JP4238396B2 - display - Google Patents

display Download PDF

Info

Publication number
JP4238396B2
JP4238396B2 JP32511398A JP32511398A JP4238396B2 JP 4238396 B2 JP4238396 B2 JP 4238396B2 JP 32511398 A JP32511398 A JP 32511398A JP 32511398 A JP32511398 A JP 32511398A JP 4238396 B2 JP4238396 B2 JP 4238396B2
Authority
JP
Japan
Prior art keywords
diffraction grating
cells
image
diffraction
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32511398A
Other languages
Japanese (ja)
Other versions
JP2000147225A (en
Inventor
敏貴 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP32511398A priority Critical patent/JP4238396B2/en
Publication of JP2000147225A publication Critical patent/JP2000147225A/en
Application granted granted Critical
Publication of JP4238396B2 publication Critical patent/JP4238396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、基板の表面に、微小な回折格子(グレーティング)からなるセルを構成単位として配置することにより形成されるパターンに関する。
【0002】
【従来の技術】
回折格子からなるドット(セル)を基板表面に配置して構成されるパターンとして、特開平2−72320号公報などに代表される提案が公知である。
このようなパターンは、「回折格子からなる微小なドットが、基板表面に複数配置されて表現されるパターンにおいて、回折格子の空間周波数,回折格子の方向,各ドットが配置されるピッチ,各ドットの並び方の少なくとも何れかが変化しているもの」と定義される。
すなわち、上記ドットのそれぞれが、パターンを構成する画素となるわけであるが、以後、本明細書では「回折格子セル」なる語句により、回折格子からなる微小なドット,セルを総称する。
【0003】
上記したように、従来のパターンでは、回折格子セル1つがパターン(画像)を構成する画素1つに対応しており、パターン毎に方向(角度)が異なる回折格子セルを画素とすることによって、回折格子の方向(角度)に対応した方向からのみ観察可能な複数種類のパターンを表示することができる。
【0004】
複数種類のパターンとして、それぞれが視差を持つ同一物体の画像とすることにより、観察者は、右目と左目とでそれぞれ(両眼)視差を持つパターンを視覚するため、立体感を得ることができる。
回折格子パターンによる立体画像を構成する提案は、特開平3−201401号公報などにより公知である。
【0005】
【発明が解決しようとする課題】
多種類のパターン(画像)を表現しようとすると、多くの種類の方向(角度)の回折格子セルを配置しなければならず、▲1▼作製に時間がかかる。▲2▼表示画像の解像度が粗くなる。▲3▼回折格子セルの空間的な配置が困難になる。などの問題があった。
また、このようなパターンでは、回折格子セルが空間的に並んで配置しているため、パターンの構成の解析も比較的容易に行える。
【0006】
本発明は、上記▲1▼〜▲3▼の問題を解決して、同一パターン内に、多種類のパターン(画像)が混在した回折格子パターンを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明は、
回折格子からなるセルを構成単位とし、前記セルが基板表面に複数配置されて表現されるディスプレイにおいて、
格子の空間周波数・方向の少なくとも何れかが変化した回折格子からなる複数種類の前記セルをパターン内に有すると共に、前記セルが空間的に重なる領域を画素として含み、前記画素はモアレ成分による回折光により再生され
前記セルが空間的に重なる領域を画素とする画像と、少なくとも格子の方向がほぼ等しい回折格子からなるセルを画素とする、上記とは異なる画像、とを含むことを主要な特徴とする。
【0008】
本発明では、回折格子のパラメータのうち、空間周波数・方向の双方が等しい場合が、「等しい」回折格子ということであり、図1に示すように、右上がりの格子縞からなる回折格子セル1と左上がりの格子縞からなる回折格子セル2は、格子の方向が異なり、「別の」回折格子として扱われる。
【0009】
空間周波数・方向の双方が等しく、「等しい」回折格子であっても、それらの位相が異なる場合には、それらを重ね合わた領域は、別の空間周波数成分を含んだ回折格子となる。
【0010】
回折格子セルが空間的に重なる領域(図1において、右上がりの格子縞からなる回折格子セル1と左上がりの格子縞からなる回折格子セル2を、一部重複させた碁盤目状の領域)を画素として構成される画像は、重なる回折格子セル同士のモアレ成分(あるいは、クロストーク成分)による回折光により再生される。
【0011】
また、本発明では、
回折格子セルが空間的に重なる領域を画素とする画像(1)と、少なくとも格子の方向がほぼ等しい回折格子からなるセルを画素とする、上記とは異なる画像(2)、とを含ませることができる。
【0012】
上記画像(2)は、パターン内に1種類だけでなく、複数種類のものを混在させても良い。
【0013】
このとき、回折格子セルの組み合わせを変えることにより、前記領域も異なるモアレ成分にできるため、回折格子セルが空間的に重なる領域を画素とする画像(1)も、複数種類にすることが可能である。
【0014】
上記画像(2)では、回折格子セルの回折効率あるいはセルの大きさに応じて画像(2)の階調を制御することができる。(請求項3)
また、回折格子の特性によれば、空間周波数の違いにより、画像(2)を構成するセルの色を制御することができる。同様に、上記画像(1)でも、回折格子セルのモアレ成分の回折効率あるいは重なる領域の大きさに応じて画像(1)の階調を制御することができる。
【0015】
さらに、本発明では、少なくとも格子の方向がほぼ等しい回折格子からなるセルを画素とする別々の画像同士(2と2’)に、視差を持たせることも可能である。(請求項4)
さらに、これらの画像(2と2’)とその画素である回折格子セルが空間的に重なる領域を画素とする画像(1)との間に視差を持たせることも可能である。
【0016】
別々の画像同士(2と2’および1)のような複数種類のパターンとして、それぞれが、(3次元物体を視点を変えながら撮影して得られるような)視差を持つ同一物体の画像とすることにより、観察者は、右目と左目とでそれぞれ(両眼)視差を持つパターンを視覚するため、立体感を得ることができる。
【0017】
【発明の実施の形態】
上記したように、本発明においては、回折格子のパラメータのうち、空間周波数・方向の双方が等しい場合が、「等しい」回折格子ということであり、「回折格子の種類」は、主として回折格子の方向が異なることを意味する。
【0018】
ただし、微妙な方向の差異は区別せず、パターンの観察時に、同時に観察者の単眼(片方の目)に入射する回折光(1次回折光)を出射する回折格子は同種類のものとする。
【0019】
また、回折格子の空間周波数についても、同時に観察者の単眼に入射する回折光(1次回折光)を出射する回折格子は同種類のものとし、特別な場合(すなわち、大きく空間周波数が異なり、同時に観察者の単眼に認知されないような場合)の回折格子セルのペアは別種類のものとする。
【0020】
図1に、本発明のパターンの構成要素(画素)である異なる種類の回折格子セルの例1,2と、回折格子セル1,2を隣接して配置した場合(従来)、回折格子セル1,2を一部重複して配置した例(本発明)について示す。
また、回折格子パターンの例を図6(従来)と図7(本発明)に示す。
【0021】
すなわち、従来の回折格子パターンでは、回折格子セルがマトリクス状に配置されていたが、本発明の回折格子パターンでは、種類の異なる回折格子セル同士の重なりにより、回折格子セルを画素とする画像以外に、更に別の画像を表現している。
【0022】
図2は、本発明の回折格子パターンにおいて、2つの画像(画像Aと画像B)をそれぞれ種類の異なる回折格子セル(回折格子セル1と2)を画素として表現し、別の画像(画像C)を回折格子セル1と2の重複領域を画素として表現した例を示している。
【0023】
この場合、ある視点から本発明のディスプレイを観察すると、画像Aが認識でき、別の視点からは画像Bが、更に別の視点からは画像Cが観察できるようにすることができる。
【0024】
回折格子パターンのフーリエ変換像に基づいて、より詳細に本発明の回折格子パターンの効果について説明する。
図3は、回折格子セル単体に対するフーリエ変換像を示している。
フーリエ変換像は、回折格子セルに垂直に単色光を入射し、回折格子セルから十分離れた位置にスクリーンを置いたときにスクリーンに投影される光の分布(フラウンホーファ回折像)として考えることが出来る。
【0025】
同図では、フーリエ変換像の中心の輝点が回折格子セルからの0次回折光(回折格子セル面での反射光や透過光)を表している。
1次回折光は0次回折光を中心にして対称に2つ現れるが、ここでは0次回折光よりも上に現れる回折光(+1次回折光)を観察者に見える1次回折光(あるいは単に“回折光”)として取り扱うことにする。
【0026】
0次回折光を中心とした1次回折光の角度位置は、回折格子の角度に依存する。従って、回折格子セル1と2とでは対応する1次回折光の位置が異なる。1次回折光の位置は、そこに観察者が眼を置くと、その1次回折光を出射した回折格子セルの位置がパターン上で光って見えることに相当し、その周囲から観察するとパターン上の当該点が光らず、暗い点に見える。
【0027】
このとき、回折格子セルの回折効率が高い、あるいはセルの大きさが大きいと、当該点はより明るく見え、そうでないと暗く光る点として認識される。
従って、これらの回折格子セルを画素として表現された画像は、階調を伴った画像として、回折格子セルの1次回折光の出射方向に対応した方向からのみ観察できる。
【0028】
回折格子セル1と2を隣接して配置した場合、フーリエ変換像はそれぞれ単一に配置した場合のフーリエ変換像の和となる(図4(a) )。
すなわち、複数の独立な画像をそれぞれ異なる種類の回折格子セルを画素として表現すれば、それぞれ対応する1次回折光の出射方向からのみ観察できる複数の画像が表示できる。
【0029】
ここで、異なる種類の回折格子セル同士が重なる領域を持ったものについては、そのフーリエ変換像は図4(b) のようになる。
すなわち、回折格子パターンが重なった領域でのモアレ成分に対応する回折光が発生する。この回折格子セル同士の重なり領域を画素として表現した画像は、このモアレ成分の回折光の出射方向に対応した方向からのみ観察可能となる。
【0030】
以上、フーリエ変換像に基づいて説明したが、実際に回折格子パターンを観察する場合、斜め上方より照明することが多い。
すなわち、図5のように0次回折光(反射光や透過光)は斜め下方に出射することになる。
【0031】
このとき、上述のフーリエ変換像に基づく議論は、0次回折光の位置を合わせるように空間的にシフトすれば、同様に成り立つ。
斜め上方より照明する場合、上述の議論の1次回折光はディスプレイ面にほぼ垂直な方向に、かつそれぞれの1次回折光が水平方向に並ぶように出射するようにできる(すなわち、水平方向にそれぞれ異なる画像を観察できる視点を水平方向に配置できる)。
この原理を応用し、各視点から観察できる画像として、視差のある画像列を使用すれば、両眼視差を利用した立体像を表示することも可能である。
【0032】
以上により、従来のように回折格子セルを並べて配置する場合、回折格子セルの種類は表示する画像の数に比例して多くなるが、本発明においては、2種類の回折格子セルの重複した領域を画素とした画像表示が可能であるため、回折格子セルの種類が従来と同じであっても、より多くの画像が表示できる。
【0033】
また、これによりパターンの構成の解析も困難になり、パターンの偽造・模造防止に効果がある。
【0034】
以上では、回折格子の種類として、角度が異なる回折格子について論じてきたが、大幅に空間周波数が異なる回折格子も使用できる。
しかし、一般的な場合、空間周波数の差異はあまり大きくなく、回折格子の空間周波数は主として観察時のその回折格子セルの表示色と密接な関わりがある。
【0035】
従って、本発明においては、観察時に同時に観察できる回折格子は同種類とみなして取り扱う。具体的には、例えば400 本/mm程度までの空間周波数の違いは同種類の回折格子として考える。
【0036】
なお、上記例では、回折格子セルの大きさが均一な場合について述べたが、これに限らず、回折格子セルの大きさが回折格子セルの種類毎に異なっても、あるいは局所的に異なってもよく、異なる種類の回折格子セルの重複する面積とその領域における回折効率により画像の階調が表現できる。
【0037】
本発明の回折格子パターンは、図7のような複数種類の回折格子セルを使用し、種類の異なる回折格子セル同士が空間的に重なる領域を画素として画像1(図2の画像C)を表示することを主な特徴としている。
ここで、回折格子セルの重なった領域で表現した画像とは別に、ほぼ同一の角度の回折格子セルを画素として、独立な画像2(図2の画像AやB)を表現することが可能である。これらは、回折格子パターンにおいて、図2の下段のような回折格子を画素として画像を表示していると考えることもできる。
【0038】
このとき、回折格子セルの回折効率あるいはセルの大きさにより画像2の階調を表現することができる。空間周波数の違いは、主に画像の色の違いとして観察される。
また、ほぼ同一な角度を有する回折格子セル群をそれぞれの画素として、画像2を複数種類表示することができる。
さらに、回折格子セルが重なる領域の大きさ、あるいは前記領域の大きさとそれぞれの回折格子セルの回折効率に基づいて画像1の階調を表現することができる。
【0039】
【発明の効果】
回折格子パターンのセキュリティー性の向上などのために、同一パターン内に多種類の画像を表現しようとすると、多くの種類の方向(角度)の回折格子セルを配置しなければならず、▲1▼作製に時間がかかる。▲2▼表示画像の解像度が粗くなる。▲3▼回折格子セルの空間的な配置が困難になる。などの問題があったが、
本発明によれば、2種類の回折格子セルの重複した領域を画素とした画像表示も可能であるため、回折格子セルの種類が従来と同じであっても、より多くの種類の画像をパターン内に表示できる。
これによりパターンの構成の解析も困難になり、パターンの偽造・模造防止の効果が向上することになる。
【0040】
【図面の簡単な説明】
【図1】回折格子セルとその配置を示す説明図。
【図2】本発明の回折格子パターンにおける、種類の異なる画像とそれらを構成する画素となるセルとの対応を示す説明図。
【図3】それぞれの回折格子セルについてのフーリエ変換像を示す説明図。
【図4】回折格子セルの配置に応じたフーリエ変換像を示す説明図。
【図5】回折格子パターンの表示状態を示す説明図。
【図6】従来の回折格子パターンについて、セル配置を拡大して示す説明図。
【図7】本発明の回折格子パターンについて、セル配置を拡大して示す説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pattern formed by arranging, as a structural unit, cells made of minute diffraction gratings (gratings) on the surface of a substrate.
[0002]
[Prior art]
As a pattern configured by arranging dots (cells) made of a diffraction grating on a substrate surface, a proposal represented by JP-A-2-72320 is well known.
Such a pattern is expressed as follows: “In a pattern in which a plurality of minute dots consisting of diffraction gratings are arranged on the substrate surface, the spatial frequency of the diffraction grating, the direction of the diffraction grating, the pitch at which each dot is arranged, each dot In which at least one of the arrangements of the two is changed.
That is, each of the above dots is a pixel constituting a pattern, but hereinafter, in the present specification, the term “diffraction grating cell” is used to collectively refer to minute dots and cells made of a diffraction grating.
[0003]
As described above, in the conventional pattern, one diffraction grating cell corresponds to one pixel constituting the pattern (image), and by using a diffraction grating cell having a different direction (angle) for each pattern as a pixel, A plurality of types of patterns that can be observed only from the direction corresponding to the direction (angle) of the diffraction grating can be displayed.
[0004]
By making images of the same object having parallax as a plurality of types of patterns, the observer can obtain a three-dimensional effect because he / she visually sees patterns with parallax (both eyes) in the right eye and the left eye. .
A proposal for constructing a stereoscopic image by a diffraction grating pattern is known from Japanese Patent Laid-Open No. 3-201401.
[0005]
[Problems to be solved by the invention]
In order to express many kinds of patterns (images), it is necessary to arrange diffraction grating cells in many kinds of directions (angles), and (1) it takes time to produce. (2) The resolution of the display image becomes coarse. (3) Spatial arrangement of diffraction grating cells becomes difficult. There were problems such as.
Further, in such a pattern, since the diffraction grating cells are spatially arranged, the pattern configuration can be analyzed relatively easily.
[0006]
An object of the present invention is to solve the problems (1) to (3) and to provide a diffraction grating pattern in which many kinds of patterns (images) are mixed in the same pattern.
[0007]
[Means for Solving the Problems]
The present invention
In a display in which a cell composed of a diffraction grating is used as a constituent unit, and a plurality of the cells are arranged on the substrate surface.
The pattern includes a plurality of types of cells composed of diffraction gratings in which at least one of the spatial frequency and direction of the grating is changed, and includes a region where the cells are spatially overlapped as a pixel. It is reproduced by,
The main feature is that it includes an image having a pixel in a region where the cells are spatially overlapped, and an image different from the above in which a cell is formed of a diffraction grating having at least approximately the same grating direction .
[0008]
In the present invention, the case where both the spatial frequency and the direction are equal among the parameters of the diffraction grating is an “equal” diffraction grating, and as shown in FIG. The diffraction grating cell 2 composed of the grating stripes rising to the left has a different grating direction and is treated as a “different” diffraction grating.
[0009]
Even if the spatial frequencies and directions are the same and are “equal” diffraction gratings, if their phases are different, the region where they are superimposed is a diffraction grating containing another spatial frequency component.
[0010]
A region in which the diffraction grating cells overlap spatially (in FIG. 1, a grid-like region in which a diffraction grating cell 1 made up of a right-up grating stripe and a diffraction grating cell 2 made up of a left-up grating stripe partially overlap) Is reproduced by diffracted light due to moire components (or crosstalk components) between overlapping diffraction grating cells.
[0011]
In the present invention,
An image (1) having a region where the diffraction grating cells are spatially overlapped as a pixel and an image (2) different from the above including at least a cell having a diffraction grating having substantially the same grating direction as a pixel are included. Can do.
[0012]
The image (2) may include not only one type but also a plurality of types in the pattern.
[0013]
At this time, by changing the combination of the diffraction grating cells, the above regions can also have different moiré components. Therefore, the image (1) in which the regions where the diffraction grating cells are spatially overlapped can be made into a plurality of types. is there.
[0014]
In the image (2), the gradation of the image (2) can be controlled according to the diffraction efficiency of the diffraction grating cell or the cell size. (Claim 3)
Further, according to the characteristics of the diffraction grating, the color of the cells constituting the image (2) can be controlled by the difference in spatial frequency. Similarly, also in the image (1), the gradation of the image (1) can be controlled according to the diffraction efficiency of the moire component of the diffraction grating cell or the size of the overlapping region.
[0015]
Furthermore, in the present invention, it is also possible to give parallax between different images (2 and 2 ′) having pixels as cells composed of diffraction gratings having at least substantially the same grating direction. (Claim 4)
Further, it is possible to give a parallax between these images (2 and 2 ′) and an image (1) having a pixel in a region where the diffraction grating cells as pixels are spatially overlapped.
[0016]
As multiple types of patterns such as separate images (2 and 2 'and 1), each is an image of the same object having parallax (as obtained by shooting a three-dimensional object while changing the viewpoint) Thereby, the observer can obtain a three-dimensional effect because he / she visually sees a pattern with parallax (both eyes) in the right eye and the left eye.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
As described above, in the present invention, the case where both the spatial frequency and the direction are equal among the parameters of the diffraction grating is an “equal” diffraction grating, and the “type of diffraction grating” is mainly the diffraction grating. It means that the direction is different.
[0018]
However, subtle differences in direction are not distinguished, and the diffraction gratings that emit diffracted light (first-order diffracted light) incident on the observer's monocular (one eye) at the same time during pattern observation are the same type.
[0019]
Also, with regard to the spatial frequency of the diffraction grating, the diffraction gratings that emit the diffracted light (first-order diffracted light) that is simultaneously incident on the observer's monocular are of the same type, and in a special case (that is, the spatial frequency differs greatly and The diffraction grating cell pair (if not recognized by the observer's monocular) is of a different type.
[0020]
FIG. 1 shows examples 1 and 2 of different types of diffraction grating cells, which are constituent elements (pixels) of the pattern of the present invention, and diffraction grating cell 1 when diffraction grating cells 1 and 2 are arranged adjacent to each other (conventional). , 2 will be described with respect to an example (the present invention) in which a part is overlapped.
Examples of diffraction grating patterns are shown in FIG. 6 (conventional) and FIG. 7 (present invention).
[0021]
That is, in the conventional diffraction grating pattern, the diffraction grating cells are arranged in a matrix, but in the diffraction grating pattern of the present invention, the diffraction grating cells other than the image having the diffraction grating cell as a pixel are overlapped due to the overlapping of different types of diffraction grating cells. In addition, another image is expressed.
[0022]
FIG. 2 shows two images (image A and image B) represented by different types of diffraction grating cells (diffraction grating cells 1 and 2) as pixels, and another image (image C). ) Is an example in which the overlapping area of the diffraction grating cells 1 and 2 is expressed as a pixel.
[0023]
In this case, when the display of the present invention is observed from a certain viewpoint, the image A can be recognized, the image B can be observed from another viewpoint, and the image C can be observed from another viewpoint.
[0024]
The effect of the diffraction grating pattern of the present invention will be described in more detail based on the Fourier transform image of the diffraction grating pattern.
FIG. 3 shows a Fourier transform image for a single diffraction grating cell.
A Fourier transform image can be considered as a distribution of light (Fraunhofer diffraction image) projected onto a screen when monochromatic light is incident perpendicularly to the diffraction grating cell and the screen is placed at a position sufficiently away from the diffraction grating cell. .
[0025]
In the figure, the bright spot at the center of the Fourier transform image represents the 0th-order diffracted light (reflected light or transmitted light on the diffraction grating cell surface) from the diffraction grating cell.
Two first-order diffracted lights appear symmetrically around the zeroth-order diffracted light, but here, the first-order diffracted light (or simply “diffracted light”) that is visible to the observer is diffracted light that appears above the zeroth-order diffracted light (+ 1st-order diffracted light). ).
[0026]
The angular position of the 1st-order diffracted light centered on the 0th-order diffracted light depends on the angle of the diffraction grating. Therefore, the positions of the corresponding first-order diffracted light are different between the diffraction grating cells 1 and 2. The position of the first-order diffracted light corresponds to that the position of the diffraction grating cell that has emitted the first-order diffracted light appears to shine on the pattern when the observer puts an eye on it. The dots do not shine and appear dark.
[0027]
At this time, if the diffraction efficiency of the diffraction grating cell is high or the cell size is large, the point looks brighter, otherwise it is recognized as a point that shines darkly.
Therefore, an image in which these diffraction grating cells are expressed as pixels can be observed only from a direction corresponding to the emission direction of the first-order diffracted light of the diffraction grating cell as an image with gradation.
[0028]
When the diffraction grating cells 1 and 2 are arranged adjacent to each other, the Fourier transform images are the sum of the Fourier transform images when they are arranged in a single manner (FIG. 4 (a)).
That is, if a plurality of independent images are represented by different types of diffraction grating cells as pixels, a plurality of images that can be observed only from the corresponding emission direction of the first-order diffracted light can be displayed.
[0029]
Here, with respect to those having regions where different types of diffraction grating cells overlap, the Fourier transform image is as shown in FIG.
That is, diffracted light corresponding to the moire component in the region where the diffraction grating patterns overlap is generated. An image in which the overlapping area between the diffraction grating cells is expressed as a pixel can be observed only from a direction corresponding to the emission direction of the diffracted light of the moire component.
[0030]
As described above, the description has been made based on the Fourier transform image. However, when the diffraction grating pattern is actually observed, the illumination is often performed obliquely from above.
That is, as shown in FIG. 5, the 0th-order diffracted light (reflected light or transmitted light) is emitted obliquely downward.
[0031]
At this time, the discussion based on the Fourier transform image described above holds true if the spatial shift is performed so that the position of the 0th-order diffracted light is matched.
When illuminating obliquely from above, the first-order diffracted light in the above discussion can be emitted in a direction substantially perpendicular to the display surface and the first-order diffracted lights are aligned in the horizontal direction (that is, different in the horizontal direction). The horizontal viewpoint can be used to view the image).
If this principle is applied and an image sequence with parallax is used as an image that can be observed from each viewpoint, a stereoscopic image using binocular parallax can be displayed.
[0032]
As described above, when the diffraction grating cells are arranged side by side as in the prior art, the number of types of diffraction grating cells increases in proportion to the number of images to be displayed. In the present invention, the overlapping region of two types of diffraction grating cells is used. Therefore, even if the type of the diffraction grating cell is the same as the conventional one, a larger number of images can be displayed.
[0033]
This also makes it difficult to analyze the pattern configuration, and is effective in preventing forgery and counterfeiting of patterns.
[0034]
In the above, diffraction gratings having different angles have been discussed as types of diffraction gratings, but diffraction gratings having significantly different spatial frequencies can also be used.
However, in general, the spatial frequency difference is not so large, and the spatial frequency of the diffraction grating is closely related to the display color of the diffraction grating cell during observation.
[0035]
Therefore, in the present invention, the diffraction gratings that can be observed simultaneously at the time of observation are regarded as the same type. Specifically, for example, differences in spatial frequency up to about 400 lines / mm are considered as the same type of diffraction grating.
[0036]
In the above example, the case where the size of the diffraction grating cell is uniform has been described. However, the present invention is not limited to this, and even if the size of the diffraction grating cell differs depending on the type of the diffraction grating cell, or locally differs. In other words, the gradation of an image can be expressed by the overlapping area of different types of diffraction grating cells and the diffraction efficiency in that region.
[0037]
The diffraction grating pattern of the present invention uses a plurality of types of diffraction grating cells as shown in FIG. 7, and displays an image 1 (image C in FIG. 2) using a region in which different types of diffraction grating cells are spatially overlapped as pixels. The main feature is to do.
Here, apart from the image expressed by the overlapping region of the diffraction grating cells, it is possible to express an independent image 2 (images A and B in FIG. 2) using diffraction grating cells having substantially the same angle as pixels. is there. It can be considered that these images are displayed using the diffraction grating shown in the lower part of FIG. 2 as pixels in the diffraction grating pattern.
[0038]
At this time, the gradation of the image 2 can be expressed by the diffraction efficiency of the diffraction grating cell or the size of the cell. Differences in spatial frequency are mainly observed as differences in image colors.
In addition, a plurality of types of images 2 can be displayed using a diffraction grating cell group having substantially the same angle as each pixel.
Furthermore, the gradation of the image 1 can be expressed based on the size of the region where the diffraction grating cells overlap or the size of the region and the diffraction efficiency of each diffraction grating cell.
[0039]
【The invention's effect】
In order to improve the security of the diffraction grating pattern, etc., if it is intended to express many kinds of images in the same pattern, it is necessary to arrange diffraction grating cells in many kinds of directions (angles). It takes time to make. (2) The resolution of the display image becomes coarse. (3) Spatial arrangement of diffraction grating cells becomes difficult. There was a problem such as
According to the present invention, since it is possible to display an image using a region where two types of diffraction grating cells overlap as pixels, even if the type of the diffraction grating cell is the same as the prior art, more types of images can be patterned. Can be displayed within.
As a result, the analysis of the pattern configuration becomes difficult, and the effect of preventing pattern forgery and counterfeiting is improved.
[0040]
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a diffraction grating cell and its arrangement.
FIG. 2 is an explanatory diagram showing the correspondence between different types of images and cells that constitute the pixels in the diffraction grating pattern of the present invention.
FIG. 3 is an explanatory diagram showing Fourier transform images for each diffraction grating cell.
FIG. 4 is an explanatory diagram showing a Fourier transform image according to the arrangement of diffraction grating cells.
FIG. 5 is an explanatory diagram showing a display state of a diffraction grating pattern.
FIG. 6 is an explanatory diagram showing an enlarged cell arrangement for a conventional diffraction grating pattern.
FIG. 7 is an explanatory diagram showing an enlarged cell arrangement for the diffraction grating pattern of the present invention.

Claims (4)

回折格子からなるセルを構成単位とし、前記セルが基板表面に複数配置されて表現されるディスプレイにおいて、
格子の空間周波数・方向の少なくとも何れかが変化した回折格子からなる複数種類の前記セルをパターン内に有すると共に、前記セルが空間的に重なる領域を画素として含み、前記画素はモアレ成分による回折光により再生され
前記セルが空間的に重なる領域を画素とする画像と、少なくとも格子の方向がほぼ等しい回折格子からなるセルを画素とする、上記とは異なる画像、とを含む
ことを特徴とするディスプレイ。
In a display in which a cell composed of a diffraction grating is used as a constituent unit, and a plurality of the cells are arranged on the substrate surface.
The pattern includes a plurality of types of cells composed of diffraction gratings in which at least one of the spatial frequency and direction of the grating is changed, and includes a region where the cells are spatially overlapped as a pixel. It is reproduced by,
An image having an area where the cells are spatially overlapped as a pixel, and an image different from the above, in which at least a cell formed of a diffraction grating having substantially the same grating direction is used as a pixel. display.
種類の異なる回折格子からなる前記セルが空間的に重なる領域を画素として含むことを特徴とする請求項1記載のディスプレイ。  2. The display according to claim 1, further comprising, as a pixel, a region where the cells made of different types of diffraction gratings are spatially overlapped. 画素の大きさあるいは回折効率により、構成される画像の階調が表現されることを特徴とする請求項1または2に記載のディスプレイ。The display according to claim 1, wherein the gradation of the configured image is expressed by the size of the pixel or the diffraction efficiency. 少なくとも格子の方向がほぼ等しい回折格子からなるセルを画素とする別々の画像同士が、視差を持つことを特徴とする請求項1乃至3のいずれかに記載のディスプレイ。The display according to any one of claims 1 to 3, wherein different images having at least cells formed of diffraction gratings having substantially the same grating direction as pixels have parallax.
JP32511398A 1998-11-16 1998-11-16 display Expired - Fee Related JP4238396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32511398A JP4238396B2 (en) 1998-11-16 1998-11-16 display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32511398A JP4238396B2 (en) 1998-11-16 1998-11-16 display

Publications (2)

Publication Number Publication Date
JP2000147225A JP2000147225A (en) 2000-05-26
JP4238396B2 true JP4238396B2 (en) 2009-03-18

Family

ID=18173259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32511398A Expired - Fee Related JP4238396B2 (en) 1998-11-16 1998-11-16 display

Country Status (1)

Country Link
JP (1) JP4238396B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4391063B2 (en) * 2002-06-20 2009-12-24 大日本印刷株式会社 Hidden pattern discrimination method by optical diffraction structure
JP5724175B2 (en) * 2009-12-11 2015-05-27 凸版印刷株式会社 Image display body, transfer foil, and personal authentication medium
CN105607172B (en) * 2016-03-31 2020-03-27 京东方科技集团股份有限公司 Grating assembly, light source device and driving method thereof

Also Published As

Publication number Publication date
JP2000147225A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
US5621487A (en) Picture display apparatus having multiple diffusing filter surfaces
KR101437031B1 (en) Forgery prevention printed matter
CN105676473B (en) A kind of bore hole 3D display device
TWI461738B (en) Three-dimensional image display apparatus and image display device
EP1067805A2 (en) Stereoscopic display
US20210240004A1 (en) 3d display apparatus
JPH08331605A (en) Stereoscopic display device
KR20110084299A (en) Holographic color display
CN106154800A (en) Holographic display and holographic display packing thereof
JP2012512435A (en) Methods and arrangements for spatial display
JP4238396B2 (en) display
JP4940507B2 (en) Stereoscopic image display body and observation method thereof
JP2005301066A (en) Three-dimensional image display body and its observation method
US6462869B1 (en) Projection screen and system for large-surface images
JP2000304912A (en) Diffraction grating pattern
JP5948931B2 (en) Indicator
JP2001331085A (en) Computer hologram
JP3230225B2 (en) Image display device
EP0691790B1 (en) Image display apparatus
JP2001330717A (en) Diffraction grating pattern and method for manufacturing the same
US20200201066A1 (en) Device for displaying stereoscopic images
JP2001066407A (en) Diffraction grating pattern
JP2002311222A (en) Diffraction grating pattern and method for observing the same
JP4240901B2 (en) Display using computer generated hologram
JPH08331604A (en) Stereoscopic display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees