5上で格子パターンの各格子点の位置を検出することで、受光レンズ4間の基線長Lに対して格子までの角度α、βが求まり、三角測量の原理を用いて各格子点の位置が決定できる。被検物2上には複数の格子点が存在するため、被検物2上の複数位置が決定できることになる。さらに格子をx、y方向にピッチ1つ分スキャンすることで被検物2全面の位置を決定できることになる。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram schematically showing an example of an embodiment of the present invention. The two-dimensional lattice pattern 3 is projected from the pattern projection device 1 onto the test object 2, and the image is captured on each image sensor 5 by a plurality of light receiving optical systems 4. By detecting the position of each lattice point of the lattice pattern on the image sensor 5, angles α and β to the lattice are obtained with respect to the base line length L between the light receiving lenses 4, and each lattice point is obtained using the principle of triangulation. Can be determined. Since there are a plurality of lattice points on the test object 2, a plurality of positions on the test object 2 can be determined. Further, the position of the entire surface of the test object 2 can be determined by scanning the lattice by one pitch in the x and y directions.

本発明ではパターン投影装置1、受光光学系4に特徴がある。パターン投影装置1の光学系の詳細を図2に示す。パターン投影装置1は照明光学系9、フィルタターレット8、二次元格子マスク7、投影光学系6を有する。   The present invention is characterized by the pattern projector 1 and the light receiving optical system 4. Details of the optical system of the pattern projection apparatus 1 are shown in FIG. The pattern projection apparatus 1 includes an illumination optical system 9, a filter turret 8, a two-dimensional grating mask 7, and a projection optical system 6.

照明光学系9は図示しない光源、コレクタレンズなどから構成されており二次元格子マスク7を均一に照明する。二次元格子マスク7は格子状に光線が透過できるように暗視野パターンになっている。投影光学系6、および受光光学系4は軸上の色収差をあえて出すように設計されており、波長帯域により集光位置が順々にずれるようになっている。照明光学系9と二次元格子マスク7の間にはフィルタターレット8が配置されており、複数の狭帯域フィルタ10がはめ込まれている。それぞれのフィルタで選択される波長域で図3に示すとおり、上述の投影光学系6、受光光学系4の集光位置が異なるように配慮されている。フィルタターレット8を回転することにより任意の狭帯域フィルタ10を光学系に挿入することができ、それに応じて焦点位置を変えることができる。   The illumination optical system 9 includes a light source (not shown), a collector lens, and the like, and uniformly illuminates the two-dimensional grating mask 7. The two-dimensional lattice mask 7 has a dark field pattern so that light rays can be transmitted in a lattice shape. The projection optical system 6 and the light receiving optical system 4 are designed so as to deviate on-axis chromatic aberration, and the condensing positions are sequentially shifted depending on the wavelength band. A filter turret 8 is disposed between the illumination optical system 9 and the two-dimensional grating mask 7, and a plurality of narrow band filters 10 are fitted therein. As shown in FIG. 3, consideration is given to the converging positions of the projection optical system 6 and the light receiving optical system 4 being different in the wavelength range selected by each filter. By rotating the filter turret 8, an arbitrary narrow band filter 10 can be inserted into the optical system, and the focal position can be changed accordingly.

以下、測定の方法について説明する。まず、ある狭帯域フィルタ10を光学系に挿入して二次元格子パターン3を被検物2に投影する。次に被検物2上の格子パターンを複数の受光光学系4、撮像素子5を用いて画像として取り込む。画像処理により二次元格子パターン3の縦線、および横線の重心位置を検出し、ここから各格子点の画像上の位置を求める。このとき、投影光学系6の焦点位置と、受光光学系4の焦点位置は、被検物2上に合わせる。   Hereinafter, the measurement method will be described. First, a narrow band filter 10 is inserted into the optical system to project the two-dimensional lattice pattern 3 onto the test object 2. Next, the lattice pattern on the test object 2 is captured as an image using the plurality of light receiving optical systems 4 and the image sensor 5. The center of gravity position of the vertical and horizontal lines of the two-dimensional grid pattern 3 is detected by image processing, and the position of each grid point on the image is obtained therefrom. At this time, the focal position of the projection optical system 6 and the focal position of the light receiving optical system 4 are aligned on the test object 2.

このとき一般に被検物は凸凹しているため、被検物2上の二次元格子パターン3は投影レンズ6の焦点のあった場所(二次元格子パターン7の結像位置)ではくっきりとしているが、焦点が外れるに従ってボケている。また像を撮像する受光光学系においてもちょうど焦点の合う位置の格子パターンは撮像素子上にくっきりと像をつくるが、焦点位置から外れた格子パターンは撮像素子上にボケた像をつくる。   At this time, since the test object is generally uneven, the two-dimensional grid pattern 3 on the test object 2 is clear at the focal point of the projection lens 6 (the imaging position of the two-dimensional grid pattern 7). , As it goes out of focus. Also, in the light receiving optical system for picking up an image, the lattice pattern at the position where the focal point is in focus clearly forms an image on the image pickup device, but the lattice pattern out of the focus position forms a blurred image on the image pickup device.

すなわち、投影光学系、受光光学系の各々によって焦点がはずれた格子パターンはボケてしまう。ボケた格子パターンから重心位置を求めると測定誤差が大きくなってしまうため、そのような格子パターンは測定には使用しないほうが望ましい。そこで上記で求めた各格子点において像のボケ判定を行い、ボケ量が指定した基準値よりも小さいものだけを格子点の位置として記憶する。これにより測定誤差を低減できる。   That is, the lattice pattern out of focus by each of the projection optical system and the light receiving optical system is blurred. If the position of the center of gravity is obtained from a blurred lattice pattern, the measurement error increases. Therefore, it is preferable not to use such a lattice pattern for measurement. Therefore, image blur determination is performed at each of the lattice points obtained above, and only those whose blur amount is smaller than the specified reference value are stored as the positions of the lattice points. Thereby, a measurement error can be reduced.

しかしこの状態では被検物における全ての格子点の位置を求めることはできない。そこでフィルタを順次切り替えて上記と同じことを行うと、投影光学系、受光光学系の波長帯域によって焦点位置が異なるので、それらの焦点深度分を重ね合わせた範囲のデータを取得することが可能となる。   However, in this state, the positions of all lattice points in the test object cannot be obtained. Therefore, if the filter is sequentially switched and the same operation as described above is performed, the focal position differs depending on the wavelength band of the projection optical system and the light receiving optical system, and therefore it is possible to acquire data in a range in which those focal depths are superimposed. Become.

この全体としての焦点深度は、投影光学系、および受光光学系の被検物側開口数から決まる焦点深度よりもはるかに深くすることが可能であり、測定範囲を大幅に広げることができる。波長帯域を考慮した実質の焦点深度を想定される被検物サイズに合わせておくことで、波長を切り替えて順次焦点の合った格子点の位置を記憶していくと、ほぼ被検物全面にわたる格子点の位置を求めたことになる。   This overall depth of focus can be made much deeper than the depth of focus determined by the numerical aperture on the object side of the projection optical system and the light receiving optical system, and the measurement range can be greatly expanded. By adjusting the actual focal depth considering the wavelength band to the assumed specimen size, and switching the wavelength and memorizing the positions of the focused lattice points in sequence, it covers almost the entire specimen surface. That is, the position of the lattice point is obtained.

複数の受光光学系において各格子点の画像上の位置が求まったので、対応する格子点の判定がつけば図1における基線長からの角度α、βが求まり、三角測量を用いて被検物中の格子点の座標を決定できる。   Since the position of each lattice point on the image is obtained in the plurality of light receiving optical systems, if the corresponding lattice point is determined, the angles α and β from the baseline length in FIG. 1 can be obtained, and the test object is obtained using triangulation. The coordinates of the grid points inside can be determined.

以下、対応する格子点の判定方法を説明する。二次元格子パターンのそれぞれの縦、横線にパターンを設けることで、格子点の判定が容易に可能となる。例えば図4に示すようなパターンが考えられる。この例では縦、横線とも10本毎にパターンの異なる線を用いている。1〜9本目は直線、10〜19本目は短い一点鎖線、20〜29本目は短い二点鎖線と、10本毎に短い鎖線を設けて、100本毎には長い鎖線を設けるといったパターン付けをしている。これにより画像上で対象としている格子点が何行、何列目のものであるかを識別することが可能となる。そこで先に述べた画像上の格子点の位置を記録する際に何行、何列目といった情報も合わせて記録しておくようにする。   Hereinafter, a method for determining a corresponding lattice point will be described. By providing patterns on the vertical and horizontal lines of the two-dimensional grid pattern, the grid points can be easily determined. For example, a pattern as shown in FIG. 4 can be considered. In this example, every 10 vertical and horizontal lines have different patterns. 1-9 are straight lines, 10-19 are short one-dot chain lines, 20-29 are short two-dot chain lines, short chain lines are provided for every 10 lines, and long chain lines are provided for every 100 lines. is doing. As a result, it is possible to identify the number of rows and columns of the target grid points on the image. Therefore, when the position of the lattice point on the image described above is recorded, information such as the number of rows and the number of columns is also recorded.

なお線の識別パターンはここで述べたものに限定されるものではなく、例えば線幅を変化させたり、濃さを変化させたりすることも可能である。こうすることで複数の撮像素子上で全格子点の位置を対応付けることが可能となり、三角測量を用いて被検物上の複数点における座標を求めることができる。さらに格子の位置を縦方向、横方向に1ピッチ分スキャンすることで被検物全面にわたる座標を得ることができる。   Note that the line identification pattern is not limited to that described here, and for example, the line width can be changed or the density can be changed. This makes it possible to associate the positions of all grid points on a plurality of image sensors, and to obtain coordinates at a plurality of points on the test object using triangulation. Further, the coordinates of the entire surface of the test object can be obtained by scanning the lattice position by one pitch in the vertical and horizontal directions.

以下、具体例について述べる。撮像素子として素子サイズ10mm×10mmで画素数2000pixel×2000pixelの400万画素のCCDを使用する。1ピクセルのサイズは5μmとする。投影光学系、受光光学系は共通として、倍率10倍、被検物側の開口数NAを0.007とする。この光学系を用いると、被検物として100mm×100mmの範囲を一度に撮像することが可能である。   Specific examples will be described below. As an image pickup device, a 4 million pixel CCD having an element size of 10 mm × 10 mm and a pixel number of 2000 pixels × 2000 pixels is used. The size of one pixel is 5 μm. The projection optical system and the light receiving optical system are common, and the magnification is 10 times and the numerical aperture NA on the object side is 0.007. When this optical system is used, it is possible to image a range of 100 mm × 100 mm as a test object at a time.

投影光学系、受光光学系は軸上色収差を大きく出す設計にしてあり、被検物側の軸上色差が100mmあるとする。この軸上色差100mmを10等分するそれぞれの波長近傍で狭帯域フィルタを用意する。つまりフィルタを切り替えることで被検物側の焦点位置を約10mmずつ10等分変えられる構成になっている。二次元格子マスクの線幅は5μm、ピッチ20μmとする。投影光学系、受光光学系の被検物側のエアリーディスク直径は波長588nmで100μm、焦点深度は±6mmとなる。   The projection optical system and the light receiving optical system are designed to increase axial chromatic aberration, and it is assumed that the axial color difference on the object side is 100 mm. A narrow band filter is prepared in the vicinity of each wavelength that divides the on-axis color difference of 100 mm into 10 equal parts. In other words, by switching the filter, the focal position on the object side can be changed by about 10 mm by 10 equal parts. The line width of the two-dimensional lattice mask is 5 μm and the pitch is 20 μm. The diameter of the Airy disk on the object side of the projection optical system and the light receiving optical system is 100 μm at a wavelength of 588 nm, and the depth of focus is ± 6 mm.

まずある波長を選択して測定する場合を考える。この場合物体面上に投影された二次元格子パターンの1つの線幅は倍率10倍がかかり、ここに回折によるボケが加わって150μm程度になる。これは撮像素子上で換算すると3ピクセルに相当する。格子のピッチは20μmであるため、撮像素子上では4ピクセルに相当し、格子の各線が1ピクセルの間隔を持って並んでいることになる。画像処理により3ピクセルの広がりをもった線幅の重心位置を求めるのに、サブピクセル処理等の技術を用いることで1/20ピクセル程度の精度を達成することができる。これは被検物換算で3μmに相当する。   First, consider the case where a certain wavelength is selected for measurement. In this case, the line width of one of the two-dimensional lattice patterns projected on the object plane is multiplied by 10 times, and blurring due to diffraction is added to the line width to be about 150 μm. This corresponds to 3 pixels when converted on the image sensor. Since the pitch of the grid is 20 μm, it corresponds to 4 pixels on the image sensor, and each line of the grid is arranged with an interval of 1 pixel. An accuracy of about 1/20 pixel can be achieved by using a technique such as sub-pixel processing to obtain the position of the center of gravity of the line width having a spread of 3 pixels by image processing. This corresponds to 3 μm in terms of the specimen.

ただしこの状態では焦点深度が±6mmしかないため、被検物の奥行き方向は12mm程度の範囲内でしか焦点のあった格子点が決まらない。そこでフィルタを順次切り替えて測定を行うことで、10mmずつ焦点の位置を変化させることができ、先の焦点深度を順につないでいくことが可能である。これにより最大100mmまで焦点深度を深くでき、物体のサイズとしては100×100×100mm程度のものを3μm程度の精度で測定することが可能となる。   However, since the depth of focus is only ± 6 mm in this state, the focused lattice point is determined only within the range of about 12 mm in the depth direction of the test object. Therefore, by sequentially switching the filters and performing the measurement, the focal position can be changed by 10 mm, and the previous focal depths can be connected in order. As a result, the depth of focus can be increased up to a maximum of 100 mm, and an object size of about 100 × 100 × 100 mm can be measured with an accuracy of about 3 μm.

上記説明では波長の切り替えをパターン投影側で行っているが、撮像側で切り替えても同様の効果が得られることは明らかである。なお、パターン撮像側で波長を切り替えれば、撮像側には当然その波長の光しかこないので、撮像側での波長切り替えは不要である。   In the above description, the wavelength is switched on the pattern projection side. However, it is obvious that the same effect can be obtained even if the switching is performed on the imaging side. Note that if the wavelength is switched on the pattern imaging side, only the light of that wavelength naturally comes to the imaging side, so that wavelength switching on the imaging side is unnecessary.

なお上記の実施例では投影レンズ、受光レンズに色収差を用いて焦点深度を深くする例を述べたが、偏光を用いた2重焦点レンズ等を用いても同様の効果が期待できる。この時、フィルタ切り替えに相当するのが、互いに偏光方向が直交した2組の偏光板である。   In the above embodiment, an example in which the depth of focus is increased by using chromatic aberration for the projection lens and the light receiving lens is described, but the same effect can be expected by using a bifocal lens using polarized light. At this time, two sets of polarizing plates whose polarization directions are orthogonal to each other correspond to filter switching.

本発明の実施の形態の例を模式的に示す図である。It is a figure which shows the example of embodiment of this invention typically. パターン投影装置の光学系を詳細に示す図である。It is a figure which shows the optical system of a pattern projector in detail. 投影光学系、受光光学系の波長ごとの焦点位置を示す図である。It is a figure which shows the focus position for every wavelength of a projection optical system and a light-receiving optical system. 二次元格子パターンの例を示す図である。It is a figure which shows the example of a two-dimensional lattice pattern.

符号の説明Explanation of symbols

1:パターン投影装置、2:被検物、3:二次元格子パターン、4:受光光学系、5:撮像素子、6:投影光学系、7:二次元格子マスク、8:フィルタターレット、9:照明光学系、10:狭帯域フィルタ 1: pattern projection device, 2: test object, 3: two-dimensional grating pattern, 4: light receiving optical system, 5: image sensor, 6: projection optical system, 7: two-dimensional grating mask, 8: filter turret, 9: Illumination optical system, 10: Narrow band filter

Claims (4)

二次元格子パターンを被検物に投影する投影装置と、前記被検物上に投影された前記二次元格子パターンを受光する複数の受光手段を備えた三次元形状測定装置であって、前記投影装置を構成する投影光学系、および前記受光手段を構成する受光光学系が多焦点レンズであることを特徴とする三次元形状測定装置。   A projection apparatus for projecting a two-dimensional lattice pattern onto a test object, and a three-dimensional shape measuring apparatus comprising a plurality of light receiving means for receiving the two-dimensional grid pattern projected on the test object, the projection 3. A three-dimensional shape measuring apparatus, wherein the projection optical system constituting the apparatus and the light receiving optical system constituting the light receiving means are multifocal lenses. 請求項1に記載の三次元形状測測定装置であって、前記多焦点レンズは軸上色収差を用いて多焦点を形成するものであることを特徴とする三次元形状測定装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein the multifocal lens forms a multifocal point using axial chromatic aberration. 請求項1に記載の三次元形状測定装置であって、前記多焦点レンズは偏光を用いて多焦点を形成するものであることを特徴とする三次元形状測定装置。   The three-dimensional shape measuring apparatus according to claim 1, wherein the multifocal lens forms a multifocal point using polarized light. 請求項1から請求項3のうちいずれか1項に記載の三次元形状測定装置であって、投影される前記二次元格子パターンは、線の行、列数を識別できるように、線に特定のパターンを持つことを特徴とする三次元形状測定装置。   4. The three-dimensional shape measuring apparatus according to claim 1, wherein the projected two-dimensional lattice pattern is specified to a line so that the number of lines and the number of columns can be identified. A three-dimensional shape measuring apparatus characterized by having a pattern.
JP2006329233A 2006-12-06 2006-12-06 Three-dimensional shape measuring apparatus Pending JP2008145121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006329233A JP2008145121A (en) 2006-12-06 2006-12-06 Three-dimensional shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006329233A JP2008145121A (en) 2006-12-06 2006-12-06 Three-dimensional shape measuring apparatus

Publications (1)

Publication Number Publication Date
JP2008145121A true JP2008145121A (en) 2008-06-26

Family

ID=39605487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006329233A Pending JP2008145121A (en) 2006-12-06 2006-12-06 Three-dimensional shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP2008145121A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128117A (en) * 2009-12-21 2011-06-30 Canon Inc Information processing device, information processing method, and program
JP2015114235A (en) * 2013-12-12 2015-06-22 株式会社ニコン Sensor unit, shape measurement device and structure manufacturing system
JP2018185162A (en) * 2017-04-24 2018-11-22 キヤノン株式会社 Range finding device, range finding system, and range finding method
CN109360211A (en) * 2018-10-19 2019-02-19 天津大学 A kind of continuum dividing method based on phase hit point

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128117A (en) * 2009-12-21 2011-06-30 Canon Inc Information processing device, information processing method, and program
JP2015114235A (en) * 2013-12-12 2015-06-22 株式会社ニコン Sensor unit, shape measurement device and structure manufacturing system
JP2018185162A (en) * 2017-04-24 2018-11-22 キヤノン株式会社 Range finding device, range finding system, and range finding method
CN109360211A (en) * 2018-10-19 2019-02-19 天津大学 A kind of continuum dividing method based on phase hit point
CN109360211B (en) * 2018-10-19 2021-04-27 天津大学 Continuous region segmentation method based on phase jump points

Similar Documents

Publication Publication Date Title
US11272161B2 (en) System and methods for calibration of an array camera
CN110140348B (en) Image pickup device and image pickup module
JP6335423B2 (en) Information processing apparatus and information processing method
US8593536B2 (en) Image pickup apparatus with calibration function
JP5229541B2 (en) Distance measuring device, distance measuring method, and program
JP2009175680A (en) Light receiving device, focal point detecting device and imaging device
US20180156606A1 (en) Three-dimensional shape measurement apparatus
KR20090107536A (en) Method and apparatus for quantitative 3-d imaging
JP2016170122A (en) Measurement device
WO2021054140A1 (en) Image processing device, image processing method, imaging device, and program
JP2004191092A (en) Three-dimensional information acquisition system
WO2014042232A1 (en) Distance detecting device
JP6353233B2 (en) Image processing apparatus, imaging apparatus, and image processing method
JP2008145121A (en) Three-dimensional shape measuring apparatus
JP2010048553A (en) Inspecting method of compound-eye distance measuring device and chart used for same
US11277569B2 (en) Measurement apparatus, image capturing apparatus, control method, and recording medium
US10783646B2 (en) Method for detecting motion in a video sequence
JP6642998B2 (en) Image shift amount calculating apparatus, imaging apparatus, and image shift amount calculating method
Abbaspour Tehrani et al. A practical method for fully automatic intrinsic camera calibration using directionally encoded light
JP2008145162A (en) Three-dimensional shape measuring apparatus
JP2013130687A (en) Imaging device
JP2009145208A (en) Method and device for measuring height