JP4237168B2 - Heating equipment and road heater - Google Patents

Heating equipment and road heater Download PDF

Info

Publication number
JP4237168B2
JP4237168B2 JP2005226503A JP2005226503A JP4237168B2 JP 4237168 B2 JP4237168 B2 JP 4237168B2 JP 2005226503 A JP2005226503 A JP 2005226503A JP 2005226503 A JP2005226503 A JP 2005226503A JP 4237168 B2 JP4237168 B2 JP 4237168B2
Authority
JP
Japan
Prior art keywords
road surface
temperature
power
voltage
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226503A
Other languages
Japanese (ja)
Other versions
JP2007040010A (en
Inventor
英雄 高橋
明 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Net Japan Co Ltd
Original Assignee
T Net Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Net Japan Co Ltd filed Critical T Net Japan Co Ltd
Priority to JP2005226503A priority Critical patent/JP4237168B2/en
Publication of JP2007040010A publication Critical patent/JP2007040010A/en
Application granted granted Critical
Publication of JP4237168B2 publication Critical patent/JP4237168B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Cleaning Of Streets, Tracks, Or Beaches (AREA)

Description

本発明は、ヒーティング設備および路面ヒータに関する。さらに詳しくは、道路や種々の面状物の凍結防止や融雪等のために用いられるヒーティング設備および路面ヒータに関する。   The present invention relates to a heating facility and a road surface heater. More specifically, the present invention relates to a heating facility and a road surface heater used for preventing freezing of roads and various planar objects, melting snow, and the like.

従来の路面ヒータとしては、カーボンフアイバーで格子状に織った網状体、あるいはカーボンフアイバーと耐熱性繊維との混紡糸で格子状に織った網状体の両面を熱可塑性樹脂で被覆し、網状体に通電して発熱せしめる路面ヒータがある(特許文献1)。   As a conventional road surface heater, a mesh body woven in a grid pattern with carbon fiber or a mesh body woven in a grid pattern with a mixed fiber of carbon fiber and heat-resistant fiber is coated with a thermoplastic resin to form a mesh body. There is a road surface heater that generates heat when energized (Patent Document 1).

路面ヒータの発熱量は供給電力量で制御するが、供給電力量の制御技術としては、つぎの交流電力調整装置が一般的である(非特許文献1)。
負荷に供給される交流電力を調整するための基本回路は、図9(A)のようにサイリスタを逆並列接続したものである。サイリスタを二つ使う代りに、サイリスタとダイオードを逆並列接続したものや、トライアックや逆導通素子を1個使う方式もある。
同図(B)に示すように、素子に流れる電流は、交流電源電圧の極性の移り変わりによって自然に零になる。したがって、サイリスタはこの時ターンオフになる。このように、サイリスタの電流の自然消滅(自然消弧)の作用を利用して、負荷の交流電力を位相制御またはオンオフスイッチング制御すると、電力波形の山の一つ一つを部分的に切り取ることができ、切り取り量に応じて供給電力量を増減することができる。
The amount of heat generated by the road surface heater is controlled by the amount of power supplied. As a technology for controlling the amount of power supplied, the following AC power adjustment device is generally used (Non-Patent Document 1).
The basic circuit for adjusting the AC power supplied to the load is a thyristor connected in reverse parallel as shown in FIG. Instead of using two thyristors, there are a type in which a thyristor and a diode are connected in reverse parallel, and a method in which one triac or reverse conducting element is used.
As shown in FIG. 5B, the current flowing through the element naturally becomes zero due to the change in polarity of the AC power supply voltage. Therefore, the thyristor is turned off at this time. In this way, when the AC power of the load is phase controlled or on / off switched using the natural annihilation (natural arcing) of the thyristor current, each of the peaks in the power waveform is partially cut off. It is possible to increase or decrease the amount of power supplied according to the cut amount.

ところが、上記のような交流電力調整技術は、図5(B)に示すように、負荷電流の山が飛々になる。この場合、負荷電流の山と山の間でヒータの温度が低下することになるので、その低下分を上昇させることが必要となり、結局は消費電力が多くなり、維持費(電気料金)が高くなるという問題がある。   However, in the AC power adjustment technique as described above, as shown in FIG. In this case, since the temperature of the heater decreases between the peaks of the load current, it is necessary to increase the decrease, eventually resulting in an increase in power consumption and a high maintenance cost (electricity charge). There is a problem of becoming.

特開平7‐34425号JP-A-7-34425 カラー版電気百科事典362頁 昭和57年8月10日 (株)オーム社362 pages of color edition electrical encyclopedia August 10, 1982 Ohm Co., Ltd.

本発明は上記事情に鑑み、より一層消費電力が少なくてすむ道路ヒーティング設備および路面ヒータを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a road heating facility and a road surface heater that consume less power.

第1発明の路面ヒータは、ヒーティング設備を構成する路面ヒータであって、該路面ヒータを、複数本の第1発熱線材と複数本の第2発熱線材とを互いに直交するように配置して構成し、前記第1発熱線材には、一定電力を供給し、前記第2発熱線材には加温目標温度からの温度低下を防止するに必要な電力のみ供給する電力制御装置を備えており、該電力制御装置は、路面の目標温度と検出温度の差である差動電圧を求め、該差動電圧を、0Vを基準に、0Vより下廻った電圧を極性反転させた反転増幅電圧を出力し、該反転増幅電圧と交流電源を整流した脈流整流とを比較し、前記反転増幅電圧が前記脈流整流を超える部分でのみ、比較出力を出力し、前記比較出力が出力されている間でのみ、負荷電力として脈流整流を供給することを特徴とする。
第2発明の路面ヒータは、ヒーティング設備を構成する路面ヒータであって、該路面ヒータを、複数本の第1発熱線材と複数本の第2発熱線材とを互いに直交するように配置して構成し、前記第1発熱線材および前記第2発熱線材に、加温目標温度に路面の検出温度を一致させるのに必要な電力を供給する電力制御装置を備えており、該電力制御装置は、路面の目標温度と検出温度の差である差動電圧を求め、該差動電圧を、0Vを基準に、0Vより下廻った電圧を極性反転させた反転増幅電圧を出力し、該反転増幅電圧と交流電源を整流した脈流整流とを比較し、前記反転増幅電圧が前記脈流整流を超える部分でのみ、比較出力を出力し、前記比較出力が出力されている間でのみ、負荷電力として脈流整流を供給することを特徴とする。
A road surface heater according to a first aspect of the present invention is a road surface heater constituting a heating facility, wherein the road surface heater has a plurality of first heating wires and a plurality of second heating wires arranged so as to be orthogonal to each other. Comprising a power control device for supplying a constant power to the first heating wire and supplying only the power necessary for preventing a temperature drop from a target heating temperature to the second heating wire; The power control device obtains a differential voltage that is the difference between the target temperature and the detected temperature on the road surface, and outputs an inverted amplification voltage obtained by inverting the polarity of a voltage that is lower than 0 V with respect to 0 V. The inverting amplification voltage is compared with the pulsating rectification obtained by rectifying the AC power supply, and the comparison output is output only at the portion where the inverting amplification voltage exceeds the pulsating rectification, while the comparison output is being output. Only supply pulsating rectification as load power And butterflies.
A road surface heater according to a second aspect of the present invention is a road surface heater that constitutes a heating facility, and the road surface heater is arranged such that a plurality of first heating wires and a plurality of second heating wires are orthogonal to each other. Comprising a power control device configured to supply the first heat generating wire and the second heat generating wire with electric power necessary to match the detected temperature of the road surface with the heating target temperature, A differential voltage that is the difference between the target temperature on the road surface and the detected temperature is obtained, and an inverted amplified voltage obtained by inverting the polarity of a voltage lower than 0 V with respect to 0 V as a reference is output. Compared with pulsating rectification obtained by rectifying an AC power supply, a comparison output is output only at a portion where the inverted amplification voltage exceeds the pulsating rectification, and only as long as the comparison output is output, the pulse power is output as a load power. It is characterized by supplying current rectification.

第1発明によれば、路面ヒータを構成する発熱線材のうち一部の発熱線材で温度制御することになるので、供給電力の変動幅が小さくなり、電力消費量も小さくなる。また、昇温制御する際に、検出温度が低いときほど、検出温度が高いときに比べて、通電時間帯が広くなる。なぜなら、検出温度が低いときは、反転増幅電圧が高くなり脈流整流の山と交差する位置が高くなって、谷間の幅が広がり、電力供給量が多くなる。これに対し、検出温度が高目のときは、逆に通電時間帯が狭くなり、電力供給量が少なくなる。このように、検出温度が目標温度より下廻っているときでも、下廻る度合いに比例させて通電時間を増減しているので、昇温に無駄な電力を使うことなく滑らかな温度制御が可能となる。
発明によれば、路面ヒータを構成する発熱線材の全部で温度制御するので、昇降温速度が早く、目標温度を維持しやすい。また、昇温制御する際に、検出温度が低いときほど、検出温度が高いときに比べて、通電時間帯が広くなる。なぜなら、検出温度が低いときは、反転増幅電圧が高くなり脈流整流の山と交差する位置が高くなって、谷間の幅が広がり、電力供給量が多くなる。これに対し、検出温度が高目のときは、逆に通電時間帯が狭くなり、電力供給量が少なくなる。このように、検出温度が目標温度より下廻っているときでも、下廻る度合いに比例させて通電時間を増減しているので、昇温に無駄な電力を使うことなく滑らかな温度制御が可能となる。
According to the first aspect of the invention, the temperature is controlled by a part of the heating wires constituting the road surface heater, so that the fluctuation range of the supplied power is reduced and the power consumption is also reduced. In addition, when the temperature rise control is performed, the lower the detected temperature is, the wider the energization time period is compared to when the detected temperature is high. This is because, when the detection temperature is low, the inverted amplification voltage becomes high, the position intersecting the pulsating rectification peak becomes high, the width of the valley is widened, and the power supply amount is increased. On the other hand, when the detected temperature is high, the energization time period is conversely narrowed and the power supply amount is reduced. As described above, even when the detected temperature is lower than the target temperature, the energization time is increased or decreased in proportion to the lower temperature, so that smooth temperature control can be performed without using wasteful power for temperature increase. .
According to the second aspect of the invention, since the temperature is controlled by all the heating wires constituting the road surface heater, the temperature raising / lowering speed is fast and the target temperature is easily maintained. In addition, when the temperature rise control is performed, the lower the detected temperature is, the wider the energization time period is compared to when the detected temperature is high. This is because, when the detection temperature is low, the inverted amplification voltage becomes high, the position intersecting the pulsating rectification peak becomes high, the width of the valley is widened, and the power supply amount is increased. On the other hand, when the detected temperature is high, the energization time period is conversely narrowed and the power supply amount is reduced. As described above, even when the detected temperature is lower than the target temperature, the energization time is increased or decreased in proportion to the lower temperature, so that smooth temperature control can be performed without using wasteful power for temperature increase. .

つぎに、本発明の実施形態を図面に基づき説明する。
(路面ヒータの構成)
図1は本実施形態の路面ヒータ10の平面図である。同図に示すように、本実施形態の路面ヒータ10は、長方形であり、上下の短辺に電極1,1が設けられ、左右の長辺に電極2,2が取付けられたものである。電極1,2は、例えば真鋳であるが、銅板や銅箔あるいはアルミニウム製のもの等であってもよい。
Next, an embodiment of the present invention will be described with reference to the drawings.
(Configuration of road heater)
FIG. 1 is a plan view of a road surface heater 10 of the present embodiment. As shown in the figure, the road surface heater 10 of this embodiment is rectangular, and electrodes 1 and 1 are provided on the upper and lower short sides, and electrodes 2 and 2 are attached on the left and right long sides. The electrodes 1 and 2 are, for example, true casting, but may be a copper plate, copper foil, aluminum, or the like.

上下の電極1,1の間には第1発熱線材3が適数本、例えば10本が並列に取付けられている。左右の電極2は、その長さが前記電極1の3倍の長さである。なお、この電極2は電極1と同じものを3本直列につないだものでもよく、3倍の長さの1本物でもあってもよい。そして、電極2,2の間には、第2発熱線材4が適数本、例えば30本が並列に取付けられている。各発熱線材3,4は、その交点において接着剤や圧着、融着等により互いに接着されている。このように、交点で互い違いに重ね合わされ、かご編されているので、ばらばらに分かれるのを防止できる。なお、各発熱線材3,4は、かご編されていなくても、単に重ね合わされたものであってもよい。
交差する発熱線材3,3と発熱線材4,4とで囲まれた井桁状の空間は、路面に施工する際に路面基材と表層材を接着する接着用間隙として機能する。
Between the upper and lower electrodes 1, 1, an appropriate number of first heating wires 3, for example, 10 are attached in parallel. The left and right electrodes 2 are three times as long as the electrode 1. The electrode 2 may be the same one as the electrode 1 connected in series, or may be one that is three times as long. An appropriate number of second heating wires 4, for example, 30 are attached in parallel between the electrodes 2 and 2. The heating wires 3 and 4 are bonded to each other at the intersections by an adhesive, pressure bonding, fusion bonding, or the like. In this way, since they are alternately overlapped at the intersections and are carved, it is possible to prevent them from being separated apart. The heating wires 3 and 4 may not be knitted in the cage, but may be simply superimposed.
The cross-shaped space surrounded by the intersecting exothermic wires 3 and 3 and exothermic wires 4 and 4 functions as an adhesion gap for adhering the road surface base material and the surface layer material when constructing on the road surface.

上記の路面ヒータ10の幅と長さは、前記電極1,2の長さと数にほぼ比例するので、短辺の幅Wが1m、長辺の長さLが3mとなっている。これは、道路の幅が、一般に3.5mであることに合わせたもので、短辺の幅1mであると、3枚の路面ヒータ10を並列に並べると片側車線の設置が可能だからである。長辺が3mとしたのは、路面への施工の便宜上である。余り短いと施工工数が増えるだけだし、長すぎると扱いに不便であり、湾曲した道路への適用が困難になる。   Since the width and length of the road heater 10 are substantially proportional to the length and number of the electrodes 1 and 2, the short side width W is 1 m and the long side length L is 3 m. This is because the road width is generally 3.5 m, and if the width of the short side is 1 m, one side lane can be installed by arranging three road surface heaters 10 in parallel. The reason that the long side is 3 m is for the convenience of construction on the road surface. If it is too short, it will only increase the number of man-hours. If it is too long, it will be inconvenient to handle and difficult to apply to curved roads.

路面ヒータ10の施工対象としては、舗装道路のほか、舗装駐車場、舗装駐輪場、コンクリート壁、建築床、建築壁材、屋根材、鋼材、看板、標識など、種々の路面物をとくに制限なく採択しうる。また、これらの適用対象に合わせて、路面ヒータ10の縦横の長さや第1,第2発熱線材3,4の本数を任意に変えるとよい。   In addition to paved roads, various road surface objects such as paved parking lots, paved bicycle parking lots, concrete walls, building floors, building wall materials, roofing materials, steel materials, signboards, signs, etc., are adopted for road heaters 10 without restriction. Yes. Further, the length and width of the road surface heater 10 and the number of the first and second heating wires 3 and 4 may be arbitrarily changed according to these application targets.

(発熱線材)
前記第1,第2発熱線材3,4は、いずれも通電により遠赤外線を放射する極細の炭素繊維を束ねた発熱線材である。炭素繊維は、例えば1本が7μmのものであって、これを5万本近く束ねたものが、本発明の発熱線材3,4として用いられる。この炭素繊維には、一方向に整流した脈流電流を流して発熱させる。すなわち、炭素繊維は、逆方向に電流を流すと分子の流れが一定にならないため発熱しにくい特性があるので、交流ではなく整流して脈流を使う必要がある。
(Heating wire)
Each of the first and second heating wires 3 and 4 is a heating wire in which ultrafine carbon fibers that emit far infrared rays when energized are bundled. For example, one carbon fiber has a diameter of 7 μm and a bundle of nearly 50,000 carbon fibers is used as the heating wires 3 and 4 of the present invention. A pulsating current rectified in one direction is supplied to the carbon fiber to generate heat. In other words, carbon fiber has a characteristic that when a current is applied in the opposite direction, the flow of molecules is not constant, and it is difficult to generate heat.

前記各発熱線材3,4は、炭素繊維の束の周りを、ビニル樹脂等の合成樹脂の保護膜で被覆している。この被覆は、砕石等から保護するためであり、保護膜は例えばゴム等が使える。なお、物理的特性としては、引張力に対して非常に強く、路面に敷設した後、自動車の走行による衝撃を受けても切れにくいという利点がある。   Each of the heat generating wires 3 and 4 covers a bundle of carbon fibers with a protective film of a synthetic resin such as vinyl resin. This coating is for protecting from crushed stone and the like, and rubber or the like can be used as the protective film. In addition, as a physical characteristic, it has the advantage that it is very strong with respect to a tensile force, and it is difficult to cut even if it receives the impact by driving | running | working of a motor vehicle after laying on the road surface.

第1発熱線材3は、炭素繊維の束の周りをニッケル、錫、銅、アルミニウム等の金属膜で被膜している。この場合、金属膜により電気抵抗が低くなるので、長さは第2発熱線材4の3倍あるが、金属膜被覆をしていない第2発熱線材4と同レベルの抵抗値にできる。このように抵抗値を同レベルにすることで、同一電流を流すのに、同一電圧を印加することでよいので、同一電源が使え、設備が簡単となる。   The first heating wire 3 is coated around a bundle of carbon fibers with a metal film such as nickel, tin, copper, or aluminum. In this case, since the electrical resistance is lowered by the metal film, the length is three times that of the second heating wire 4, but the resistance value can be the same level as that of the second heating wire 4 not covered with the metal film. In this way, by setting the resistance value to the same level, the same voltage can be applied to flow the same current, so the same power source can be used and the equipment is simplified.

(給電系統)
縦方向の第1発熱線材3と横方向の第2発熱線材4とは、別個独立した電力制御装置CD1,CD2で給電される。
第1発熱線材3の電極1,1には、第1電力制御装置CD1を介して電源13がつながれており、第1発熱線材3には一定電圧が供給され、一定の発熱量を路面に与えるようになっている。
第2発熱線材4の電極2,2には、第2電力制御装置CD2を介して電源13がつながれている。第2電力制御装置CD2は、天候や外気温の変動により生ずる実際の路面温度の上下に合わせて供給電力量を加減し、一定温度に保つよう調整するようになっている。すなわち、加温目標温度からの温度低下を防止するのに必要な電力を供給する。
(Power supply system)
The first heat generating wire 3 in the vertical direction and the second heat generating wire 4 in the horizontal direction are supplied with power by the independent power control devices CD1 and CD2.
A power source 13 is connected to the electrodes 1 and 1 of the first heating wire 3 via a first power control device CD1, and a constant voltage is supplied to the first heating wire 3 to give a constant amount of heat to the road surface. It is like that.
A power source 13 is connected to the electrodes 2 and 2 of the second heating wire 4 via a second power control device CD2. The second power control device CD2 adjusts the supplied power amount so as to keep it at a constant temperature by adjusting the amount of supplied power in accordance with the actual road surface temperature caused by fluctuations in the weather and the outside air temperature. That is, electric power necessary to prevent a temperature drop from the target heating temperature is supplied.

(電力制御装置)
つぎに、温度調整を行う電力制御装置CD2を説明する。
図2は電力制御装置CD2のブロック図である。温度センサ31は、実際の路面温度を検出温度Bとして検出するものである。この温度センサ31は、検出対象である舗装道路等の表面などに設けられる。電源13は、電池やソーラー、風力発電などが用いられ、電源の種類には、特に限定はない。
本実施形態の電力制御装置CD2は、温度センサ31で検出した検出温度Bと設定された目標温度Aとの間の差が0になるように、路面ヒータ10に印加する電圧を制御して、供給電力を加減する制御装置である。
(Power control device)
Next, the power control device CD2 that performs temperature adjustment will be described.
FIG. 2 is a block diagram of the power control device CD2. The temperature sensor 31 detects the actual road surface temperature as the detection temperature B. The temperature sensor 31 is provided on the surface of a paved road or the like to be detected. As the power source 13, a battery, solar power, wind power generation or the like is used, and the type of power source is not particularly limited.
The power control device CD2 of the present embodiment controls the voltage applied to the road heater 10 so that the difference between the detected temperature B detected by the temperature sensor 31 and the set target temperature A becomes zero, It is a control device that adjusts the supplied power.

図2に示すように、電力制御装置CD2は、差動増幅器41、反転増幅器42、整流同期回路43、比較回路45および電力制御素子46から構成されたものである。電力制御素子46は、サイリスタや電界効果トランジスタ、IGBT(insulated gate bipolar transistor )等、種々のトランジスタにより構成される。   As shown in FIG. 2, the power control device CD <b> 2 includes a differential amplifier 41, an inverting amplifier 42, a rectification synchronization circuit 43, a comparison circuit 45, and a power control element 46. The power control element 46 includes various transistors such as a thyristor, a field effect transistor, and an IGBT (insulated gate bipolar transistor).

以下、図2に図3および図4を併せ参照しながら説明する。
差動増幅器41には、設定された目標温度Aと、温度センサ31で検出された検出温度B(図3(I)参照)が入力される。そして、差動増幅器41は、以下の演算により目標温度Aを超えた部分と検出温度との差を差動電圧Cとして出力する(図3(II)参照)。
差動電圧C=(検出温度B−目標温度A)
なお、凍結防止のための路面等の設定温度(目標温度A)は、一般的に5℃位に設定される。したがって、実際の路面温度が2℃〜6℃の間で変動すると、差分温度−3〜+1℃位の間で制御することになる。
Hereinafter, description will be made with reference to FIG. 2 and FIGS. 3 and 4 together.
The set target temperature A and the detected temperature B detected by the temperature sensor 31 (see FIG. 3I) are input to the differential amplifier 41. Then, the differential amplifier 41 outputs a difference between the detected temperature and the portion exceeding the target temperature A by the following calculation (see FIG. 3 (II)).
Differential voltage C = (detection temperature B−target temperature A)
Note that the set temperature (target temperature A) on the road surface and the like for preventing freezing is generally set to about 5 ° C. Therefore, if the actual road surface temperature fluctuates between 2 ° C. and 6 ° C., the difference temperature is controlled between −3 and + 1 ° C.

反転増幅器42は、前記差動増幅器41より出力される差動電圧Cを、0Vを基準に、0Vより下廻った電圧を極性反転させた反転増幅電圧Eを出力する(図3(III)参照)。   The inverting amplifier 42 outputs an inverting amplification voltage E obtained by inverting the polarity of the voltage lower than 0V with respect to the differential voltage C output from the differential amplifier 41 with reference to 0V (see FIG. 3 (III)). .

整流同期回路43は、電源13から交流電圧F(図4(IV)参照)の供給を受け、一方向へ流れるように整流した脈流整流G(図4(V)参照)を出力するものである。この結果、炭素繊維が発熱しやすい同一方向の電流を供給できることになる。   The rectification synchronization circuit 43 is supplied with an AC voltage F (see FIG. 4 (IV)) from the power supply 13 and outputs a pulsating flow rectification G (see FIG. 4 (V)) rectified so as to flow in one direction. is there. As a result, it is possible to supply a current in the same direction in which the carbon fiber easily generates heat.

比較回路45は、前記反転増幅器42より出力される反転増幅電圧Eと、前記整流同期回路43より出力される脈流整流Gとを対比し(図4(VI)参照)、以下の演算により比較出力Iを出力するものである。
反転増幅電圧Eが脈流整流Gを超える部分では、比較出力Iを矩形波で出力(ON)し、反転増幅電圧Eが脈流整流Gより下廻る場合には、比較出力Iを0(OFF)とする。この結果、比較出力Iの幅は、反転増幅電圧Eが脈流整流Gを超えている時間に一致する。換言すれば、比較出力が0の時間は、反転増幅電圧Eが脈流整流Gを下廻っている時間に一致する(図4(VII)参照)。
The comparison circuit 45 compares the inverted amplification voltage E output from the inverting amplifier 42 with the pulsating flow rectification G output from the rectification synchronization circuit 43 (see FIG. 4 (VI)), and compares them by the following calculation. The output I is output.
When the inverting amplification voltage E exceeds the pulsating rectification G, the comparison output I is output as a rectangular wave (ON). When the inverting amplification voltage E is lower than the pulsating rectification G, the comparison output I is set to 0 (OFF). ). As a result, the width of the comparison output I coincides with the time when the inverted amplification voltage E exceeds the pulsating rectification G. In other words, the time when the comparison output is 0 coincides with the time when the inverted amplification voltage E is below the pulsating flow rectification G (see FIG. 4 (VII)).

電力制御素子46は、前記比較回路45より出力される比較出力Iと、前記整流回路43より出力される脈流整流Gとから、次の演算により負荷電圧Jを出力するものである。
比較出力IがONのときには、負荷電圧Jを供給し、比較出力IがOFFのときには、負荷電圧Jを出力しない(図4(VIII)参照)。
上記のように制御された結果、反転増幅電圧Eが脈流整流Gを上廻っているときは、路面ヒータ10に電力を供給し、路面の実際温度が目標温度に一致するように制御する。そして、負荷電力の供給は、脈流の山の途中ではなく、隣り合う山のすそ野同士の部分(図4(VIII)参照)で電力供給することになる。
The power control element 46 outputs the load voltage J from the comparison output I output from the comparison circuit 45 and the pulsating flow rectification G output from the rectification circuit 43 by the following calculation.
When the comparison output I is ON, the load voltage J is supplied, and when the comparison output I is OFF, the load voltage J is not output (see FIG. 4 (VIII)).
As a result of the control as described above, when the inverted amplification voltage E exceeds the pulsating flow rectification G, power is supplied to the road surface heater 10 so that the actual temperature of the road surface matches the target temperature. Then, the load power is supplied not in the middle of the pulsating mountain, but in the portion between the bases of adjacent mountains (see FIG. 4 (VIII)).

(温度制御方法)
つぎに、温度制御方法を説明する。
図4(VIII)において、Hiは、実際の検出温度Bが目標温度Aを上廻っている領域を示し、Loは検出温度が目標温度を下廻っている領域を示している。そして、符号aは電力供給時間帯を示し、符号aの付いていない領域は非供給時間帯を示している。
検出温度Bが目標温度Aを上廻っている領域Hiでは、電力は全く供給しないので、路面ヒータ10の発熱量は減少していき、路面温度も追随して下降していく。そして、目標温度Aに落ち着くことになる。
なお、目標温度Aより下廻ってくると、つぎのように昇温制御される。
(Temperature control method)
Next, a temperature control method will be described.
In FIG. 4 (VIII), Hi indicates a region where the actual detected temperature B is above the target temperature A, and Lo indicates a region where the detected temperature is below the target temperature. And the code | symbol a shows the electric power supply time slot | zone, and the area | region which does not attach | subject the code | symbol shows the non-supply time slot | zone.
In the region Hi where the detected temperature B exceeds the target temperature A, no power is supplied, so the amount of heat generated by the road surface heater 10 decreases and the road surface temperature also decreases. Then, the target temperature A is settled.
When the temperature falls below the target temperature A, the temperature rise is controlled as follows.

検出温度Bが目標温度Aより下廻っているときは、符号aで示す時間帯に電力が供給され、路面ヒータ10の発熱量が増大していき、路面温度も上昇していき、ついには目標温度Aに到達することになる。
また、このように昇温制御する際に、検出温度Bが低いときほど、検出温度Bが高いときに比べて、通電時間帯a(θa〜θbに相当)が広くなる。なぜなら、検出温度Bが低いときは、反転増幅電圧Eが高くなり脈流整流Gの山と交差する位置が高くなって、谷間の幅が広がるからである。この場合、電力供給量が多くなる。
このことは、検出温度Bが高目のときは、逆に通電時間帯aが狭くなることを意味する。この場合電力供給量が少ない。
このように、検出温度Bが目標温度Aより下廻っているときでも、下廻る度合いに比例させて通電時間を増減しているので、昇温に無駄な電力を使うことなく滑らかな温度制御が可能となる。
When the detected temperature B is lower than the target temperature A, power is supplied in the time zone indicated by the symbol a, the amount of heat generated by the road surface heater 10 increases, the road surface temperature also increases, and finally the target temperature. A will be reached.
Further, when the temperature rise control is performed in this way, the lower the detected temperature B, the wider the energization time zone a (corresponding to θa to θb) than when the detected temperature B is high. This is because, when the detection temperature B is low, the inverted amplification voltage E becomes high, the position where it intersects the peak of the pulsating rectification G is high, and the width of the valley is widened. In this case, the amount of power supply increases.
This means that when the detected temperature B is high, the energization time zone a becomes narrower. In this case, the power supply amount is small.
As described above, even when the detected temperature B is lower than the target temperature A, the energization time is increased or decreased in proportion to the lowering temperature, so that smooth temperature control is possible without using wasted power for temperature increase. It becomes.

本発明の制御方法は、つぎの利点がある。
1)利点1
第1発熱線材3には通常の電力制御装置CD1によって一定量の電力を定常的に供給しておき、温度差が生ずると、第2発熱線材4に前記実施形態の温度制御装置CD2によって、保温調整を行えばよい。このように、路面ヒータ10を構成する発熱線材のうち一部の発熱線材のみで温度制御をしているので、供給電力量の変動幅が小さくなる。このため電力消費量の変動が小さくなって、省エネルギー化が可能となる。
しかし、本発明ではこのタイプに限らず、第1発熱線材3と第2発熱線材4の両方を、前記実施形態の温度制御装置CD2によって保温調整するようにしてもよい。
The control method of the present invention has the following advantages.
1) Advantage 1
A constant amount of power is constantly supplied to the first heating wire 3 by a normal power control device CD1, and when a temperature difference occurs, the second heating wire 4 is kept warm by the temperature control device CD2 of the above embodiment. Adjustments can be made. As described above, since the temperature control is performed only with some of the heating wires constituting the road surface heater 10, the fluctuation range of the supplied power amount is reduced. For this reason, the fluctuation | variation of electric power consumption becomes small and energy saving is attained.
However, the present invention is not limited to this type, and both the first heat generating wire 3 and the second heat generating wire 4 may be temperature-controlled by the temperature control device CD2 of the above embodiment.

2)利点2
本発明の制御によると、ヒータの温度低下を防止しやすいという利点がある。図5の(A)図は本発明による給電状態を示し、(B)図は従来技術の制御による給電状態を示し、いずれもハッチング部が給電時間帯である。
(B)図に示すように、従来技術の制御であれば、非給電帯bの間隔が広く、この非給電帯bの間にヒータ自体あるいは路面の温度低下が起こりやすい。これに対し、(A)図に示すように、本発明の制御では、給電帯a自体が隣り合う二つの山に分けられているが、電力波形の前半の山が下って、0電圧になっても、すぐ後半の山が、電力供給を再開している。この場合、電力供給が0になった瞬間でも温度そのものは0には低下せず、ある程度の温度を保っており、その温度に再度後半に加温することになるので、大きく温度低下してから加温するよりも、電力消費量が少なくて済むという利点がある。よって本発明によれば、電気料金を安くすることができ、省エネルギー化が可能である。
2) Advantage 2
According to the control of the present invention, there is an advantage that it is easy to prevent a temperature drop of the heater. FIG. 5A shows a power supply state according to the present invention, and FIG. 5B shows a power supply state under the control of the prior art. In both cases, the hatched portion is a power supply time zone.
(B) As shown in the figure, with the control of the prior art, the interval between the non-feeding bands b is wide, and the temperature of the heater itself or the road surface is likely to drop between the non-feeding bands b. On the other hand, as shown in FIG. (A), in the control of the present invention, the feeding band a itself is divided into two adjacent peaks, but the first peak in the power waveform goes down to zero voltage. But the mountain in the second half has resumed power supply. In this case, even when the power supply becomes 0, the temperature itself does not decrease to 0, but maintains a certain temperature, and the temperature is heated again in the latter half. There is an advantage that less power consumption is required than when heating. Therefore, according to the present invention, the electricity bill can be reduced and energy saving can be achieved.

3)利点3
同期電圧Hとの比較を、差動電圧Cそのものにせず、あえて反転増幅電圧Eとしたのは、つぎの理由からである。
図6に示すように、正弦波を描く同期電圧Hと、差動電圧Cと比較すると、目標温度を超えているときほど、差動電圧Cが高くなり、隣り合う正弦波の間の谷の幅が広がる((VI)参照)ので、比較出力Iの幅が広がり((VII)参照)、余計に電力を供給することになる。このため、目標温度へ下降しないで、ますます温度差が広がることになる。これに対し、本発明のように反転増幅電圧Eを同期電圧Hに重ねると、すそ野付近で交差する((VI)参照)ので、谷の幅が狭くなり比較出力Iの幅が狭くなる((VII)参照)。このため、検出温度Bが目標温度Aを超えている程度が高いほど、比較出力Iの幅が狭くなる。このため、目標温度へ下降させることができ、結果として、使用電力量の低減が計れる。
3) Advantage 3
The reason why the comparison with the synchronous voltage H is not the differential voltage C itself but the inverted amplification voltage E is for the following reason.
As shown in FIG. 6, when the synchronous voltage H describing the sine wave is compared with the differential voltage C, the differential voltage C increases as the temperature exceeds the target temperature, and the valley between adjacent sine waves increases. Since the width is wide (see (VI)), the width of the comparison output I is widened (see (VII)), and extra power is supplied. For this reason, the temperature difference is further widened without lowering to the target temperature. On the other hand, when the inverted amplification voltage E is superimposed on the synchronous voltage H as in the present invention, since it intersects in the vicinity of the base (see (VI)), the width of the valley becomes narrow and the width of the comparison output I becomes narrow (( See VII). For this reason, as the detected temperature B exceeds the target temperature A, the width of the comparison output I becomes narrower. For this reason, the temperature can be lowered to the target temperature, and as a result, the amount of power used can be reduced.

(道路用ヒーティング設備)
図7に示すように、本発明の路面ヒータ10は、複数枚、例えば3枚が、道路面の幅RW方向において並列に設置される。
また、道路の長さ方向には、同じ要領で、路面ヒータ10が繰返して設置され、所望の距離にわたって融雪道路を形成することができる。
(Road heating equipment)
As shown in FIG. 7, a plurality of, for example, three road surface heaters 10 of the present invention are installed in parallel in the width RW direction of the road surface.
Further, the road surface heater 10 is repeatedly installed in the length direction of the road in the same manner, and a snow melting road can be formed over a desired distance.

(通電順序制御)
図7に示すような並列設置した路面ヒータ10の群、例えば、No.1からNo.3の3枚の路面ヒータ10には、通電順序制御を行うことが好ましい。
図8は通電順序制御の制御回路を示している。電力制御装置CD2の基本構成は図2と変わらず、符号Kで示す回路が付加されている。
電力制御素子46は、3枚の路面ヒータ10(No.1〜No.3)のそれぞれの第1,第2発熱線材3,4に合わせて、6個が設けられている。また、この電力制御素子46は、比較回路45からの出力に対し、AND回路48を介して並列に設けられている。整流同期回路43と各AND回路48の間には、リングカウンタ47が介装されている。リングカウンタ47は整流脈流Gの一山一山を区切って、個別の路面ヒータ10に送る機能を有している。すなわち、整流脈流Gの最初の山をNo.1路面ヒータ10に送り、2番目の山をNo.2路面ヒータ10に送り、3番目の山をNo.3路面ヒータ10に送り、以後この順を繰返す機能を有している。
AND回路48は、比較出力I(図4のVII参照)と負荷電力J(図4のVIII参照)を同期させるため設けている。この同期があることにより、大電力を有効に取り出すことができる。
(Energization sequence control)
The group of road heaters 10 arranged in parallel as shown in FIG. 7, for example, the three road heaters No. 1 to No. 3 are preferably subjected to energization order control.
FIG. 8 shows a control circuit for energization sequence control. The basic configuration of the power control device CD2 is the same as that in FIG. 2, and a circuit indicated by the symbol K is added.
Six power control elements 46 are provided in accordance with the first and second heating wires 3 and 4 of the three road surface heaters 10 (No. 1 to No. 3). The power control element 46 is provided in parallel to the output from the comparison circuit 45 via the AND circuit 48. A ring counter 47 is interposed between the rectification synchronization circuit 43 and each AND circuit 48. The ring counter 47 has a function of dividing a mountain of the rectifying pulsating flow G and sending it to the individual road surface heaters 10. That is, the first peak of the rectifying pulsating flow G is sent to the No. 1 road heater 10, the second peak is sent to the No. 2 road heater 10, and the third peak is sent to the No. 3 road heater 10. It has a function to repeat the order.
The AND circuit 48 is provided to synchronize the comparison output I (see VII in FIG. 4) and the load power J (see VIII in FIG. 4). Due to this synchronization, large power can be extracted effectively.

上記の構成により、No.1からNo.3の路面シート10に順次に、かつ間欠的に電力が供給される。例えば、No.1に電力供給し、供給を断つと直ちに次のNo.2に供給し、そのNo.2への供給を断つと、直ちに次のNo.3に電力供給する。このNo.3への供給を断つと、再度No.1への供給が開始され、次後はこの動作を繰返す。
供給時間は、商用電源の50Hz地域では1回当たり10msec、60Hz地域では1回当たり8.33msecである。
With the above configuration, power is sequentially and intermittently supplied to No. 1 to No. 3 road surface sheets 10. For example, if power is supplied to No. 1 and the supply is cut off, it is immediately supplied to the next No. 2, and if the supply to No. 2 is cut off, it is immediately supplied to the next No. 3. When the supply to No. 3 is cut off, the supply to No. 1 is started again, and this operation is repeated thereafter.
The supply time is 10 msec per operation in the 50 Hz region of commercial power and 8.33 msec per operation in the 60 Hz region.

以上のように順次通電しても、道路面は直ちに温度低下することがないので、路面温度を維持することができる。よって、電力消費量が少なくなり経済的である。   Even if power is sequentially applied as described above, the road surface temperature does not decrease immediately, so the road surface temperature can be maintained. Therefore, power consumption is reduced and it is economical.

本発明の一実施形態に係る路面ヒータの概略平面図である。It is a schematic plan view of the road surface heater which concerns on one Embodiment of this invention. 本発明の一実施形態に係る路面ヒータの電力制御装置の回路図である。It is a circuit diagram of the electric power control apparatus of the road surface heater which concerns on one Embodiment of this invention. 図1の電力制御装置による制御動作I〜IIIの説明図である。It is explanatory drawing of control operation | movement I-III by the electric power control apparatus of FIG. 同電力制御装置による制御動作IV〜VIIIの説明図である。It is explanatory drawing of control operation IV-VIII by the same electric power control apparatus. 本発明の電力制御と従来の電力制御を対比した説明図である。It is explanatory drawing which contrasted the power control of this invention, and the conventional power control. 本発明において、反転増幅電圧を使った場合と使わない場合の対比説明図である。In this invention, it is a comparison explanatory drawing with the case where it does not use with the case where an inversion amplification voltage is used. 本発明の路面ヒータの道路面への配置パターンの説明図である。It is explanatory drawing of the arrangement pattern to the road surface of the road surface heater of this invention. 通電順序制御回路の回路図である。It is a circuit diagram of an energization order control circuit. 従来の交流電力調整装置の説明図である。It is explanatory drawing of the conventional alternating current power adjusting device.

符号の説明Explanation of symbols

1 電極
2 電極
3 第1発熱線材
4 第2発熱線材
10 路面ヒータ
13 電源
CD1 第1電力制御装置
CD2 第2電力制御装置
41 差動増幅器
42 反転増幅器
43 整流同期回路
45 比較回路
46 電力制御素子
47 リングカウンタ
48 AND回路
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrode 3 1st heat generating wire 4 2nd heat generating wire 10 Road surface heater 13 Power supply
CD1 1st power controller
CD2 Second power control device 41 Differential amplifier 42 Inverting amplifier 43 Rectification synchronization circuit 45 Comparison circuit 46 Power control element 47 Ring counter 48 AND circuit

Claims (2)

ヒーティング設備を構成する路面ヒータであって、
該路面ヒータを、複数本の第1発熱線材と複数本の第2発熱線材とを互いに直交するように配置して構成し、
前記第1発熱線材には、一定電力を供給し、
前記第2発熱線材には加温目標温度からの温度低下を防止するに必要な電力のみ供給する電力制御装置を備えており、
該電力制御装置は、
路面の目標温度と検出温度の差である差動電圧を求め、
該差動電圧を、0Vを基準に、0Vより下廻った電圧を極性反転させた反転増幅電圧を出力し、
該反転増幅電圧と交流電源を整流した脈流整流とを比較し、前記反転増幅電圧が前記脈流整流を超える部分でのみ、比較出力を出力し、
前記比較出力が出力されている間でのみ、負荷電力として脈流整流を供給する
ことを特徴とする路面ヒータ。
A road surface heater constituting a heating facility,
The road surface heater is configured by arranging a plurality of first heating wires and a plurality of second heating wires so as to be orthogonal to each other,
A constant power is supplied to the first heating wire,
The second heating wire includes a power control device that supplies only power necessary to prevent a temperature decrease from the heating target temperature,
The power control device
Find the differential voltage, which is the difference between the target temperature on the road surface and the detected temperature,
The differential voltage is output as an inverted amplification voltage obtained by inverting the polarity of a voltage lower than 0V with reference to 0V,
Comparing the inverted amplified voltage with the pulsating rectification obtained by rectifying the AC power supply, and outputting a comparison output only at a portion where the inverted amplified voltage exceeds the pulsating rectification,
A road surface heater that supplies pulsating flow rectification as load power only while the comparison output is being output.
ヒーティング設備を構成する路面ヒータであって、
該路面ヒータを、複数本の第1発熱線材と複数本の第2発熱線材とを互いに直交するように配置して構成し、
前記第1発熱線材および前記第2発熱線材に、加温目標温度に路面の検出温度を一致させるのに必要な電力を供給する
電力制御装置を備えており、
該電力制御装置は、
路面の目標温度と検出温度の差である差動電圧を求め、
該差動電圧を、0Vを基準に、0Vより下廻った電圧を極性反転させた反転増幅電圧を出力し、
該反転増幅電圧と交流電源を整流した脈流整流とを比較し、前記反転増幅電圧が前記脈流整流を超える部分でのみ、比較出力を出力し、
前記比較出力が出力されている間でのみ、負荷電力として脈流整流を供給する
ことを特徴とする路面ヒータ。
A road surface heater constituting a heating facility,
The road surface heater is configured by arranging a plurality of first heating wires and a plurality of second heating wires so as to be orthogonal to each other,
The first heating wire and the second heating wire are provided with a power control device that supplies power necessary for matching the detected temperature of the road surface to the heating target temperature,
The power control device
Find the differential voltage, which is the difference between the target temperature on the road surface and the detected temperature,
The differential voltage is output as an inverted amplification voltage obtained by inverting the polarity of a voltage lower than 0V with reference to 0V,
Comparing the inverted amplified voltage with the pulsating rectification obtained by rectifying the AC power supply, and outputting a comparison output only at a portion where the inverted amplified voltage exceeds the pulsating rectification,
A road surface heater that supplies pulsating flow rectification as load power only while the comparison output is being output.
JP2005226503A 2005-08-04 2005-08-04 Heating equipment and road heater Expired - Fee Related JP4237168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226503A JP4237168B2 (en) 2005-08-04 2005-08-04 Heating equipment and road heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226503A JP4237168B2 (en) 2005-08-04 2005-08-04 Heating equipment and road heater

Publications (2)

Publication Number Publication Date
JP2007040010A JP2007040010A (en) 2007-02-15
JP4237168B2 true JP4237168B2 (en) 2009-03-11

Family

ID=37798253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226503A Expired - Fee Related JP4237168B2 (en) 2005-08-04 2005-08-04 Heating equipment and road heater

Country Status (1)

Country Link
JP (1) JP4237168B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821086A (en) * 2014-03-05 2014-05-28 合肥工业大学 Scanning type circularly-powered electric heating system for melting ice and snow on bridge surface

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102535307A (en) * 2012-02-07 2012-07-04 绍兴文理学院 Anti-freezing device for road surface
JP5362135B1 (en) * 2013-04-03 2013-12-11 株式会社 シューテック Snow melting system and snow melting method using the same
JP7296577B2 (en) * 2019-06-27 2023-06-23 首都高速道路株式会社 Road surface heating device, construction method thereof, road surface heating method, and road surface heating system
KR102187590B1 (en) * 2020-03-06 2020-12-07 장원동 Electric heating net and heating mat including the same
KR102187589B1 (en) * 2020-03-06 2020-12-07 장원동 Electric heating net

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103821086A (en) * 2014-03-05 2014-05-28 合肥工业大学 Scanning type circularly-powered electric heating system for melting ice and snow on bridge surface

Also Published As

Publication number Publication date
JP2007040010A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP4237168B2 (en) Heating equipment and road heater
US4732351A (en) Anti-icing and deicing device
US20190356244A1 (en) Pavement Interlayer
CN110747710B (en) Light energy road surface with snow melt ice function
WO2019007212A1 (en) Roadway power generation system
CN102322011B (en) Active pavement thermal insulation anti-skid facility and construction method thereof
CN206894587U (en) Road surface electricity generation system with heater
CN209246224U (en) A kind of building floor heating automatic control device
JP3691797B2 (en) Welding power source
CN108365815B (en) Combined solar light-emitting plate
KR102632414B1 (en) Smart Road Management System Using Piezoelectric Element and photocatalytic modifier
JP3418781B2 (en) Snow melting roof material and snow melting roof structure
CN101029505A (en) Plate temperature equalizing method and structure
CN108200676B (en) Control method of ice and snow melting electric heating system
JP2023036141A (en) Heating element laying method and heating element laying structure
CN221321554U (en) Novel low-voltage heating integrated wallboard
JP3273147B2 (en) Snow melting system
CN221167259U (en) Rail Liang Chubing snow device and rail beam
KR20120128378A (en) multi-channel temperature control circuit
JP2006002517A (en) Snow melting device
JP3192925U (en) Support beam snow melting device for road signs
JPH05247907A (en) Snow-melting equipment
JP2008190253A (en) Snow removing unit using photovoltaic power generation in common
JP3209932B2 (en) Snow melting system for burying structures
JP2009259643A (en) Snow-melting device for vehicle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees