JP4238315B2 - Method for producing safe fermentation products from seafood processing residue - Google Patents

Method for producing safe fermentation products from seafood processing residue Download PDF

Info

Publication number
JP4238315B2
JP4238315B2 JP2003159725A JP2003159725A JP4238315B2 JP 4238315 B2 JP4238315 B2 JP 4238315B2 JP 2003159725 A JP2003159725 A JP 2003159725A JP 2003159725 A JP2003159725 A JP 2003159725A JP 4238315 B2 JP4238315 B2 JP 4238315B2
Authority
JP
Japan
Prior art keywords
fermentation product
glucose
producing
koji
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003159725A
Other languages
Japanese (ja)
Other versions
JP2004357581A (en
Inventor
正彦 國本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INDEPENDENT ADMINISTRATIVE INSTITUTION NATIONAL FISHERIES UNIVERSITY
Original Assignee
INDEPENDENT ADMINISTRATIVE INSTITUTION NATIONAL FISHERIES UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INDEPENDENT ADMINISTRATIVE INSTITUTION NATIONAL FISHERIES UNIVERSITY filed Critical INDEPENDENT ADMINISTRATIVE INSTITUTION NATIONAL FISHERIES UNIVERSITY
Priority to JP2003159725A priority Critical patent/JP4238315B2/en
Publication of JP2004357581A publication Critical patent/JP2004357581A/en
Application granted granted Critical
Publication of JP4238315B2 publication Critical patent/JP4238315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fodder In General (AREA)
  • Soy Sauces And Products Related Thereto (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水産物加工残滓を原料として安全な発酵生成物を製造する方法に関する。詳しくは、水産物加工残滓を加熱・圧搾して製した圧搾ミールを原料として用い、微生物学的に安全な発酵生成物を製造する方法に関する。本発明によって製造した発酵生成物は、安全な飼料用原料として使用できる他、醤油や味噌等の原料としても使用できる。
【0002】
【従来の技術】
【特許文献1】
特開平6−319464号公報
【特許文献2】
特開2002−142688号公報
【特許文献3】
特開2000−316484号公報
【特許文献4】
特開平11−178540号公報
【0003】
従来から、魚の頭、中骨、内臓等の水産物加工残滓は、そのほとんどを廃棄物として処理業者等に委託して処理している。処理を委託された業者は、これら水産物加工残滓を魚粕製造プラント、魚油製造装置、フィッシュソリュブル製造装置等にかけて加工する。その概略の加工方法は、水産物加工残滓を蒸煮した後、圧搾して煮汁と圧搾ミールに分離している。煮汁の方は、さらに遠心分離や濃縮工程を経て魚油やフィッシュソリュブルに加工される。圧搾ミールの方は、乾燥して魚粕に加工され、肥料として用いられている。
【0004】
上記一連の水産物加工残滓の処理で最も重要なのは乾燥工程であり、乾燥装置を100℃以上の(ときには140℃にも達する)高温で連続運転しながら圧搾ミールを熱風乾燥している。そうすると、乾燥装置を稼働するために大量の水産物加工残滓(以下、単に「魚残滓」ともいう。)が必要となり、魚残滓の集荷が広範囲となって、そのために鮮度の低下や腐敗が生じる。鮮度の低下した魚残滓は、悪臭を生じ、ヒスタミンのような有害物質を生成するばかりでなく、ハエやゴキブリ等の昆虫を誘引して公衆衛生上の問題を引き起こす。また、鮮度の低下した魚残滓には有害成分が含まれる可能性があるため、飼料に使用できず、肥料用に向けられるため価格が安くなる。さらに、魚残滓の高温での乾燥は、脂質が酸化して栄養成分を劣化させるだけでなく、有毒なジゼロシンを生成することも明らかになっている(外山健三氏ら「日本水産学会誌」第51巻985 〜993 頁:1985年日本水産学会発行)。水産物加工残滓の鮮度低下を避けるためには、発生現場での加工が最も有効であるが、そうすると、魚残滓の処理が小規模となり、高価な装置の使用が困難となる。
【0005】
上記水産物加工残滓処理の現状に鑑み、本発明者は、水産物加工残滓を有用資源として活用するために、水産物加工残滓を、鮮度が低下しないうちに、高温をかけずに、その発生現場において小規模に処理する方法について研究を続けた。その結果、簡便な設備の下に低温で穀物等を乾燥できる製麹法に着目し、水産物加工残滓の乾燥処理に製麹法を応用できるのではないかと考えた。
【0006】
しかし、魚残滓を製麹することは、製麹は開放系でおこなわれるため、製麹中に麹菌と共に有害細菌が発育するおそれがある。従来、穀物を原料とする麹の細菌相については多くの分析データがあり、安全性が確認されているが、魚肉を原料に用いた麹については、以下の2件が報告されているのみで実用化には不安があった。すなわち、Hassain らによって、魚残滓を麹菌で発酵させて養魚飼料を製すると、発酵によって脂質酸化の抑制、揮発性塩基窒素の減少等が起こり、飼料として栄養価が向上することが報告されているが、細菌相については何ら確認されていない(Hassain,M.D.et al,「Nippon Suisan Gakkai-shi」(英文)第35巻1629〜1632頁:1987年日本水産学会発行)。また、垣尾氏は、マイワシの圧搾ミールに炭素源として可溶性デンプンを添加して製麹し、製麹による脂質酸化の抑制と過酸化物の減少、ヒスタミンの減少、タンパク質の高栄養価の維持効果を確認しているが、麹の細菌相にスタフィロコッカス(Staphyrococcus)属の細菌を検出している(垣尾真由氏の修士論文:北海道大学水産学研究科1992年発行)。また、製麹中にも、バチルス(Bacillus)属、シュウドモナス (Pseudomonas)属、エンテロバクテリアセア(Enterobacteriaceae)科の細菌の存在を認めている。これらの属の細菌には食中毒菌が含まれるため、魚残滓を製麹するには、有害細菌の発育を阻止する培養条件を明らかにする必要がある。
【0007】
特許公報を調べると、水産加工品ないし有機性廃棄物を原料として製麹する方法について、いくつかの出願が見られる。例えば、特開平06−319464号公報には、原料魚粉(フィッシュミール)に加水して、アスペルギルス(Aspergi llus)属の乾燥に強い菌株を接種し、水分含量を20〜30%に調整し、約30℃において、麹菌の繁殖に必要かつ十分な通気をしながら発酵させ、麹菌の培養終了後、発酵魚粉を45℃以下に維持して通風乾燥させて魚粉発酵飼料を製造する方法と、この方法によれば、麹菌の発酵作用により、低過酸化物価、低ヒスタミン、低トリメチルアミンで、プロテアーゼ等の有用な酵素を高濃度に含有する魚粉発酵飼料が得られること等が開示されている。しかし、この公報には、麹の細菌相については何も記載していない。また、特開2002−142688号公報には、水分20〜50%程度の有機性廃棄物と繊維質飼料及び/又は穀類とからなる原料に麹菌を混和して発酵させ、水分を20%以下まで減量させた麹混和飼料を製造する方法について開示しているが、この公報には、製麹中の細菌相の変化や有害細菌の発育阻止については何ら記載されていない。さらに、特開2000−316484号公報には、魚の廃棄物と穀類原料及び/又は繊維質原料とを水分45%以下になるように混合した原料に麹菌を加えて発酵させ、発熱を適温(30〜50℃)に制御することで、製麹開始後72時間で水分10%の発酵生成物(飼料)が得られること等が開示されている。しかし、この公報にも、製麹中の細菌相の変化や有害細菌の発育阻止については何ら記載されていない。
【0008】
すなわち、麹菌の発酵熱を利用して魚残滓を乾燥するには、麹菌の培養条件を整えると共に、麹菌と共に発育する細菌の細菌相を衛生上の危害の発生のおそれのないものに制御する必要がある。しかし、上記先行技術文献には、魚残滓を原料として製麹するときの麹の細菌相のことや製麹中に食中毒菌等の有害細菌の発育を阻止する方法については何ら開示されていない。
【0009】
【発明が解決しようとする課題】
上記一連の状況に鑑み、本発明は、水産物加工残滓を原料として製麹する際の麹の細菌相を解明し、水産物加工残滓から微生物学的に安全な有用発酵生成物を製造する方法を提供することを第一の課題とする。また、本発明は、水産物加工残滓を鮮度が低下しないうちに、高温をかけずに処理する方法を提供することを第二の課題とする。さらに、本発明は、水産物加工残滓を、高価な装置を使うことなく、発生現場で処理する方法を提供することを第三の課題とする。もって、本発明は、水産物加工残滓を有用な資源として活用する方法を提供することを最終課題とするものである。
【0010】
【課題を解決するための手段】
上記の諸課題を解決するための本発明のうち、請求項1に記載する発明は、
水産物加工残滓を加熱した後圧搾して煮汁を分離した圧搾ミールに、単糖及び/又はブドウ糖を50重量%以上含む糖を添加して粒状の基質を製し、この基質に麹菌を接種して発酵させ、得られた麹に30℃以下の空気を送って乾燥させ、微生物学的に安全な発酵生成物を製造する方法である。
【0011】
また、本発明のうち請求項2に記載する発明は、単糖及び/又はブドウ糖を50重量%以上含む糖の、基質に対する添加量が10重量%以上である請求項1に記載の発酵生成物の製造方法である。
【0012】
また、本発明のうち請求項3に記載する発明は、単糖として、ブドウ糖及び/又は果糖を用いる請求項1又は2に記載の発酵生成物の製造方法である。
【0013】
また、本発明のうち請求項4に記載する発明は、ブドウ糖を50重量%以上含む糖として、水飴、異性化糖、マルトース、蔗糖、乳糖のうちの1種又は2種以上を用いる請求項1又は2に記載の発酵生成物の製造方法である。
【0014】
また、本発明のうち請求項5に記載する発明は、水産物加工残滓として、揮発性塩基窒素が30mgN/100g以下のものを用いる請求項1から4のいずれかに記載の発酵生成物の製造方法である。
【0015】
また、本発明のうち請求項6に記載する発明は、圧搾ミールとして、水分含量が52重量%以下になるまで圧搾したミールを用いる請求項1から5のいずれかに記載の発酵生成物の製造方法である。
【0016】
また、本発明のうち請求項7に記載する発明は、得られた麹を、水分含量が15%以下になるまで乾燥させる請求項1から6のいずれかに記載の発酵生成物の製造方法である。
【0017】
さらに、本発明のうち請求項8に記載する発明は、飼料用原料として用いる発酵生成物が得られる請求項1から7のいずれかに記載の発酵生成物の製造方法である。
【0018】
【作用】
本発明者の知見によれば、水産物加工残滓の圧搾ミールに炭素源としてブドウ糖を添加して粒状の基質を製し、この基質に麹菌を接種して製麹すると、麹菌の発育に伴い、基質のpHが低下して、サルモネラ(Salmonella)属やビブリオ(Vibrio)属のような食中毒菌の発育を阻止できる。さらに、得られた麹に30℃以下の空気を送って、好ましくは水分含量が15%以下になるまで乾燥させると、麹の内部に空隙が生じ、内部が好気的な状態になるので、通性嫌気性細菌であるスタフィロコッカス(Staphylococcus)属の細菌が死滅する。この作用によって、水産物加工残滓の圧搾ミールを有害細菌の発育を阻止しながら低温で乾燥させることができ、微生物学的に安全な発酵生成物に変換できるのである。
【0019】
以下、本発明を実施するための具体的な形態について説明する。なお、本発明の全説明において、「製麹」とは、基質に麹菌を接種して発育させ、麹を作ることをいう。また、本発明の全説明において、「%」の表示は、特に断らない限り「重量割合」を示す。
【0020】
【発明の実施の形態】
本発明で用いる水産物加工残滓は、できるだけ鮮度の低下していないものを用いる必要がある。一般に、魚肉の腐敗は、揮発性塩基窒素を指標にして、その値が30mgN/100gを越えたものを初期腐敗としている。しかし、魚残滓については、従来ほとんど検討されたことがない。
【0021】
そこで本発明者は、アナゴ残滓の内臓を用いて、揮発性塩基窒素とアミンの経時的変化を測定した。その結果、アナゴの内臓では、ヒスタミン、カダベリン、揮発性塩基窒素の生成が著しく、ヒスタミンについては、25℃×6時間で50mgN/100gを越えてしまい、揮発性塩基窒素については、5℃×6時間ないし15℃×3時間で30mgN/100gを越えることが判明した。
この試験結果から考慮すると、本発明で用いる水産物加工残滓は、発生後、5℃保存のものであれば3時間以内に、15℃保存のものであれば1時間以内に加熱処理したものを使用することが望ましい。このため、鮮度の低下していない水産物加工残滓を使用するには、その発生現場で加熱処理するのが最も有効な方法である。この加熱処理によって魚残滓の鮮度低下が停止する。
【0022】
本発明で用いる麹菌は、種菌として、市販の麹菌の分生子(例えば商品名「ヒグチもやしBF−1」)を使用して差し支えない。その他、麹菌を培地で培養したものを用いてもよい。カビとして、アスペルギルス・オリゼ(Aspergillus oryzae)、アスペルギルス・ソーヤ(Aspergillus sojae) 、アスペルギルス・アワモリ(Aspergillus awamori) 、アスペルギルス・ニガー(Aspergillus niger) 等の変異株が有用である。
【0023】
水産物加工残滓は、もともと水分含量が多いが、本発明の原料として用いるには、加熱した後十分に圧搾して水分含量を少なくする必要がある。その理由は、圧搾ミールの水分含量があまり多いと、粒状にするのが困難となるからである。圧搾の程度としては、水分含量が52%以下になるまで、好ましくは50%以下になるまでを目安にするとよい。
【0024】
本発明では、製麹に供する基質は粒状に製したものを使用する。その理由は、粒状に製すると、各粒の表面に麹菌の菌糸を付着させると共に、粒と粒の間に風を送り込んで冷却させることができ、かつ、基質の内部に酸素を供給できるからである。
【0025】
また、本発明では、水産物加工残滓の圧搾ミールに、炭素源として単糖及び/又はブドウ糖を50%以上含有する糖を添加して製麹用の基質を造粒する。本発明者は、製麹用の炭素源として、穀物、穀物の炭素源であるデンプン、デンプンを分解したブドウ糖のそれぞれを用いて試験したが、加工度が高くなるほど価格が上がり、使い勝手も悪くなることが判明した。すなわち、製麹には、穀物そのものを糊化して使うのが最も容易である。また、醤油麹の作り方を応用すると、魚残滓の圧搾ミールと割砕小麦を用いて簡単に麹を作ることができる。しかし、水産物は、米や大豆と異なり、製麹のデータや歴史が乏しい。また、水産物には炭素源がほとんど含まれていない。そのため、魚肉ないし魚残滓を原料とする製麹については、炭素源に応じた麹の細菌相のデータが必要である。本発明者の知見によれば、魚残滓を原料として製麹する場合、穀物を炭素源としたのでは、麹の細菌相に問題が残る。結局、魚残滓を製麹して微生物学的に安全な発酵生成物を作るには、後記する試験例に示すとおり、ブドウ糖のような単糖を多量に含む糖の使用が最適ということが判明した。
【0026】
このように本発明では、水産物加工残滓の圧搾ミールに単糖及び/又はブドウ糖を50%以上含有する糖を添加して製麹用の基質を構成する。単糖としては、ブドウ糖又は果糖を用いるのが好ましく、特に、水分や価格の点からブドウ糖の使用が好ましい。また、ブドウ糖を50%以上含有する糖としては、水飴や異性化糖、また、二糖類のマルトース、蔗糖、乳糖の使用が好ましい。魚残滓の圧搾ミールは、水分50%前後までしか脱水できないため、水分含量の多い糖では造粒が困難になる。そのため、本発明で用いる糖としては、粉末状のものが好ましい。例えば、ブドウ糖をグルコースイソメラーゼで果糖に転化してブドウ糖と果糖の重量比を1対1にしてある異性化糖(通常は液状である。)でも、粉末化すれば使用できる。本発明では、単糖及び/又はブドウ糖を50%以上含有する糖は、基質の全量に対して10%以上添加量する必要がある。なお、10%〜20%とすることが好ましい。この理由は、炭素源が10%未満では、たとえ単糖を使用した麹でも、製麹中に糖が消費されてアンモニアが生成し、pHの上昇が起きるためである。しかし、多量の糖を炭素源として添加することは、コストの上昇と製品である発酵生成物のタンパク質含量の低下を招くため、単糖及び/又はブドウ糖を50%以上含む糖の基質に対する添加量は20%以下に抑えることが好ましい。
【0027】
本発明者は、本発明で用いる各種の糖を、それぞれ魚残滓圧搾ミールに添加して粒状の基質を作り、通気しながら製麹した後、さら低温の空気を送って乾燥させて発酵生成物とする一連の工程で細菌相を調べたところ、いずれの糖についても、好気性又は通性嫌気性の食中毒菌は全く残存しておらず、乾燥後に、残存比率の違いはあるが、好気的でpHの低い環境でも生存できるラクトバチルス (Lactobacillus)属と好気性のミクロコッカス (Micrococcus)属の菌が残存していることが確認された。
【0028】
本発明では、このように水産物加工残滓を原料として製麹して得られた麹にさらに30℃以下の空気を送って乾燥させる。その乾燥の程度は、水分含量が15%以下になるまで、好ましくは10%以下になるまでを目安として乾燥させるとよい。送風温度を30℃以下にする理由は、30℃を越えた温度で長時間培養をすると、ブドウ糖を炭素源に用いた麹でも、バチルス(Bacillus)属の細菌が発育するためである。製麹中にバチルス(Bacillus)属の細菌が多く発育した麹では、製麹の途中から温度を下げてもバチルス(Bacillus)属完全に抑えることはできない。また、発酵生成物の水分含量を15%以下にするのが好ましい理由は、麹菌の成分変化を抑えるためである。一般に、水分の多い麹を保存すると、「老麹」(ひね麹)と呼ばれる、臭いが悪くて酵素活性の落ちた麹になりやすい。さらに長時間保存を続けると、分生子が着生して麹が着色することがある。分生子の着生を完全に抑えるには、水分含量を10%以下に抑えることが望ましい。
【0029】
得られた麹にさらに送風を続けることによって、麹の内部が乾燥して空隙が広がって好気的な環境に変わり、麹菌の菌糸が発育してpHも下がるため、低温乾燥であるにもかかわらず、嫌気性のスタフィロコッカス(Staphyrococcus)属の細菌が死滅し、好気性のミクロコッカス(Micrococcus) 属や好気的でpHの低い環境でも生存できるラクトバチルス (Lactobacillus)属の菌が生き残るものと考えられる。
【0030】
本発明によって得られる魚残滓圧搾ミールを原料とする発酵生成物は、タンパク質含量は42〜43%程度(脱脂大豆とほぼ同じ)であり、細菌数も少なく、有害細菌が全く残存していないので、有用な飼料用原料として使用できることは勿論、脱脂大豆と同様に、醤油や味噌等の発酵食品の原料としても使用できる。以下、実施例及び試験例をもって本発明をさらに詳細に説明する。
【0031】
【実施例1】
《アナゴ残滓の製麹例》
(1)圧搾ミールの製造
鮮度が低下していないアナゴの頭、中骨、内臓等の加工残滓77kg(揮発性塩基窒素含量=4.3〜20.3mgN/100g)に清水34kgを加え、二重釜に入れて煮沸し、30分間沸騰させた。このアナゴ残滓の煮熟物を取り出してろ布に包み、圧搾機にかけて固液を分離し、煮汁65.2kgと圧搾ミール28.5kg(水分含量=51.7%)を得た。
なお、煮汁は、静置して魚油1.9kgを分離した後、公知の方法によりプロテアーゼ処理し(例えば、スミチーム添加:55℃×3時間)、95℃で10分間加熱して失活させ、これをろ過して魚油2.5kgとろ液43.9kg(水分含量=93.5%)に分離した。すなわち、煮汁から合計4.4kgの魚油を得ることができた。また、上記のろ液を円筒ろ過機にかけてろ過し、さらに濃縮機にかけて、濃縮煮汁5.6kg(水分=50.0%)を得ることができた。得られた濃縮煮汁は、各種食品の調味料として使用できる。
(2)基質の製造
上記アナゴ残滓の圧搾ミールに、炭素源としてブドウ糖2.8kg(10%相当量)を添加し、アスペルギルス・オリゼ(Aspergillus oryzae)の種麹25gを接種し、必要に応じて氷酢酸0.5%を混合した後、チョッパーの6mmのスクリーンを通して造粒して粒状の基質を作った。
(3)製麹
上記粒状の基質(水分含量=50.7%)を製麹機に入れ、室温26℃、相対湿度91%で製麹した。送風温度は30℃に設定した。製麹中の品温が30℃を越えるとバチルス(Bacillus)属の発育が見られるため、30℃以下での製麹が必要である。製麹24時間前後で、基質の表面に菌糸体が伸びてカステラのような塊になったため(この状態を「麹が絞まる」という。)、塊をほぐして粒状に戻した(この操作を「手入れ」という。)。手入れ直前の水分含量は44.2%であった。製麹46時間で発熱が収まり、麹になっていることが確認された。
(4)乾燥
そのまま送風を続けて水分含量が10%以下になるまで乾燥させた。かくして製麹50時間に、表1のCに示すように、水分含量:9.3%、pH=5.6、グルコサミン含量=10.3mg/g、細菌数=2.8×10CFUgで、食中毒菌等の有害細菌が存在しない発酵生成物14.0kgを得ることができた。
【0032】
【試験例1】
《炭素源の異なる発酵生成物の製麹中の成分確認試験》
(1)試験方法
実施例1で用いたアナゴ残滓の圧搾ミールに、ブドウ糖に替えて、炭素源として、醤油麹に用いられている「割砕小麦」と米由来の「糊化デンプン」をそれぞれ10%添加して基質を作った以外は、実施例1と同じ方法・同じ条件で麹を製し、乾燥させて発酵生成物を得た。これら2種の発酵生成物(A:割砕小麦添加のもの、B:糊化デンプン添加のもの)を実施例1の発酵生成物(C:ブドウ糖添加のもの)と併せて、それぞれの発酵生成物の水分、pH、グルコサミン、細菌数を比較した。それぞれの発酵生成物のデータを表1のA・B・Cに示す。
【0033】
(2)試験結果
【表1】

Figure 0004238315
Figure 0004238315
【0034】
(3)所見
イ.炭素源として割砕小麦を用いた発酵生成物Aでは、麹菌の菌体量の指標であるグルコサミンの増加が少なく、割砕小麦は水産物を製麹する際の炭素源として適さないことが確認された。また、炭素源として糊化デンプンを用いた発酵生成物Bは、pHの低下が少なく、細菌数も多いことが判明した。そのため、デンプンも、水産物を製麹する際の炭素源として適さないことが確認された。
ロ.これに対して、炭素源としてブドウ糖を用いた発酵生成物Cは、pHが5.6まで下がり、乾燥後の細菌数も少ないことが確認された。
ハ.また、炭素源としてブドウ糖を用いた発酵生成物Cは、水分含量の減少が速く、通風乾燥後には9.3%まで低下することが判明した。このことは、炭素源としてブドウ糖を添加した発酵生成物Cでは、麹菌の発育が速く、内部への菌糸の侵入も速いことを示唆している。
【0035】
【試験例2】
《炭素源の異なる発酵生成物の製麹中の細菌相の変遷状況確認試験》
(1)試験方法
試験例1で製した発酵生成物A(炭素源=割砕小麦)と発酵生成物B(炭素源=糊化デンプン)と実施例1で製した発酵生成物C(炭素源=ブドウ糖)の3種の発酵生成物について、製麹中にそれぞれの細菌相を測定した。細菌の状況は、製麹開始時(製麹機に造粒した基質を入れ、センサーをセットした時点)、発熱開始時(発酵熱が発生して、品温が30℃を越えた時点)、手入れ直前、発熱盛期、乾燥前、乾燥後の6段階でそれぞれ測定した。その結果をそれぞれ表2〜表4に示す。
(2)試験結果
【0036】
【表2】
Figure 0004238315
【0037】
【表3】
Figure 0004238315
【0038】
【表4】
Figure 0004238315
【0039】
(3)所見
表2〜表4(製麹中の細菌相)のデータに表1(製麹中の成分変化)のデータを加えて検討した。
イ.炭素源として割砕小麦を用いて製した発酵生成物Aでは、製麹中にシュウドモナス (Pseudomonus)属やアエロモナス (Aeromonus)属等の、原料由来と考えられるグラム陰性菌が細菌相の50%前後を占め、製麹を終えて乾燥させ、発酵生成物とした後でもシュウドモナス (Pseudomonus)属は残っていた。また、通性嫌気性細菌であるスタフィロコッカス(Staphyrococcus) 属の細菌も残っていた。
ロ.炭素源として糊化デンプンを用いて製した発酵生成物Bでは、製麹開始時にシュウドモナス (Pseudomonus)属やアルテロモナス (Alteromonus)属の細菌が細菌相の50%以上を占めていたが、製麹を終えて乾燥した後でもスタフィロコッカス(Staphyrococcus)属の菌が残っていた。
ハ.炭素源としてブドウ糖を用いて製した発酵生成物Cでは、乾燥後はラクトバチルス(Lactobacillus) 属(87%)とミクロコッカス (Micrococcus)属(13%)からなる細菌相になった。すなわち、乾燥後においてスタフィロコッカス(Staphyrococcus)属の細菌は残っていなかった。
【0040】
ニ.穀物の麹では、ミクロコッカス (Micrococcus)属、ストレプトコッカス(Streptocossus) 属、ラクトバチルス (Lactobacillus)属等のグラム陽性菌で細菌相が占められていて、製麹中や製麹後にグラム陰性菌が優勢になることは知られていない。一方、割砕小麦や糊化デンプンを炭素源に用いた魚残滓ミールの麹では、製麹中にシュウドモナス (Pseudomonus)属、アルテロモナス (Alteromonus)属、アエロモナス (Aeromonus)属が細菌相の50%前後を占めている。これらの属の細菌は、水産物の腐敗細菌であるばかりか、これらの細菌の近縁には大腸菌や腸炎ビブリオのような食中毒細菌が知られている。魚残滓ミールの麹は、水分含量が50%と高く、水分含量45〜50%の醤油麹や味噌玉麹に比べても細菌の発育しやすい水分である。
ホ.炭素源として割砕小麦を用いて製した発酵生成物Aでは、そのpHは、製麹中を通して6.6から5.9へ徐々に下がっているが、グラム陰性桿菌の発育可能な範囲にあった。また、製麹中の基質の写真を撮ったが、それによると、麹内部に菌糸が回っていない部分が見られた。この部分でpHが下がっていないと考えられる。
【0041】
ヘ.醤油麹や味噌玉麹では製麹中にミクロコッカス (Micrococcus)属やラクトバチルス (Lactobacillus)属のような生酸菌が優先菌になってpHを下げ、雑菌の発育を抑えるといわれているが(好井久雄氏「麹学」369 〜372 頁:1986年日本醸造協会発行)、割砕小麦や糊化デンプンの添加では、雑菌の発育を抑えるほど魚残滓圧搾ミールのpHを下げ得なかったものと考えられる。したがって、割砕小麦や糊化デンプンを炭素源とする発酵生成物では、これらの食中毒菌が汚染したときにその発育を抑制できないことが予想される。
ト.炭素源として糊化デンプンを用いた発酵生成物Bとブドウ糖を用いた発酵生成物Cについて、両者の間に明瞭に現れる相違は、pHの低下である。
【0042】
チ.ブドウ糖を炭素源に用いた発酵生成物Cでは、乾燥前後にスタフィロコッカス(Staphyrococcus)属からミクロコッカス (Micrococcus)属への細菌相の変化が起きた。これは、発酵生成物の内部が乾燥して空隙が広がり、好気的な環境に変わり、菌糸が発育してpHも下がったため、嫌気性のスタフィロコッカス (Staphyrococcus)属の細菌が死滅し、好気性のミクロコッカス(Micrococcus)属や好気的でpHの低い環境でも生存できるラクトバチルス (Lactobacillus)属の細菌が生き残ったためと考えられる。この現象は、味噌玉麹のように、形状が大きく、組織の締まった麹の細菌相に似ている。穀物の麹には、乾燥しなくてもスタフィロコッカス(Staphyrococcus)属の細菌が見られないのは、製麹中にpHが5.0前後まで下がるので、スタフィロコッカス(Staphyrococcus)属の細菌が死滅するためであると考えられる。魚残滓から製した発酵生成物では、pHを下げるためにブドウ糖を多量に添加するより、乾燥して、スタフィロコッカス(Staphyrococcus)属の生育を抑える方がコストの負担が少ない。
【0043】
【試験例3】
《炭素源の異なる発酵生成物の還元糖量とアミラーゼ活性の確認試験》
(1)試験方法
炭素源として、試験例1において糊化デンプンを添加して製した発酵生成物Bと実施例1においてブドウ糖を添加して製した発酵生成物Cについて、製麹中の還元糖量と糖化アミラーゼ活性量をそれぞれ測定し、表5の結果を得た。なお、還元糖量は、主にマルトース以下の還元性の分解産物をフェーリング法で測定したものである。
(2)試験結果
【0044】
【表5】
Figure 0004238315
【0045】
(3)所見
麹菌は、α−アミラーゼ、グルコアミラーゼ、トランスグルコシダーゼ等の酵素を生産し、デンプンから直接還元糖を生成でき、表5に示すように、デンプンを炭素源に用いた麹では強い活性を示す。
イ.デンプンを炭素源に使用した発酵生成物Bでは、還元糖の蓄積が少なく、ブドウ糖を炭素源とした発酵生成物Cで利用されていない還元糖量のレベル以上
には増えていない。
ロ.表5のデータから、デンプンを炭素源に使用した発酵生成物Bでは、製麹の全過程を通してブドウ糖の蓄積は見られず、アミラーゼにより生成したブドウ糖は菌糸体の発育に利用されて、有機酸の生産には使われないと推察される。発酵生成物BのpHの低下が見られないことも、この推測を裏付けている。炭素源は麹菌の発育を促し、pHの上昇を抑えるために使用されており、この目的のためには、ブドウ糖のように麹菌が直接利用できる糖が適していた。
ハ.さらに、デンプンを添加した麹は粘りが強くなり、造粒と製麹中の乾燥による麹粒の微粉化は防げるが、表1の乾燥前後の水分含量の変化を見ると、デンプンは、麹内部の乾燥には阻害的に働いているように考えられる。
【0046】
ニ.また、割砕小麦やデンプンを炭素源に用いたときには、製麹中、pHの低下は少ないが、ブドウ糖を添加したときには、発熱が始まるときにpHが一度上昇するが、その後は時間と共にpHは低下した。米麹の製麹では、製麹中に消費される糖質の約40%がCOに代謝され、60%は糖質以外の物質に変換されることが報告されており(鈴木明治氏ら「醸協」第52巻 904頁:1957年日本醸造協会発行)、有機酸の生成には過剰な還元糖が必要だと考えられる。
【0047】
ホ.また、製麹中に麹の水分含量は低下するが、デンプンを添加したときに比べてブドウ糖を添加したときは、水分含量の低下が速かった。このことは、麹菌の発育が速く、内部への菌糸の侵入も速いことを示している。
ヘ.製麹中の麹内部の写真を見ると、ブドウ糖を炭素源に用いた発酵生成物Cでは、製麹開始時には全く空隙がないが、製麹の進行と共に菌糸が内部に進入して、空隙が広がっている。菌糸は乾燥中にも内部の空隙に侵入しており、乾燥中でも内部には水分が残っていて、その水分を利用して発育していたと考えられる。
ト.デンプンを炭素源に用いた発酵生成物は、粘りが強く、組織が締まっていて麹菌の発育が弱く、内部には菌糸の入っていない部分が残っていた。
【0048】
【発明の効果】
以上、詳細に説明するとおり、本発明は、水産物加工残滓を加熱・圧搾して製した圧搾ミールにブドウ糖、果糖等の単糖及び/又はブドウ糖を50%以上含む糖を添加して粒状の基質を作り、この粒状の基質に麹菌を接種して発酵させ、得られた麹にさらに30℃以下の空気を送って乾燥させるという簡単な方法によって、微生物学的に安全な発酵生成物を製造することができる。本発明によって製した発酵生成物は、飼料用の原料として使用できるだけでなく、醤油や味噌等の発酵食品や調味食品の原料として使用できる。
【0049】
本発明によって、魚の頭、中骨、内臓等の水産物加工残滓を鮮度の低下しないうちに、また高温をかけずに、しかも発生現場で処理することが可能となった。
本発明によって製した発酵生成物は、高温で処理していないので、高温時に発生する有害物質を含むおそれがない。また、高タンパク質であり、食中毒菌等の有害細菌は一切含んでいないので、安心して使用できる。
以上のとおり、本発明は、水産物加工残滓を有用な資源として活用する途を拓く画期的な方法である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a safe fermentation product from marine product processing residue. More specifically, the present invention relates to a method for producing a microbiologically safe fermentation product using, as a raw material, a compressed meal produced by heating and pressing a marine product processing residue. The fermented product produced according to the present invention can be used as a raw material for safe feed, and can also be used as a raw material for soy sauce and miso.
[0002]
[Prior art]
[Patent Document 1]
JP-A-6-319464
[Patent Document 2]
JP 2002-142688 A
[Patent Document 3]
JP 2000-316484 A
[Patent Document 4]
JP 11-178540 A
[0003]
Conventionally, most of fishery processing residues such as fish heads, middle bones, and internal organs are treated as wastes by a contractor. The contractor entrusted with the processing processes these marine products processing residue through a fish carp manufacturing plant, a fish oil manufacturing device, a fish soluble manufacturing device, and the like. The rough processing method is to squeeze the seafood processed residue and then squeeze it to separate it into boiled juice and pressed meal. The boiled juice is further processed into fish oil and fish soluble through centrifugation and concentration processes. The compressed meal is dried and processed into fish salmon and used as fertilizer.
[0004]
The most important process in the above series of marine product processing residue is a drying step, in which the compressed meal is hot-air dried while continuously operating the drying apparatus at a high temperature of 100 ° C. or higher (sometimes reaching 140 ° C.). Then, in order to operate the drying apparatus, a large amount of seafood processing residue (hereinafter simply referred to as “fish residue”) is required, and the collection of the fish residue becomes widespread, resulting in a decrease in freshness and spoilage. Fish remnants with reduced freshness not only produce odors and produce harmful substances such as histamine, but also attract insects such as flies and cockroaches and cause public health problems. In addition, since fish residues with reduced freshness may contain harmful components, they cannot be used for feed and are used for fertilizer, resulting in a low price. In addition, it has been shown that drying of fish residue at high temperature not only oxidizes lipids and degrades nutrients, but also produces toxic dizerosin (Kenzo Toyama et al. 51, 985-993: Published in 1985 by the Japanese Fisheries Society. In order to avoid the freshness of the seafood processing residue, the processing at the generation site is the most effective. However, in this case, the processing of the fish residue becomes small and it becomes difficult to use expensive equipment.
[0005]
In view of the current state of the processing of seafood processing residue, the present inventor, in order to utilize the seafood processing residue as a useful resource, the seafood processing residue should be reduced at the generation site without applying high temperature before the freshness is lowered. Research continued on how to process to scale. As a result, we focused on the koji making method that can dry grains and the like at a low temperature under simple equipment, and thought that the koji making method could be applied to the drying treatment of marine products processing residue.
[0006]
However, since the making of fish residue is performed in an open system, harmful bacteria may grow together with the koji mold during the making. Conventionally, there are a lot of analytical data on the bacterial flora of cocoons made from cereals, and the safety has been confirmed. However, only the following two cases have been reported for cocoons made from fish meat. I was worried about the practical application. That is, Hassain et al. Reported that when fermenting fish residue with koji molds to produce a fish feed, the fermentation results in suppression of lipid oxidation, reduction of volatile basic nitrogen, etc., resulting in improved nutritional value as feed. However, no bacterial flora has been confirmed (Hassain, MD et al, “Nippon Suisan Gakkai-shi”, Volume 35, pages 1629-1632: published in 1987 by the Japanese Fisheries Society). Mr. Kakio also made soluble sardine by adding soluble starch as a carbon source to the sardine meal, and reduced lipid oxidation and reduced peroxide, reduced histamine, and maintained high nutritional value of protein. The effect has been confirmed, but Staphylococcus (Staphyrococcus) Genus bacteria (Mayo Kakio's master's thesis: Graduate School of Fisheries Science, Hokkaido University, 1992). Also during the iron making, Bacillus (Bacillus), Pseudomonas (Pseudomonas), Enterobacteriaceae (Enterobacteriaceae) Acknowledging the presence of family bacteria. Since bacteria of these genera contain food poisoning bacteria, it is necessary to clarify the culture conditions that prevent the growth of harmful bacteria in order to produce fish residues.
[0007]
Examining the patent gazette, there are several applications for the method of making a raw material from processed fishery products or organic waste. For example, Japanese Patent Laid-Open No. 06-319464 discloses that aspergillus (fish meal) is added to raw fish meal (fish meal).Aspergi llus) Inoculate a strain resistant to drying of the genus, adjust the water content to 20-30%, ferment at about 30 ° C. while aeration necessary and sufficient for the growth of Aspergillus, and after completion of the Aspergillus culture, fermented fish meal Is maintained at 45 ° C. or lower and is dried by ventilation, and according to this method, a fermentative action of Aspergillus oryzae causes a low peroxide value, a low histamine, a low trimethylamine, a useful protease or the like. It is disclosed that a fish meal fermented feed containing an enzyme at a high concentration can be obtained. However, this publication does not describe anything about the bacterial flora of moths. Japanese Patent Laid-Open No. 2002-142688 discloses that a raw material composed of organic waste having a water content of about 20 to 50% and a fiber feed and / or cereal is mixed and fermented, and the water content is reduced to 20% or less. Although a method for producing a reduced koji-mixed feed is disclosed, this publication does not describe any changes in the bacterial flora during koji making or the prevention of the growth of harmful bacteria. Furthermore, Japanese Patent Laid-Open No. 2000-316484 discloses that a raw material obtained by mixing fish waste and a cereal raw material and / or a fibrous raw material so as to have a moisture content of 45% or less is fermented by adding koji molds to generate heat at an appropriate temperature (30 It is disclosed that a fermentation product (feed) having a water content of 10% can be obtained in 72 hours after the start of koji making by controlling the temperature to ˜50 ° C. However, this publication does not describe any changes in the bacterial flora during koji making or the prevention of the growth of harmful bacteria.
[0008]
In other words, in order to dry the fish residue using the heat of fermentation of Aspergillus, it is necessary to adjust the culture conditions of Aspergillus and control the bacterial flora of the bacteria that grow together with Aspergillus so as not to cause any health hazards There is. However, the above-mentioned prior art documents do not disclose anything about the bacterial flora of the salmon when the fish residue is used as a raw material and the method for preventing the growth of harmful bacteria such as food poisoning bacteria during the making of the fish.
[0009]
[Problems to be solved by the invention]
In view of the above-mentioned series of circumstances, the present invention provides a method for producing a useful fermentation product that is microbiologically safe from the seafood processing residue by elucidating the bacterial flora of the seafood when the seafood processing residue is used as a raw material. The first task is to do this. Moreover, this invention sets it as the 2nd subject to provide the method of processing a seafood processing residue, without applying high temperature, before freshness falls. Furthermore, this invention makes it a 3rd subject to provide the method of processing a marine product processing residue on the generation | occurrence | production site, without using an expensive apparatus. Therefore, this invention makes it the last subject to provide the method of utilizing marine product processing residue as a useful resource.
[0010]
[Means for Solving the Problems]
Of the present invention for solving the above problems, the invention described in claim 1 is
After heating the seafood processed residue, it is pressed and separated from the broth to add a sugar containing 50% by weight or more of monosaccharide and / or glucose to produce a granular substrate. It is a method for producing a fermented product that is microbiologically safe by fermenting and drying the resulting koji by sending air at 30 ° C. or lower.
[0011]
The invention according to claim 2 of the present invention is the fermentation product according to claim 1, wherein the amount of sugar containing monosaccharide and / or glucose of 50% by weight or more to the substrate is 10% by weight or more. It is a manufacturing method.
[0012]
The invention described in claim 3 of the present invention is the method for producing a fermentation product according to claim 1 or 2, wherein glucose and / or fructose is used as a monosaccharide.
[0013]
Moreover, the invention described in claim 4 of the present invention uses one or more of syrup, isomerized sugar, maltose, sucrose, and lactose as sugar containing 50% by weight or more of glucose. Or it is a manufacturing method of the fermentation product of 2.
[0014]
Moreover, the invention described in claim 5 of the present invention is the method for producing a fermentation product according to any one of claims 1 to 4, wherein a marine product processing residue uses volatile basic nitrogen of 30 mgN / 100 g or less. It is.
[0015]
Moreover, the invention described in claim 6 of the present invention is the production of the fermentation product according to any one of claims 1 to 5, wherein the pressed meal is a meal that has been compressed until the water content is 52% by weight or less. Is the method.
[0016]
The invention described in claim 7 of the present invention is the method for producing a fermentation product according to any one of claims 1 to 6, wherein the obtained koji is dried until the water content becomes 15% or less. is there.
[0017]
Furthermore, invention of Claim 8 among this invention is a manufacturing method of the fermentation product in any one of Claim 1 to 7 from which the fermentation product used as a raw material for feed is obtained.
[0018]
[Action]
According to the knowledge of the present inventor, when glucose is added as a carbon source to the compressed meal of marine product processed residue to produce a granular substrate, the substrate is inoculated with koji mold, and then koji mold is produced. The pH of the salmonella (Salmonella) Genus and Vibrio (Vibrio) Can prevent the growth of food poisoning bacteria such as genus. Furthermore, when air of 30 ° C. or less is sent to the obtained soot, and preferably dried until the water content becomes 15% or less, voids are generated inside the soot, and the inside becomes aerobic, Staphylococcus (a facultative anaerobic bacterium)Staphylococcus) The bacteria of the genus die. By this action, the compressed meal of the processed seafood residue can be dried at a low temperature while preventing the growth of harmful bacteria, and can be converted into a microbiologically safe fermentation product.
[0019]
Hereinafter, specific modes for carrying out the present invention will be described. In all the explanations of the present invention, “making a koji” means making a koji by inoculating a substrate with koji mold and growing it. In the entire description of the present invention, “%” indicates “weight percentage” unless otherwise specified.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
The marine product processing residue used in the present invention needs to have a freshness as low as possible. In general, the rotting of fish meat uses volatile basic nitrogen as an index, and its value exceeds 30 mgN / 100 g as initial rotting. However, fish remnants have hardly been studied in the past.
[0021]
Therefore, the present inventor measured changes in volatile base nitrogen and amine over time using the internal organs of the remnants of the eel. As a result, histamine, cadaverine, and volatile base nitrogen are remarkably produced in the viscera of anago, and histamine exceeds 50 mg N / 100 g in 25 ° C. × 6 hours, and volatile base nitrogen is 5 ° C. × 6 It was found to exceed 30 mgN / 100 g in the time to 15 ° C. × 3 hours.
Considering from this test result, the seafood processing residue used in the present invention is the one that has been heat-treated within 3 hours if it is stored at 5 ° C, and within 1 hour if it is stored at 15 ° C. It is desirable to do. For this reason, in order to use marine product processing residue whose freshness has not deteriorated, it is the most effective method to heat-treat at the generation site. This heat treatment stops the decrease in freshness of the fish residue.
[0022]
As the inoculum, the koji mold used in the present invention may be a commercially available conidia of koji mold (for example, trade name “Higuchi Sprout BF-1”). In addition, you may use what culture | cultivated the koji mold in the culture medium. As mold, Aspergillus oryzae (Aspergillus oryzae), Aspergillus soja (Aspergillus sojae), Aspergillus awamori (Aspergillus awamori), Aspergillus niger (Aspergillus nigerMutants such as) are useful.
[0023]
The marine product processing residue originally has a high water content. However, in order to use it as a raw material of the present invention, it is necessary to reduce the water content by heating it sufficiently after heating. The reason is that if the compressed meal has too much water content, it becomes difficult to form a granule. The degree of pressing may be determined until the water content is 52% or less, preferably 50% or less.
[0024]
In the present invention, the substrate used for iron making is made in a granular form. The reason for this is that when it is made in granular form, the mycelium of Aspergillus can be attached to the surface of each grain, air can be sent between the grains and cooled, and oxygen can be supplied to the inside of the substrate. is there.
[0025]
Moreover, in this invention, the sugar containing 50% or more of monosaccharides and / or glucose as a carbon source is added to the pressing meal of marine product processing residue, and the substrate for koji is granulated. The inventor has tested grains, starch as a carbon source for grains, and glucose obtained by decomposing starch as carbon sources for koji making. However, the higher the degree of processing, the higher the price and the lower the usability. It has been found. In other words, it is easiest to use the grain itself for gelatinization. In addition, if you apply the method of making soy sauce koji, you can easily make koji using compressed meal and cracked wheat. However, unlike rice and soybeans, marine products have poor data and history. In addition, marine products contain almost no carbon source. Therefore, for slag making using fish meat or fish residue as raw material, the bacterial flora data according to the carbon source is required. According to the knowledge of the present inventor, when making a fish residue from a raw material, if the grain is used as a carbon source, there remains a problem in the bacterial flora of the fish. Eventually, it was found that the use of sugars that contain a large amount of monosaccharides such as glucose was the best way to produce microbiologically safe fermentation products by producing fish residues. did.
[0026]
Thus, in the present invention, a sugar-making substrate is formed by adding sugar containing 50% or more of monosaccharide and / or glucose to the compressed meal of processed fishery residue. As the monosaccharide, glucose or fructose is preferably used, and glucose is particularly preferably used from the viewpoint of moisture and price. Further, as sugars containing 50% or more of glucose, it is preferable to use syrup or isomerized sugar, or disaccharides such as maltose, sucrose or lactose. Since the fish meal squeezed meal can be dehydrated only up to about 50% moisture, it is difficult to granulate with sugar having a high moisture content. Therefore, the sugar used in the present invention is preferably in a powder form. For example, isomerized sugar (usually liquid) in which glucose is converted to fructose with glucose isomerase and the weight ratio of glucose to fructose is 1: 1 can be used if powdered. In the present invention, a saccharide containing 50% or more of monosaccharide and / or glucose needs to be added in an amount of 10% or more based on the total amount of the substrate. In addition, it is preferable to set it as 10%-20%. The reason for this is that when the carbon source is less than 10%, even if the cocoon uses a monosaccharide, the saccharide is consumed during the koji making to produce ammonia, resulting in an increase in pH. However, since adding a large amount of sugar as a carbon source leads to an increase in cost and a decrease in the protein content of the product fermentation product, the addition amount of a sugar containing 50% or more of monosaccharide and / or glucose to the substrate Is preferably 20% or less.
[0027]
The present inventor added various sugars used in the present invention to the fish residue compressed meal to make a granular substrate, made it while aeration, then dried it by sending cold air and fermenting the product. As a result of examining the bacterial flora in a series of steps, no aerobic or facultative anaerobic food poisoning bacteria remain in any sugar, and there is a difference in the residual ratio after drying. Lactobacillus that can survive even in low-pH environments (Lactobacillus) Genus and aerobic micrococcus (Micrococcus) It was confirmed that bacteria belonging to the genus remain.
[0028]
In the present invention, air of 30 ° C. or lower is further sent to the cocoon obtained by making the seafood processing residue as a raw material in this way, and dried. The degree of drying may be dried until the water content is 15% or less, preferably 10% or less. The reason why the blast temperature is set to 30 ° C. or lower is that when culturing at a temperature exceeding 30 ° C. for a long time, bacillus (BacillusThis is because the bacteria of the genus grow. Bacillus (BacillusIn the cocoon where many bacteria of the genus have developed, the Bacillus (Bacillus) Genus can not be completely suppressed. The reason why the moisture content of the fermentation product is preferably 15% or less is to suppress changes in the components of koji mold. In general, when cocoons containing a lot of water are stored, they are called “old rice cakes” (hine potatoes) and tend to be cocoons with a bad odor and reduced enzyme activity. If stored for a long time, conidia may grow and the candy may be colored. In order to completely suppress the conidia formation, it is desirable to suppress the water content to 10% or less.
[0029]
By continuing to blow air to the obtained cocoon, the inside of the cocoon is dried and the voids are widened to change to an aerobic environment, and the mycelium of the gonococcus grows and the pH is lowered. Anaerobic Staphylococcus (Staphyrococcus) Genus bacteria killed, aerobic micrococcus (Micrococcus) Lactobacillus that can survive in the genus and aerobic low pH environment (Lactobacillus) The genus fungus is thought to survive.
[0030]
The fermentation product made from the fish residue compressed meal obtained by the present invention has a protein content of about 42 to 43% (approximately the same as defatted soybean), has a small number of bacteria, and no harmful bacteria remain at all. Of course, it can also be used as a raw material for fermented foods such as soy sauce and miso as well as defatted soybean. Hereinafter, the present invention will be described in more detail with reference to examples and test examples.
[0031]
[Example 1]
《Examples of remnants of anago remnants》
(1) Manufacture of compressed meal
34kg of fresh water is added to 77kg (volatile base nitrogen content = 4.3 to 20.3mgN / 100g) of processing residue such as the head, middle bone and internal organs of the sea bream whose freshness has not deteriorated. Boil for 30 minutes. The boiled mushrooms of this reed residue were taken out and wrapped in a filter cloth, and the solid and liquid were separated by a pressing machine to obtain 65.2 kg of boiled juice and 28.5 kg of pressed meal (water content = 51.7%).
The broth is allowed to stand to separate 1.9 kg of fish oil, and then treated with protease by a known method (for example, Sumiteam addition: 55 ° C. × 3 hours), heated at 95 ° C. for 10 minutes to be inactivated, This was filtered and separated into 2.5 kg of fish oil and 43.9 kg of filtrate (water content = 93.5%). That is, a total of 4.4 kg of fish oil could be obtained from the broth. Moreover, the above filtrate was filtered through a cylindrical filter, and further concentrated through a concentrator to obtain 5.6 kg of concentrated broth (water content = 50.0%). The obtained concentrated broth can be used as a seasoning for various foods.
(2) Production of substrate
Glucose 2.8kg (10% equivalent) as a carbon source is added to the compressed meal of the above remnants of Asago, and Aspergillus oryzae (Aspergillus oryzae) 25 g of seed meal, and 0.5% glacial acetic acid was mixed if necessary, and granulated through a 6 mm screen of a chopper to form a granular substrate.
(3) Steelmaking
The granular substrate (water content = 50.7%) was put into a koji making machine and koji was made at a room temperature of 26 ° C. and a relative humidity of 91%. The blowing temperature was set to 30 ° C. If the product temperature in the iron making exceeds 30 ° C, Bacillus (Bacillus) Since the growth of the genus can be seen, it is necessary to make iron at 30 ° C or lower. Around 24 hours after koji making, the mycelium stretched on the surface of the substrate and became a castella-like lump (this state is called “squeezing wrinkles”). "Care".) The moisture content just before cleaning was 44.2%. After 46 hours of iron making, the heat generation was stopped and it was confirmed that it became a soot.
(4) Drying
The air blowing was continued as it was, and it was dried until the water content became 10% or less. Thus, after 50 hours of koji making, as shown in Table 1 C, water content: 9.3%, pH = 5.6, glucosamine content = 10.3 mg / g, bacteria count = 2.8 × 105With CFUg, 14.0 kg of a fermentation product free of harmful bacteria such as food poisoning bacteria could be obtained.
[0032]
[Test Example 1]
<Confirmation of ingredients during fermentation of fermentation products with different carbon sources>
(1) Test method
In place of glucose, 10% each of “cracked wheat” used in soy sauce cake and “gelatinized starch” derived from rice are used as a carbon source in the compressed meal of the remnants of Anago residue used in Example 1. A fermented product was obtained by making koji using the same method and under the same conditions as in Example 1 except that the substrate was made. These two types of fermentation products (A: added with cracked wheat, B: added with gelatinized starch) are combined with the fermentation product of Example 1 (C: added with glucose) to produce each fermentation product. The water content, pH, glucosamine, and bacterial count of the products were compared. The data of each fermentation product are shown in A, B, and C of Table 1.
[0033]
(2) Test results
[Table 1]
Figure 0004238315
Figure 0004238315
[0034]
(3) Findings
I. In fermentation product A using cracked wheat as a carbon source, the increase in glucosamine, which is an indicator of the amount of Aspergillus oryzae, is small, and it has been confirmed that cracked wheat is not suitable as a carbon source for producing fishery products. It was. Moreover, it turned out that the fermentation product B which used gelatinized starch as a carbon source has few fall of pH, and there are many bacteria number. Therefore, it was confirmed that starch is not suitable as a carbon source for producing seafood.
B. On the other hand, it was confirmed that the fermentation product C using glucose as a carbon source had a pH lowered to 5.6 and the number of bacteria after drying was small.
C. In addition, it was found that the fermentation product C using glucose as a carbon source has a rapid decrease in water content and decreases to 9.3% after ventilation drying. This suggests that the fermentation product C to which glucose is added as a carbon source has a fast growth of gonococci and a fast entry of hyphae into the inside.
[0035]
[Test Example 2]
《Transition confirmation test of bacterial flora during fermentation of fermentation products with different carbon sources》
(1) Test method
3 of fermentation product A (carbon source = cracked wheat) and fermentation product B (carbon source = gelatinized starch) produced in Test Example 1 and fermentation product C (carbon source = glucose) produced in Example 1 For the fermentation products of the seeds, the respective bacterial flora was measured during the koji making. The state of bacteria is as follows: at the start of koji making (when the granulated substrate is put in the kneader and the sensor is set), when fever starts (when fermentation heat is generated and the product temperature exceeds 30 ° C), Measurements were made at six stages immediately before care, during the exothermic period, before drying, and after drying. The results are shown in Tables 2 to 4, respectively.
(2) Test results
[0036]
[Table 2]
Figure 0004238315
[0037]
[Table 3]
Figure 0004238315
[0038]
[Table 4]
Figure 0004238315
[0039]
(3) Findings
The data in Table 2 to Table 4 (bacterial flora during iron making) were added to the data in Table 1 (component changes during iron making) for examination.
I. In fermented product A produced using cracked wheat as a carbon source, Pseudomonas (PseudomonusGenus and Aeromonas (Aeromonus) Gram-negative bacteria considered to be derived from raw materials, such as the genus, account for around 50% of the bacterial flora.PseudomonusThe genus remained. In addition, Staphylococcus (a facultative anaerobic bacterium)Staphyrococcus) Bacteria belonging to the genus remained.
B. In fermentation product B made using gelatinized starch as the carbon source, Pseudomonas (PseudomonusGenus and Alteromonas (AlteromonusBacteria belonging to the genus accounted for more than 50% of the bacterial flora, but staphylococcus (Staphyrococcus) Genus of fungi remained.
C. In fermentation product C produced using glucose as a carbon source, Lactobacillus (Lactobacillus) Genus (87%) and Micrococcus (Micrococcus) Became a bacterial flora consisting of genus (13%). That is, after drying, Staphylococcus (StaphyrococcusThere were no remaining bacteria in the genus.
[0040]
D. In the grain cocoon, Micrococcus (Micrococcus), Streptococcus (Streptocossus) Genus, Lactobacillus (LactobacillusBacteria are occupied by gram-positive bacteria such as genus, and it is not known that gram-negative bacteria predominate during and after koji making. On the other hand, in the case of fish residue meal using cracked wheat or gelatinized starch as a carbon source, Shudomonas (Pseudomonus) Genus, Alteromonas (Alteromonus) Genus, Aeromonas (Aeromonus) Genus accounts for around 50% of the bacterial flora. The bacteria of these genera are not only marine spoilage bacteria, but food poisoning bacteria such as Escherichia coli and Vibrio parahaemolyticus are known to be closely related to these bacteria. The fish residue meal meal has a high moisture content of 50%, and is a moisture content that allows bacteria to grow more easily than soy sauce cake and miso onion cake with a moisture content of 45 to 50%.
E. In the fermentation product A produced using cracked wheat as the carbon source, the pH gradually decreased from 6.6 to 5.9 throughout the koji making, but within the range where gram-negative koji molds can grow. It was. In addition, a picture of the substrate during the koji making was taken, and according to this, a portion where the hyphae did not rotate was found inside the koji. It is considered that the pH is not lowered at this portion.
[0041]
F. In soy sauce cake and miso onion, micrococcus (Micrococcus) Genus and Lactobacillus (Lactobacillus) It is said that living acid bacteria such as the genus become the preferred bacteria to lower the pH and suppress the growth of miscellaneous bacteria (Mr. Hisao Yoshii “Gakugaku” pages 369-372: published in 1986 by the Japan Brewing Association) It is considered that the addition of crushed wheat or gelatinized starch failed to lower the pH of the fish residue press meal so as to suppress the growth of miscellaneous bacteria. Therefore, it is expected that the fermentation product using cracked wheat or gelatinized starch as a carbon source cannot suppress the growth when these food poisoning bacteria are contaminated.
G. The difference that clearly appears between the fermentation product B using gelatinized starch as the carbon source and the fermentation product C using glucose is a decrease in pH.
[0042]
H. In the fermentation product C using glucose as a carbon source, Staphylococcus before and after drying.(StaphyrococcusFrom the genus Micrococcus (MicrococcusA change in the bacterial flora to the genus occurred. This is because the inside of the fermented product is dried and the voids are widened to change to an aerobic environment, and the mycelium grows and the pH is lowered, so anaerobic Staphylococcus (Staphyrococcus) Genus bacteria killed, aerobic micrococcus (MicrococcusLactobacillus that can survive in genus and aerobic low pH environment (LactobacillusIt is thought that the bacteria of the genus survived. This phenomenon resembles the bacterial flora of a large-sized and tightly-strained koji, like miso onion. For cereals, staphylococcus (without drying)Staphyrococcus) Bacteria are not seen because the pH drops to around 5.0 during koji making, so staphylococcus (StaphyrococcusThis is thought to be due to the death of the genus bacteria. Fermentation products made from fish residue are dried and added to Staphylococcus (rather than adding a large amount of glucose to lower the pH.Staphyrococcus) It is less costly to reduce the growth of the genus.
[0043]
[Test Example 3]
《Confirmation test of reducing sugar content and amylase activity of fermentation products with different carbon sources》
(1) Test method
As the carbon source, the amount of reducing sugar and the saccharified amylase activity in the koji making for the fermentation product B produced by adding gelatinized starch in Test Example 1 and the fermentation product C produced by adding glucose in Example 1 Each amount was measured and the results in Table 5 were obtained. In addition, the amount of reducing sugars is mainly measured by the Fehring method for reducing degradation products of maltose or less.
(2) Test results
[0044]
[Table 5]
Figure 0004238315
[0045]
(3) Findings
Aspergillus oryzae can produce enzymes such as α-amylase, glucoamylase, and transglucosidase to produce reducing sugars directly from starch. As shown in Table 5, the koji using starch as a carbon source shows strong activity.
I. Fermentation product B using starch as a carbon source has a low accumulation of reducing sugar and is above the level of reducing sugar not used in fermentation product C using glucose as a carbon source.
It has not increased.
B. From the data in Table 5, in the fermentation product B using starch as a carbon source, no glucose accumulation was observed throughout the entire koji making process, and glucose produced by amylase was used for the growth of mycelium to produce organic acids. It is presumed that it will not be used for production. The lack of a decrease in the pH of the fermentation product B is also supported by this assumption. The carbon source is used to promote the growth of Aspergillus and to suppress the increase in pH. For this purpose, a sugar that can be directly used by Aspergillus, such as glucose, was suitable.
C. Furthermore, the koji with added starch becomes strong and prevents the koji from being pulverized by drying during granulation and koji making. It seems to be working in an impediment to drying.
[0046]
D. In addition, when cracked wheat or starch is used as a carbon source, there is little decrease in pH during koji making, but when glucose is added, the pH rises once when fever begins, but thereafter the pH increases with time. Declined. In rice bran koji, about 40% of the sugar consumed during koji making is CO.2It is reported that 60% is converted to a substance other than carbohydrate (Meiji Suzuki et al., “Jyokyo” Vol. 52, 904, published by the Japan Brewing Association in 1957). Excess reducing sugar is considered necessary.
[0047]
E. In addition, the water content of the koji decreased during koji making, but the water content decreased more rapidly when glucose was added than when starch was added. This indicates that the gonococcus is fast growing and the hyphae enter the inside quickly.
F. In the fermentation product C using glucose as a carbon source, there is no void at the start of the koji making, but the hyphae enter the inside with the progress of koji making. It has spread. The mycelium penetrates into the internal voids even during drying, and moisture remains inside even during drying, and it is considered that the hyphae grew using the moisture.
G. Fermentation products using starch as a carbon source were very sticky, the tissue was tight and the growth of Aspergillus was weak, and a part without hypha remained inside.
[0048]
【The invention's effect】
As described above in detail, the present invention adds a sugar containing 50% or more of monosaccharides such as glucose and fructose and / or glucose to a compressed meal produced by heating and pressing a marine product processing residue, and is a granular substrate. A microbiologically safe fermentation product is produced by a simple method in which the granular substrate is inoculated with koji mold and fermented, and the obtained koji is further dried by sending air at 30 ° C or lower. be able to. The fermentation product produced according to the present invention can be used not only as a raw material for feed, but also as a raw material for fermented foods such as soy sauce and miso and seasoning foods.
[0049]
According to the present invention, it is possible to process fishery processing residues such as fish heads, middle bones, and internal organs at the site of occurrence without reducing the freshness and without applying a high temperature.
Since the fermentation product manufactured by this invention is not processed at high temperature, there is no possibility of containing the harmful substance generated at high temperature. Moreover, since it is high protein and does not contain harmful bacteria, such as food poisoning bacteria, it can be used safely.
As described above, the present invention is an epoch-making method that opens the way to use marine product processing residue as a useful resource.

Claims (8)

水産物加工残滓を加熱した後圧搾して煮汁を分離した圧搾ミールに、単糖及び/又はブドウ糖を50重量%以上含む糖を添加して粒状の基質を製し、この基質に麹菌を接種して発酵させ、得られた麹に30℃以下の空気を送って乾燥させ、微生物学的に安全な発酵生成物を製造する方法。After heating the seafood processing residue, it is pressed and separated into the squeezed juice to add a sugar containing 50% by weight or more of monosaccharide and / or glucose to produce a granular substrate. A method of producing a fermentation product that is microbiologically safe by fermenting and drying the resulting koji by sending air at 30 ° C. or lower. 単糖及び/又はブドウ糖を50重量%以上含む糖の、基質に対する添加量が10重量%以上である請求項1に記載の発酵生成物の製造方法。The method for producing a fermentation product according to claim 1, wherein the amount of sugar containing 50% by weight or more of monosaccharide and / or glucose is 10% by weight or more with respect to the substrate. 単糖として、ブドウ糖及び/又は果糖を用いる請求項1又は2に記載の発酵生成物の製造方法。The method for producing a fermentation product according to claim 1 or 2, wherein glucose and / or fructose is used as the monosaccharide. ブドウ糖を50重量%以上含む糖として、水飴、異性化糖、マルトース、蔗糖、乳糖のうちの1種又は2種以上を用いる請求項1又は2に記載の発酵生成物の製造方法。The method for producing a fermentation product according to claim 1 or 2, wherein one or more of syrup, isomerized sugar, maltose, sucrose, and lactose is used as sugar containing 50% by weight or more of glucose. 水産物加工残滓として、揮発性塩基窒素が30mgN/100g以下のものを用いる請求項1から4のいずれかに記載の発酵生成物の製造方法。The method for producing a fermentation product according to any one of claims 1 to 4, wherein a volatile basic nitrogen having a volatile basic nitrogen content of 30 mgN / 100 g or less is used as a marine product processing residue. 圧搾ミールとして、水分含量が52重量%以下になるまで圧搾したミールを用いる請求項1から5のいずれかに記載の発酵生成物の製造方法。The method for producing a fermented product according to any one of claims 1 to 5, wherein a meal that has been compressed until the water content is 52% by weight or less is used as the compressed meal. 得られた麹を、水分含量が15%以下になるまで乾燥させる請求項1から6のいずれかに記載の発酵生成物の製造方法。The method for producing a fermentation product according to any one of claims 1 to 6, wherein the obtained koji is dried until the water content becomes 15% or less. 飼料用原料として用いる発酵生成物が得られる請求項1から7のいずれかに記載の発酵生成物の製造方法。The method for producing a fermentation product according to any one of claims 1 to 7, wherein a fermentation product used as a feed material is obtained.
JP2003159725A 2003-06-04 2003-06-04 Method for producing safe fermentation products from seafood processing residue Expired - Lifetime JP4238315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159725A JP4238315B2 (en) 2003-06-04 2003-06-04 Method for producing safe fermentation products from seafood processing residue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159725A JP4238315B2 (en) 2003-06-04 2003-06-04 Method for producing safe fermentation products from seafood processing residue

Publications (2)

Publication Number Publication Date
JP2004357581A JP2004357581A (en) 2004-12-24
JP4238315B2 true JP4238315B2 (en) 2009-03-18

Family

ID=34052712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159725A Expired - Lifetime JP4238315B2 (en) 2003-06-04 2003-06-04 Method for producing safe fermentation products from seafood processing residue

Country Status (1)

Country Link
JP (1) JP4238315B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5357830B2 (en) * 2010-05-14 2013-12-04 日本水産株式会社 Eel larvae feed
CN102283311B (en) * 2010-06-17 2015-04-15 活泼 Technology for producing functional biological feed by utilizing edible mushroom fermented sauce residue
CN102948614B (en) * 2012-11-16 2014-06-04 浙江诚元生物技术有限公司 Method for preparing peptide used for active feed by bacteria and enzyme synergistic fermentation bean pulp
CN104223095A (en) * 2014-08-18 2014-12-24 路兴华 Fungal multifunctional food additive and preparation method thereof

Also Published As

Publication number Publication date
JP2004357581A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
JP3789303B2 (en) New species of microorganisms and their use
JP2003259835A (en) Production of fermented product and its utilization
JPH0265748A (en) Food
PL186852B1 (en) Method of preparing a seasoning
JP4137349B2 (en) Method for producing food material containing high amount of γ-aminobutyric acid and food material obtained thereby
JP2005312438A (en) FOOD MATERIAL WITH HIGH gamma-AMINOBUTYRIC ACID CONTENT AND METHOD FOR PRODUCING THE SAME
KR20200087388A (en) Animal feed additive using agricultural wastes and process for preparing the same
EA015921B1 (en) Demucilaged flax sprouts, process for production thereof, use thereof, process for recovering mucilaginous substance and application thereof
CN107712311A (en) A kind of manufacture method and feed of pineapple peel probiotic feed
JP4605392B2 (en) Method for producing bamboo shoot fermented food and bamboo shoot fermented food
JP4238315B2 (en) Method for producing safe fermentation products from seafood processing residue
JP3691808B2 (en) Silage preparation method using filamentous fungi
US20050003044A1 (en) Liquefaction of food material
JP2005013146A (en) Method for producing vinegar having high gaba content and lactic acid bacterium used therefor
JPH1118714A (en) Fermented sesame having anti-oxidizing power and food using the same
JPS62296846A (en) Production of feed
JP2519785B2 (en) Method for producing food containing fiber
JP2002330715A (en) Method for producing koji
US4278690A (en) Method of producing nutrient food by fermenting water oats with a Bacillus subtilis
JP2010046023A (en) Solid lactic acid fermented feed, method for producing the same, and apparatus for producing the feed
JP2004267178A (en) Method for culturing malted rice by using rice bran as substrate, and malted unpolished rice
JP2731763B2 (en) Microbial culture method
JPS5910783B2 (en) Method for producing feed for cultured fish using fermentation method
JP2704845B2 (en) Method for promoting life cycle of Bacillus subtilis ON-1 bacteria established in Makomo and fermented product of Makomo
JPH1094326A (en) Medium composition for culturing basidiomycetes and culture method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4238315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term