JP4237435B2 - Solar cell manufacturing method and solar cell - Google Patents

Solar cell manufacturing method and solar cell Download PDF

Info

Publication number
JP4237435B2
JP4237435B2 JP2001366274A JP2001366274A JP4237435B2 JP 4237435 B2 JP4237435 B2 JP 4237435B2 JP 2001366274 A JP2001366274 A JP 2001366274A JP 2001366274 A JP2001366274 A JP 2001366274A JP 4237435 B2 JP4237435 B2 JP 4237435B2
Authority
JP
Japan
Prior art keywords
solar cell
silicon
film
oxide film
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001366274A
Other languages
Japanese (ja)
Other versions
JP2003168809A (en
Inventor
量二 南方
義之 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001366274A priority Critical patent/JP4237435B2/en
Publication of JP2003168809A publication Critical patent/JP2003168809A/en
Application granted granted Critical
Publication of JP4237435B2 publication Critical patent/JP4237435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Description

【0001】
【発明の属する技術分野】
本発明は、単結晶または多結晶のシリコン基板を用いた太陽電池の製造方法に関する。
【0002】
【従来の技術】
従来の、単結晶または多結晶のシリコン基板を用いた太陽電池の製造方法の一例を以下に示す。p型シリコン基板の表面にn型不純物を拡散して、n型領域を形成し、pn接合を形成する。その後、受光面となるn型領域上にパッシベーション膜および反射防止膜を形成した後、表面電極を形成する。さらに受光面と反対側の面には、高濃度のp型不純物の拡散領域であるp+層を形成し、p+層下に裏面電極を形成することによって、太陽電池が形成される。
上記の工程において、太陽電池の高効率化を図るための手法として、受光面側の少数キャリアの再結合を低下させるパッシベーション膜の成膜、ならびに、太陽光の反射量を抑える反射防止膜の成膜、は非常に重要である。
【0003】
例えば、Applied Physics Letters、Vol.62、No.11、p.1280〜1282(1993)では、pn接合を有するシリコン基板の受光面側にパッシベーション膜として酸化シリコン膜を成膜し、その上に反射防止膜としてフッ化マグネシウムと硫化亜鉛のような比較的屈折率の高い材料で二層膜を成膜し、シリコン太陽電池の高効率化を図っている。なお、酸化シリコン膜は、シリコン基板を酸素雰囲気中900℃で加熱する熱酸化法で形成され、反射防止膜は真空蒸着法で形成されている。
また、特開昭58−23486号公報では、パッシベーション膜が省略され、反射防止膜として、酸化タンタル膜または酸化ニオブ膜が使用されている。また、これらの酸化膜は、前駆体をスピン法、スプレー法またはディップ法でシリコン基板表面に塗布後、焼成することで形成している。
また、特開昭58−220477号公報では、pn接合を有するシリコン基板の受光面側に窒化シリコン膜をP−CVD法で成膜することにより、パッシベーションと反射防止の両方の効果が得られることが開示されている。
【0004】
【発明が解決しようとする課題】
例えば、Applied Physics Letters、Vol.62、No.11、p.1280〜1282(1993)に開示されている方法では、パッシベーション膜の成膜と反射防止膜の成膜が必要であり、装置が複数必要となる。また、酸化シリコン膜の形成に使用されている熱酸化法では高温プロセスを通るため、不鈍物の再拡散によりpn接合が影響され、太陽電池の効率が低下する、あるいは、シリコン基板と酸化シリコン膜の界面に大きな応力がかかるという問題が発生する。
また、特開昭58−23486号公報に記載されている方法では、酸化タンタル膜または酸化ニオブ膜は高い反射防止効果を有しているが、パッシベーション効果がないため、シリコン基板表面でキャリアの再結合が発生し、太陽電池の効率が低下する。また、スピン法を用いる場合は、材料の利用効率が低く、その多くが無駄になる。
また、特開昭58−220477号公報に記載されている方法では、窒化シリコン膜は反射防止とパッシベーションの両方の効果を有しているが、窒化シリコン膜を成膜する際に用いられるP−CVD法では真空装置やガス処理装置を必要とするため、設備費用が高価であり、タクトタイムが長くなる問題がある。
さらにまた、上記のいずれの方法においても、シリコン基板の受光面全体に成膜されてしまうため、受光面側の電極を形成する際に、フォトリソ工程等が必要となるので、これらの装置が必要になり、工程が多岐にわたる問題がある。
本発明の目的は、これらの問題を克服することにある。
【0005】
【課題を解決するための手段】
本発明は、第1の態様において、(1)pn接合を有するシリコン基板の受光面側にシリコン化合物材料を塗布、乾燥、焼成して酸化シリコン膜を形成する工程と、該酸化シリコン膜を窒化する工程を含むことを特徴とする太陽電池の製造方法を提供する。これにより、低温で、かつ安価な装置で、パッシベーション効果と反射防止効果を同時に満たす膜を形成することができる。
【0006】
本発明は、第2の態様において、(2)前記シリコン化合物材料の塗布方法として、インクジェット方式を用いることを特徴とする前記(1)記載の太陽電池の製造方法を提供する。これにより、電極形成のためのパターニングが不要となる。
【0007】
本発明は、第3の態様において、(3)前記シリコン化合物材料がSi−OR(R=C、n、m=1、2、‥・・・)またはSi−OHを有するシラノール化合物を含むことを特徴とする前記(1)または(2)記載の太陽電池の製造方法を提供する。これにより、低温プロセスが可能となる。
【0008】
本発明は、第4の態様において、(4)前記酸化シリコン膜の膜厚を600Å以上1500Å以下とすることを特徴とする前記(1)または(3)記載の太陽電池の製造方法を提供する。これにより、好適な反射防止効果が奏される。
【0009】
本発明は、第5の態様において、(5)前記シリコン化合物材料の焼成温度を500℃以上900℃以下とすることを特徴とする前記(1)ないし(4)記載の太陽電池の製造方法を提供する。これにより、従来のような高温プロセスが回避される。
【0010】
本発明は、第6の態様において、(6)前記シリコン化合物材料の焼成温度を600℃以上800℃以下とすることを特徴とする前記(5)記載の太陽電池の製造方法を提供する。これにより、不純物の再拡散や、シリコン基板と酸化シリコン膜の界面へ大きな応力がかかるという問題が解消される。
【0011】
本発明は、第7の態様において、(7)前記(1)ないし(6)のいずれかに記載の製造工程を経て得られた太陽電池を提供する。かかる太陽電池はパッシベーション効果および反射防止効果を兼ね備える。
【0012】
【発明の実施の形態】
本発明の実施例に基づいた工程図を図1に示す。p型のシリコン基板11の受光面側にリン等の不純物を拡散させてn層12を形成し、pn接合を形成する(図1(a))。この場合、n型のシリコン基板を用い、ホウ素等の不純物を拡散させてp層を形成することによりpn接合を形成してもよい。また、シリコン基板は単結晶シリコン基板または多結晶シリコン基板のいずれを用いてもよい。
その後、受光面側にシリコン化合物材料13を塗布する(図1(b))。塗布方法はスピン法、スプレー法、ディップ法など様々の方法が適用可能であるが、インクジェット方式を用いれば、直接パターン形成が可能となり、後述する電極形成のためのパターニング工程が不要となる。シリコン化合物材料13としては、Si−ORまたはSi−OHを有するシラノール化合物とエタノール等の有機溶剤との混合物が用いられ、さらに酢酸エチル等を混合してもよい。ここに、Rは炭化水素基C(n、m=1、2、3・・・)を示す。通常Rとしてはメチル基(CH)が使用される場合が多い。シリコン化合物材料13を塗布後、乾燥、焼成を行い、酸化シリコン膜14を形成する。乾燥は大気中で80℃から200℃の任意の温度で行い、80℃次いで200℃などのように多段階に行ってもよい。また、焼成は大気中または窒素雰囲気中500℃以上900℃以下で行い、シリコン化合物材料13を酸化シリコン膜14にする。
【0013】
本実施例で用いたシリコン化合物材料をp型単結晶シリコン基板に塗布、乾燥、焼成した時の、少数キャリアのライフタイムの変化を図2に示す。ライフタイムは焼成温度600℃から顕著に大きくなり、熱酸化法による酸化シリコン膜と同等のパッシベーション効果を得られることが分かる。焼成温度が高いほど、膜の緻密化が進み、パッシベーション性は向上するが、一方、熱酸化法の場合と同様に、不純物の再拡散や、シリコン基板と酸化シリコン膜の界面に大きな応力がかかるという問題が発生するため、焼成温度は800℃以下が望ましい。従って、600℃以上800℃以下で焼成することが望ましい。
酸化シリコン膜の膜厚は、反射防止効果を得るためには太陽光強度の強い400nm〜700nmで反射率を小さくするのが適当であり、このために、酸化シリコン膜の膜厚は600Å以上1500Å以下が望ましい。
【0014】
しかしながら、住宅用太陽電池のように、シリコン基板上にガラスやEVAシートを装着し、モジュール化して使用する場合には、酸化シリコン膜とガラスやEVAシートの屈折率がほぼ同一となるために、酸化シリコン膜の反射防止膜としての効果が著しく低減する。そこで、上記の通り酸化シリコン膜14を形成した後、窒素ラジカル中で酸化シリコン膜14を窒化し、酸窒化シリコン膜15を形成する。窒素ラジカルの発生方法としては、窒素ガスまたは窒素原子を含むガスを高周波またはマイクロ波でプラズマ化する方法や、光で励起する方法等が利用できる。窒素雰囲気中で熱処理することにより窒化することも可能であるが、熱酸化法と同様に高温による悪影響が予想されることから、望ましくない。
【0015】
上記の方法では、シリコン化合物材料を塗布、乾燥、焼成して酸化シリコン膜を形成した後に窒化を行ったが、焼成と窒化を同時に行うことも可能であり、プロセスを短縮することができる。また、窒素ラジカル発生時に水素ガスまたは水素原子を含むガスを添加することにより、窒化処理時にパッシベーション効果を追加することも可能である。このように、酸化シリコン膜を窒化することにより、屈折率を酸化シリコン膜の1.4から窒化シリコン膜の2.0程度に増加することができ、モジュール化しても、反射防止膜としての機能を十分発揮することが可能となる。
【0016】
その後、フォトリソ工程などを用いて酸窒化シリコン膜15のパターニングを行い、表面電極16を形成する(図1(c))。さらに、受光面側と反対側のp型のシリコン基板表面にp+層17を形成した後、裏面電極18を形成し、太陽電池となる(図1(d))。表面電極材料と形成条件を選択すれば、酸窒化シリコン膜をパターニングすること無くファイヤスルー法により、直接表面電極を形成することも可能である。
また、本実施例では、酸窒化シリコン膜を形成した後に表面電極、裏面電極を形成したが、上記のような酸窒化シリコン膜を形成する工程を含んでいれば工程の順序は不問であり、例えば、裏面電極を形成した後に酸窒化シリコン膜を形成してもよい。
【0017】
【発明の効果】
本発明によると、従来の熱酸化法に比べ、低温で安価に、かつ工程を簡略化して、パッシベーション効果および反射防止効果を同時に満足する膜を形成することが可能となった。また、シリコン化合物材料の塗布にインクジェット法を用いることにより膜材料の利用効率を向上し、装置および工程の簡略化が可能となった。
【図面の簡単な説明】
【図1】 本発明による実施例に基づく太陽電池および工程の図である。
【図2】 本発明で用いたシリコン化合物材料を塗布した場合のライフタイムの焼成温度依存性を示す概略図である。
【符号の説明】
11 p型シリコン基板
12 n層
13 シリコン化合物材料
14 酸化シリコン膜
15 酸窒化シリコン膜
16 表面電極
17 p+層
18 裏面電極
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a solar cell using a single crystal or polycrystalline silicon substrate.
[0002]
[Prior art]
An example of a conventional method for manufacturing a solar cell using a single crystal or polycrystalline silicon substrate is shown below. An n-type impurity is diffused on the surface of the p-type silicon substrate to form an n-type region and form a pn junction. Thereafter, a passivation film and an antireflection film are formed on the n-type region serving as the light receiving surface, and then a surface electrode is formed. Further, a solar cell is formed by forming a p + layer which is a diffusion region of a high-concentration p-type impurity on the surface opposite to the light receiving surface and forming a back electrode under the p + layer.
In the above process, as a technique for improving the efficiency of the solar cell, a passivation film for reducing the recombination of minority carriers on the light receiving surface side and an antireflection film for suppressing the amount of reflected sunlight are formed. The membrane is very important.
[0003]
For example, Applied Physics Letters, Vol. 62, no. 11, p. In 1280 to 1282 (1993), a silicon oxide film is formed as a passivation film on the light receiving surface side of a silicon substrate having a pn junction, and a relatively refractive index such as magnesium fluoride and zinc sulfide is formed thereon as an antireflection film. High-efficiency materials are used to form a two-layer film to increase the efficiency of silicon solar cells. The silicon oxide film is formed by a thermal oxidation method in which a silicon substrate is heated at 900 ° C. in an oxygen atmosphere, and the antireflection film is formed by a vacuum evaporation method.
In JP-A-58-23486, a passivation film is omitted, and a tantalum oxide film or a niobium oxide film is used as an antireflection film. In addition, these oxide films are formed by applying a precursor to the surface of a silicon substrate by a spin method, a spray method, or a dip method, and then baking.
In Japanese Patent Laid-Open No. 58-220477, the effect of both passivation and antireflection can be obtained by forming a silicon nitride film on the light-receiving surface side of a silicon substrate having a pn junction by the P-CVD method. Is disclosed.
[0004]
[Problems to be solved by the invention]
For example, Applied Physics Letters, Vol. 62, no. 11, p. In the method disclosed in 1280 to 1282 (1993), it is necessary to form a passivation film and an antireflection film, and a plurality of apparatuses are necessary. In addition, since the thermal oxidation method used to form the silicon oxide film passes through a high temperature process, the pn junction is affected by the re-diffusion of the blunt material and the efficiency of the solar cell is reduced, or the silicon substrate and the silicon oxide There arises a problem that a large stress is applied to the interface of the film.
Further, in the method described in Japanese Patent Laid-Open No. 58-23486, the tantalum oxide film or the niobium oxide film has a high antireflection effect but has no passivation effect. Bonding occurs and the efficiency of the solar cell decreases. In addition, when the spin method is used, the material utilization efficiency is low, and many of them are wasted.
Further, in the method described in Japanese Patent Application Laid-Open No. 58-220477, the silicon nitride film has both the effects of antireflection and passivation, but the P− used for forming the silicon nitride film Since the CVD method requires a vacuum device and a gas processing device, there is a problem that the equipment cost is high and the tact time is long.
Furthermore, in any of the above methods, since the film is formed on the entire light receiving surface of the silicon substrate, a photolithography process is required when forming the electrode on the light receiving surface side, so these apparatuses are necessary. Therefore, there are various problems in the process.
The object of the present invention is to overcome these problems.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, in the first aspect, (1) a silicon compound material is applied to the light-receiving surface side of a silicon substrate having a pn junction, dried and baked to form a silicon oxide film, and the silicon oxide film is nitrided The manufacturing method of the solar cell characterized by including the process to perform is provided. As a result, it is possible to form a film that simultaneously satisfies the passivation effect and the antireflection effect with a low-temperature and inexpensive apparatus.
[0006]
The present invention provides, in the second aspect, (2) the method for producing a solar cell according to (1) above, wherein an inkjet method is used as the method for applying the silicon compound material. Thereby, patterning for electrode formation becomes unnecessary.
[0007]
In the third aspect, the present invention provides the silanol compound in which the silicon compound material has Si—OR (R═C n H m , n, m = 1, 2,...) Or Si—OH. The method for producing a solar cell as described in (1) or (2) above is provided. This enables a low temperature process.
[0008]
The present invention provides, in the fourth aspect, (4) the method for producing a solar cell according to (1) or (3), wherein the thickness of the silicon oxide film is 600 to 1500 mm. . Thereby, a suitable antireflection effect is produced.
[0009]
In the fifth aspect, the present invention provides the method for producing a solar cell according to any one of (1) to (4), wherein (5) the firing temperature of the silicon compound material is 500 ° C. or higher and 900 ° C. or lower. provide. This avoids conventional high temperature processes.
[0010]
The present invention provides, in the sixth aspect, (6) the method for producing a solar cell according to (5) above, wherein the firing temperature of the silicon compound material is 600 ° C. or higher and 800 ° C. or lower. As a result, problems such as re-diffusion of impurities and large stress applied to the interface between the silicon substrate and the silicon oxide film are solved.
[0011]
In the seventh aspect, the present invention provides (7) a solar cell obtained through the manufacturing process according to any one of (1) to (6). Such a solar cell has both a passivation effect and an antireflection effect.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
A process diagram based on an embodiment of the present invention is shown in FIG. Impurities such as phosphorus are diffused on the light-receiving surface side of the p-type silicon substrate 11 to form an n layer 12 to form a pn junction (FIG. 1A). In this case, a pn junction may be formed by using an n-type silicon substrate and diffusing impurities such as boron to form a p layer. As the silicon substrate, either a single crystal silicon substrate or a polycrystalline silicon substrate may be used.
Thereafter, the silicon compound material 13 is applied to the light receiving surface side (FIG. 1B). As a coating method, various methods such as a spin method, a spray method, and a dip method can be applied. However, if an ink jet method is used, direct pattern formation is possible, and a patterning step for electrode formation described later is unnecessary. As the silicon compound material 13, a mixture of a silanol compound having Si-OR or Si-OH and an organic solvent such as ethanol may be used, and ethyl acetate or the like may be further mixed. Here, R represents a hydrocarbon group C n H m (n, m = 1, 2, 3,...). In general, a methyl group (CH 3 ) is often used as R. After the silicon compound material 13 is applied, drying and baking are performed to form a silicon oxide film 14. Drying may be performed at any temperature from 80 ° C. to 200 ° C. in the atmosphere, and may be performed in multiple stages such as 80 ° C. and then 200 ° C. Further, the baking is performed in the air or in a nitrogen atmosphere at 500 ° C. or higher and 900 ° C. or lower, and the silicon compound material 13 is changed to the silicon oxide film 14.
[0013]
FIG. 2 shows a change in the lifetime of minority carriers when the silicon compound material used in this example is applied to a p-type single crystal silicon substrate, dried and baked. It can be seen that the lifetime is remarkably increased from the baking temperature of 600 ° C., and a passivation effect equivalent to that of the silicon oxide film by the thermal oxidation method can be obtained. The higher the firing temperature, the more dense the film and the better the passivation. On the other hand, as in the case of the thermal oxidation method, re-diffusion of impurities and large stress are applied to the interface between the silicon substrate and the silicon oxide film. Therefore, the firing temperature is desirably 800 ° C. or lower. Therefore, it is desirable to bake at 600 ° C. or higher and 800 ° C. or lower.
In order to obtain an antireflection effect, it is appropriate to reduce the reflectivity at 400 nm to 700 nm where the sunlight intensity is strong. For this reason, the thickness of the silicon oxide film is 600 to 1500 mm. The following is desirable.
[0014]
However, when a glass or EVA sheet is mounted on a silicon substrate and used as a module, like a solar cell for a house, the refractive index of the silicon oxide film and the glass or EVA sheet is almost the same. The effect of the silicon oxide film as an antireflection film is significantly reduced. Therefore, after forming the silicon oxide film 14 as described above, the silicon oxide film 14 is nitrided in nitrogen radicals to form the silicon oxynitride film 15. As a method for generating nitrogen radicals, a method of converting nitrogen gas or a gas containing nitrogen atoms into plasma with high frequency or microwave, a method of exciting with light, or the like can be used. Although it is possible to perform nitriding by heat treatment in a nitrogen atmosphere, it is not desirable because an adverse effect due to high temperature is expected as in the thermal oxidation method.
[0015]
In the above method, the silicon compound material is applied, dried, and baked to form the silicon oxide film, and then nitriding is performed. However, baking and nitriding can be performed simultaneously, and the process can be shortened. Further, by adding a hydrogen gas or a gas containing hydrogen atoms when nitrogen radicals are generated, it is possible to add a passivation effect during nitriding treatment. Thus, by nitriding the silicon oxide film, the refractive index can be increased from 1.4 of the silicon oxide film to about 2.0 of the silicon nitride film, and even if modularized, it functions as an antireflection film. Can be fully demonstrated.
[0016]
Thereafter, the silicon oxynitride film 15 is patterned using a photolithography process or the like to form the surface electrode 16 (FIG. 1C). Further, after forming the p + layer 17 on the surface of the p-type silicon substrate opposite to the light receiving surface, a back electrode 18 is formed to form a solar cell (FIG. 1 (d)). If the surface electrode material and the formation conditions are selected, the surface electrode can be directly formed by the fire-through method without patterning the silicon oxynitride film.
Further, in this example, the surface electrode and the back electrode were formed after the silicon oxynitride film was formed, but the order of the processes is not limited as long as it includes the process of forming the silicon oxynitride film as described above. For example, a silicon oxynitride film may be formed after forming the back electrode.
[0017]
【The invention's effect】
According to the present invention, it is possible to form a film that satisfies both the passivation effect and the antireflection effect at the same time, at a low temperature and at a low cost, and by simplifying the process as compared with the conventional thermal oxidation method. In addition, the use efficiency of the film material is improved by using the ink jet method for applying the silicon compound material, and the apparatus and the process can be simplified.
[Brief description of the drawings]
FIG. 1 is a diagram of a solar cell and process according to an embodiment according to the present invention.
FIG. 2 is a schematic view showing the dependency of the lifetime on the firing temperature when the silicon compound material used in the present invention is applied.
[Explanation of symbols]
11 p-type silicon substrate 12 n layer 13 silicon compound material 14 silicon oxide film 15 silicon oxynitride film 16 surface electrode 17 p + layer 18 back electrode

Claims (5)

pn接合を有するシリコン基板の受光面側に、Si−OR(R=C、n、m=1、2、‥‥‥)またはSi−OHを有するシラノール化合物を含むシリコン化合物材料を塗布、乾燥、焼成して酸化シリコン膜を形成する工程と、該酸化シリコン膜を、窒素ラジカル中で窒化して、酸窒化シリコン膜を形成する工程を含むことを特徴とする太陽電池の製造方法。the light receiving surface side of the silicon substrate having a pn junction, coated Si-OR (R = C n H m, n, m = 1,2, ‥‥‥) or silicon compound material containing a silanol compound having a Si-OH A method for manufacturing a solar cell, comprising: a step of forming a silicon oxide film by drying and baking, and a step of nitriding the silicon oxide film in a nitrogen radical to form a silicon oxynitride film. 前記シリコン化合物材料の塗布方法として、インクジェット方式を用いることを特徴とする請求項1記載の太陽電池の製造方法。  The method for manufacturing a solar cell according to claim 1, wherein an ink jet method is used as a method of applying the silicon compound material. 前記酸化シリコン膜の膜厚を600Å以上1500Å以下とすることを特徴とする請求項1記載の太陽電池の製造方法。  2. The method for manufacturing a solar cell according to claim 1, wherein the silicon oxide film has a thickness of 600 to 1500 mm. 前記シリコン化合物材料の焼成温度を500℃以上900℃以下とすることを特徴とする請求項1記載の太陽電池の製造方法。  The method for producing a solar cell according to claim 1, wherein a firing temperature of the silicon compound material is 500 ° C. or higher and 900 ° C. or lower. 前記シリコン化合物材料の焼成温度を600℃以上800℃以下とすることを特徴とする請求項4記載の太陽電池の製造方法。  The method for producing a solar cell according to claim 4, wherein a firing temperature of the silicon compound material is set to 600 ° C. or more and 800 ° C. or less.
JP2001366274A 2001-11-30 2001-11-30 Solar cell manufacturing method and solar cell Expired - Fee Related JP4237435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001366274A JP4237435B2 (en) 2001-11-30 2001-11-30 Solar cell manufacturing method and solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001366274A JP4237435B2 (en) 2001-11-30 2001-11-30 Solar cell manufacturing method and solar cell

Publications (2)

Publication Number Publication Date
JP2003168809A JP2003168809A (en) 2003-06-13
JP4237435B2 true JP4237435B2 (en) 2009-03-11

Family

ID=19176194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001366274A Expired - Fee Related JP4237435B2 (en) 2001-11-30 2001-11-30 Solar cell manufacturing method and solar cell

Country Status (1)

Country Link
JP (1) JP4237435B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010119512A1 (en) 2009-04-14 2012-10-22 三菱電機株式会社 Photovoltaic device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003168809A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
KR100986847B1 (en) Antireflective coatings for photovoltaic applications
US7838400B2 (en) Rapid thermal oxide passivated solar cell with improved junction
US20090260685A1 (en) Solar cell and method of manufacturing the same
EP2782146B1 (en) Method for manufacturing a solar cell with reduced potential induced degradation
EP0999598A1 (en) Solar cell and method for fabricating a solar cell
US20120091566A1 (en) Semiconductor apparatus and method of fabrication for a semiconductor apparatus
US20110272008A1 (en) Oxide nitride stack for backside reflector of solar cell
EP3072165B1 (en) Method for the manufacture of a passivation stack on a crystalline silicon solar cell
KR20090088860A (en) Method of manufacturing crystalline silicon solar cells with improved surface passivation
CN110546768B (en) Solar cell element and method for manufacturing solar cell element
WO2015182503A1 (en) Solar cell element, method for manufacturing same and solar cell module
JP6807433B2 (en) Solar cell element
US11049982B2 (en) Solar cell element
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
JP6115634B2 (en) Method for forming p-type selective emitter
KR100994924B1 (en) Solar cell and Method for manufacturing the same
JP4237435B2 (en) Solar cell manufacturing method and solar cell
JP2004056057A (en) Manufacturing method for solar cell
JP2005026534A (en) Semiconductor device and its manufacturing method
JP2003303985A (en) Method for manufacturing solar cell and the solar cell manufactured by the method
KR20090076035A (en) Solar cell having passivated porous surface and fabrication method thereof
JP2004281569A (en) Method for producing solar cell element
JP2004087951A (en) Manufacturing method of solar battery
CN108391449B (en) Method for manufacturing semiconductor element and method for manufacturing solar cell
JP2004128438A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees