JP4236651B2 - Vibration measuring method and vibration measuring apparatus - Google Patents
Vibration measuring method and vibration measuring apparatus Download PDFInfo
- Publication number
- JP4236651B2 JP4236651B2 JP2005228506A JP2005228506A JP4236651B2 JP 4236651 B2 JP4236651 B2 JP 4236651B2 JP 2005228506 A JP2005228506 A JP 2005228506A JP 2005228506 A JP2005228506 A JP 2005228506A JP 4236651 B2 JP4236651 B2 JP 4236651B2
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- ultrasonic
- waveform
- received
- vibration displacement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Description
本発明は容器内の構造体を計測対象として超音波を送信し、構造体の振動変位を超音波の伝播方向およびそれに直角な方向を含めた2次元空間内で計測する振動計測方法および振動計測装置に関する。 The present invention relates to a vibration measurement method and vibration measurement that transmit an ultrasonic wave with a structure in a container as a measurement target, and measure vibration displacement of the structure in a two-dimensional space including the propagation direction of the ultrasonic wave and a direction perpendicular thereto. Relates to the device.
従来、超音波伝達媒質が収容された容器内に構造体を設け、この構造体の振動を容器外部から非侵襲で計測する場合、容器の外部から容器壁と容器内の媒質を伝わる超音波等を対象に向かって発射し、対象物である構造体からの反射エコーを取込んでその伝播時間を計測し、波の伝播速度を用いて距離に換算する手順を高速で繰り返すことにより、構造体の振動変位を計測する技術が知られている。非破壊検査で用いられる超音波探傷装置は、このような技術に対応しており、汎用品として用いられている。 Conventionally, when a structure is provided in a container in which an ultrasonic transmission medium is accommodated and vibration of the structure is measured non-invasively from the outside of the container, ultrasonic waves transmitted from the outside of the container to the container wall and the medium in the container, etc. The structure is obtained by repeating the procedure of taking the reflected echo from the target structure, measuring its propagation time, and converting it to distance using the wave propagation speed at high speed. A technique for measuring the vibration displacement of the is known. Ultrasonic flaw detectors used in nondestructive inspections are compatible with such technologies and are used as general-purpose products.
しかしながら、高精度の位置計測が望まれる場合には、汎用品の適用によっては一定の限界がある。例えば、超音波を用いて水中で位置計測する場合、7.5μmの距離差を識別するには、超音波の往復時間と、水中での速度1500m/secを考慮すると、2×7.5×10−6(m)/1500(m/s)=10−8(sec)=10nsという高精度で反射波の到達時刻を識別する必要がある。超音波の周波数を1MHzとすると、その水中での波長は、1.5mmであるが、この波長の1/100のオーダーのずれを計測する必要がある。一定の閾値で反射波の到達時刻を計測するような従来の方法では、このような高精度の計測は困難である。 However, when highly accurate position measurement is desired, there is a certain limit depending on the application of general-purpose products. For example, in the case of measuring the position in water using ultrasonic waves, in order to identify the distance difference of 7.5 μm, considering the round trip time of ultrasonic waves and the speed of 1500 m / sec in water, 2 × 7.5 × It is necessary to identify the arrival time of the reflected wave with high accuracy of 10 −6 (m) / 1500 (m / s) = 10 −8 (sec) = 10 ns. If the frequency of the ultrasonic wave is 1 MHz, the wavelength in water is 1.5 mm, but it is necessary to measure a deviation of the order of 1/100 of this wavelength. With a conventional method that measures the arrival time of the reflected wave with a certain threshold, such high-precision measurement is difficult.
一方、発明者の一人により、この困難を解決する技術として、超音波の反射波の到達時刻を、波の重心ないし相関を用いて高精度に計測する方法が提案されている。(特許文献1、2および非特許文献1参照)。
On the other hand, as a technique for solving this difficulty, one of the inventors has proposed a method for measuring the arrival time of an ultrasonic reflected wave with high accuracy using the center of gravity or correlation of the wave. (See
しかしながら、この従来の方法も、超音波の伝播方向に沿う方向での計測対象の変位を計測することは可能であるが、超音波の伝播方向に直角な方向の変位を計測することはできない。 However, this conventional method can measure the displacement of the measurement object in the direction along the propagation direction of the ultrasonic wave, but cannot measure the displacement in the direction perpendicular to the propagation direction of the ultrasonic wave.
容器内の構造体は任意の方向に振動していると考えられるので、この超音波の伝播方向に沿う方向およびそれに直角な方向を含めた2次元空間内での振動変位の位置を計測することは重要であるにもかかわらず、これを可能にする技術は現状では存在しない。
上述したように、従来の超音波を用いた反射波の到達時刻計測方法では、超音波の伝播方向に沿う方向での計測対象の変位計測は可能であるが、超音波の伝播方向に直角な方向の変位を計測することは困難であった。 As described above, the conventional method for measuring the arrival time of reflected waves using ultrasonic waves can measure the displacement of the measurement object in the direction along the propagation direction of the ultrasonic waves, but is perpendicular to the propagation direction of the ultrasonic waves. It was difficult to measure the displacement in the direction.
本発明はかかる従来の事情に対処してなされたものであり、構造物の振動変位を、超音波の伝播方向に沿う方向およびそれに直角な方向を含めた2次元空間内で計測することができ、それにより容器内の構造物の振動を評価する際の重要な情報を得て、構造物の健全性監視およびトラブル時の原因究明など多くの応用で役に立つ振動計測方法および振動計測装置を提供することを目的とする。 The present invention has been made in response to such a conventional situation, and the vibration displacement of a structure can be measured in a two-dimensional space including a direction along the ultrasonic wave propagation direction and a direction perpendicular thereto. , Thereby obtaining important information when evaluating the vibration of the structure in the container, and providing a vibration measurement method and a vibration measurement device that are useful in many applications such as monitoring the soundness of the structure and investigating the cause of trouble For the purpose.
前記の目的を達成するため、本発明に係る振動計測方法は、対象物に超音波を送信し、前記対象物から反射する反射波の到達時刻により前記対象物に対する超音波伝播方向の振動変位を求める工程と、予め対象物の振動による超音波プローブと前記対象物上の超音波反射面との傾きの関係の時間的な変化による波形のゆがみを求めて超音波伝播方向に直角な方向の振動変位データとして保持する工程と、計測時には、受信される反射波の形状変化を検出して超音波の進行方向に対する前記対象物の計測対象面の傾きの変化による波形のゆがみを計測する工程と、そのゆがみ形状と前記振動変位データにおけるゆがみ形状との特徴差に基づいて超音波伝播方向に直角な方向の振動変位を求め、前記対象物に対する超音波伝播方向とそれに直角な方向との二次元空間における振動変位を求める工程とを備えたことを特徴とする。 In order to achieve the above object, the vibration measuring method according to the present invention transmits ultrasonic waves to an object, and changes vibration displacement in the ultrasonic propagation direction relative to the object according to the arrival time of a reflected wave reflected from the object. The vibration in the direction perpendicular to the ultrasonic wave propagation direction is obtained by obtaining the distortion of the waveform due to the temporal change of the relationship between the inclination of the ultrasonic probe and the ultrasonic reflection surface on the object in advance due to the vibration of the object. A step of holding as displacement data, and a step of measuring the distortion of the waveform due to a change in the inclination of the measurement target surface of the object relative to the traveling direction of the ultrasonic wave by detecting the shape change of the received reflected wave during measurement, Based on the characteristic difference between the warped shape and the warped shape in the vibration displacement data, the vibration displacement in the direction perpendicular to the ultrasonic wave propagation direction is obtained, and the ultrasonic wave propagation direction with respect to the object is perpendicular to the ultrasonic wave propagation direction. Characterized by comprising the step of determining the vibration displacement in the two-dimensional space direction Prefecture.
また、本発明に係る振動計測装置は、対象物に超音波を送信する超音波送信装置と、前記対象物からの反射波を受信する受信装置と、この受信装置による受信波形の演算処理を行う演算装置とを備え、前記演算装置は、予め求めた受信波形の特徴量と前記対象物の振動中心位置とを関係づける予測関数を設定する関数設定手段と、対象物の受信波形に基づいて前記対象物の超音波反射面の傾きの時間的変化による受信波形状のゆがみの特徴差を検出する受信波形状特徴量検出手段と、この受信波形状特徴量検出手段により検出された前記ゆがみの特徴差から前記関数設定手段で設定された予測関数により前記対象物の高次統計量を算出する高次統計量算出手段と、この高次統計量算出手段で算出された高次統計量に基づいて前記対象物に対する超音波伝播方向とそれに直角な方向との二次元空間における振動変位を求める二次元振動変位演算手段とを備えたことを特徴とする。 In addition, the vibration measuring apparatus according to the present invention performs an ultrasonic wave transmitting apparatus that transmits ultrasonic waves to an object, a receiving apparatus that receives a reflected wave from the object, and a calculation process of a received waveform by the receiving apparatus. An arithmetic device, wherein the arithmetic device is configured to set a prediction function that associates a feature amount of the received waveform obtained in advance with the vibration center position of the object, and based on the received waveform of the object. Received wave shape feature amount detecting means for detecting a difference in characteristics of received wave shape distortion due to a temporal change in inclination of the ultrasonic reflection surface of the object, and the feature of the distortion detected by the received wave shape feature amount detecting means. Based on the higher-order statistic calculating means for calculating the higher-order statistic of the object from the difference by the prediction function set by the function setting means, and the higher-order statistic calculated by the higher-order statistic calculating means. Against the object Characterized in that a two-dimensional vibration displacement calculating means for calculating the vibration displacement in the two-dimensional space of the ultrasonic propagation direction and the direction perpendicular thereto.
本発明によれば、容器内の構造物の振動を評価する際の重要な情報を得ることができ、構造物の健全性監視や、トラブル時の原因究明など多くの応用に役立つ効果が得られる。 According to the present invention, it is possible to obtain important information when evaluating the vibration of the structure in the container, and it is possible to obtain effects that are useful for many applications such as monitoring the soundness of the structure and investigating the cause of trouble. .
以下、本発明に係る振動計測装置および振動計測方法の実施形態について図面を参照して説明する。 Hereinafter, embodiments of a vibration measuring device and a vibration measuring method according to the present invention will be described with reference to the drawings.
[第1実施形態(図1〜図8)]
図1は、本発明に係る振動計測装置の基本構成および計測体系の2次元断面を示している。
[First Embodiment (FIGS. 1 to 8)]
FIG. 1 shows a basic configuration of a vibration measuring apparatus according to the present invention and a two-dimensional cross section of a measuring system.
この図1に示すように、本実施形態では、容器1内に設けられた構造物2に向って容器1の外面側から超音波を送信するとともに、構造物2からの反射波を容器1の外面側で受信する超音波送受信装置3を有する。また、送受信装置3による受信波形をデジタル値に変換するA/D変換装置4と、変換されたデジタル値のデータを数値化して演算処理を行う演算装置5とを備える。
As shown in FIG. 1, in this embodiment, ultrasonic waves are transmitted from the outer surface side of the
演算装置5は、予め求めた受信波形の特徴量と構造物の振動中心位置とを関係づける予測関数を設定する関数設定手段と、数値化された前記データに基づいて構造体の超音波反射面の傾きの時間的変化による受信波形状のゆがみの特徴差を検出する受信波形状特徴量検出手段とを備えている。
The
また、演算装置5は、受信波形状特徴量検出手段により検出されたゆがみの特徴差から関数設定手段で設定された予測関数により構造物の重心、ひずみ度、平坦度等の高次統計量を算出する高次統計量算出手段と、この高次統計量算出手段で算出された高次統計量に基づいて構造物に対する超音波伝播方向とそれに直角な方向との二次元空間における振動変位を求める二次元振動変位演算手段とを備えている。
In addition, the
次に、具体的な装置の構成を図1に基づいて説明する。図1は、容器1内に満たされた媒質として冷却水6の中にある円柱状の構造物2を示し、ポンプのシャフトや、熱交換器のチューブがこれに相当する。本実施形態では、このような構造物2の振動の中心位置を2次元平面内で計測する。なお、図2には容器1内に平板状の構造物2を傾斜状態で配置した場合を示している。本実施形態では、このような傾斜した平板にも適用することができる。
Next, a specific apparatus configuration will be described with reference to FIG. FIG. 1 shows a
本実施形態では、基本的に、計測基準位置から、計測対象までの距離を計測するため、まず計測位置に設置した超音波の送受信装置3からパルス状の波を計測対象である構造物2に向かって発信する。発信された送信波w1は、計測対象である構造物2に反射し、反射波w2として送受信装置3に戻る。本実施形態では、この反射である反射エコー波を、送受信装置3のセンサーで受信する。受信波は、A/D変換装置4により演算装置5にデジタルデータとして取込まれ、送信時刻を基準として受信波の到達時刻Tの評価対象とされる。超音波の媒体中での速度を予め計測しておけば、この受信波の到達時刻から計測対象までの距離を計測することができる。この手順を、例えば1msecの周期で高速に繰り返すことで、対象物の振動変位の時間変化を計測する。
In the present embodiment, basically, in order to measure the distance from the measurement reference position to the measurement target, first, a pulse wave is transmitted from the ultrasonic transmission /
一方、図1または図2に示した計測対象である構造物2が、超音波の伝播方向に沿う方向に振動している場合、前述のように、超音波の反射エコー波の到達時間から変位幅を推定できるが、超音波の伝播方向に直角の方向に振動している場合、超音波の平均伝播時間は変化しないため、従来の到達時間を用いた方法では計測できなかった。
On the other hand, when the
これに対し、本実施形態では、計測対象が図1に示すように、円柱状であったり、図2に示すように、平板状であっても、超音波送信プローブに対して傾きを持っている場合には、構造物2の振動により、超音波送信プローブと構造物2上の超音波反射面の傾きの関係が時間的に変化するため、受信される超音波エコー波の形状は、送信波の形状とくらべてゆがみを持つことになる。
On the other hand, in this embodiment, even if the measurement object is a columnar shape as shown in FIG. 1 or a flat shape as shown in FIG. 2, it has an inclination with respect to the ultrasonic transmission probe. In this case, the relationship between the ultrasonic transmission probe and the inclination of the ultrasonic reflection surface on the
図3(a),(b)は、振動方向に応じた超音波エコー波の変化を示したものであり、ゆがみの例が示されている。構造物2が超音波伝播方向に振動した場合、図3(b)に示すように、反射エコー波w2は、形を変えずに時間方向で平行移動するだけであるが、超音波伝播方向に直角に振動した場合には、時間方向での平行移動はなく、図3(a)に示すように、わずかではあるが波形のゆがみw3が見られることがわかる。
FIGS. 3A and 3B show changes in the ultrasonic echo wave according to the vibration direction, and an example of distortion is shown. When the
本実施形態では、この波形のゆがみw3の特徴差を用いて、超音波伝播方向に平行な方向およびこれと直角な方向の振動変位を計測する。通常、計測対象の形状と、超音波送信装置と計測対象の静的な状態での位置関係は設計図面から判明しているため、計測対象の位置が振動により変化した場合の超音波送信装置と計測対象との位置関係、すなわち超音波進行方向に対する計測対象の面の傾きは、事前に予測することができる。この傾きの変化が、受信される反射エコー波の形状の変化として観測される。 In the present embodiment, the vibration displacement in the direction parallel to the ultrasonic wave propagation direction and the direction perpendicular thereto is measured using the characteristic difference of the waveform distortion w3. Normally, the shape of the measurement target and the positional relationship between the ultrasonic transmission device and the measurement target in a static state are known from the design drawing, so the ultrasonic transmission device when the position of the measurement target changes due to vibration The positional relationship with the measurement target, that is, the inclination of the surface of the measurement target with respect to the ultrasonic traveling direction can be predicted in advance. This change in inclination is observed as a change in the shape of the received reflected echo wave.
この観測について、数式で表現すると、計測対象の中心位置を、前記の2次元空間内での座標値(X,Y)としたとき、反射エコー波R(τ)は、下記のような関係になる。
ここで、R(τ)は、N点の観測時系列データとすると、N次元の列ベクトルであり、関数fもこれに応じたN次元の列ベクトルである。この(1)式を逆に解くことで、下記のように、計測対象の位置(X,Y)を得ることができる。
予測関数f−1(R)には、いろいろな求め方があるが、線形の場合、次のようになる。(1)式を線形化すると、
という関係になるが、このとき、行列(ATA)が正則であれば、次の演算で、計測対象の位置(X,Y)を得ることができる。
すなわち、Aが既知であれば、観測値の反射エコー波形Rから、計測対象の位置(X,Y)が(4)式により求められる。(ATA)が正則でない場合には、特異値分解を利用した擬似逆行列を用いることにより、(4)式の解を得ることができる。 That is, if A is known, the position (X, Y) of the measurement object is obtained from the reflected echo waveform R of the observed value by the equation (4). When (A T A) is not regular, the solution of equation (4) can be obtained by using a pseudo inverse matrix using singular value decomposition.
また、(1)式が、本来は非線形の関係であることを考慮して、(3)式の線形化を、次のように非線形の変数に拡張することも可能である。
この場合、(4)式の代わりに、下記の式により、計測対象の位置(X,Y)を求める。
以上の例では、観測反射エコー波(R(τ)、τ=1,…,N)について、そのままの値を用いたが、これは、ヒルベルト変換や絶対値変換により、図4に示すような、正の値だけをとるベクトル値に変換することができる。 In the above example, the observed reflected echo waves (R (τ), τ = 1,..., N) are used as they are, but this is based on the Hilbert transform or absolute value transform as shown in FIG. , Can be converted to a vector value that takes only positive values.
図4は、観測反射エコー波のヒルベルト変換(図4(a))と,絶対値変換(図4(b)を示したものである。なお、ヒルベルト変換については、例えば、河田聡、南茂夫著「科学計測のためのデータ処理入門」CQ出版、2001年が参照できる。 4 shows the Hilbert transform (FIG. 4 (a)) and the absolute value transform (FIG. 4 (b)) of the observed reflected echo wave. You can refer to the book "Introduction to data processing for scientific measurement", CQ Publishing, 2001.
本実施形態では、さらに、こうして、正の値だけをとる応答値Q(τ)に変換された波形に対し、下記のような特徴量を求めて、このMiを、(5)(6)式のRの代わりに用いている。
これは、元の応答波形である(R(τ)、τ=1,…,N)が、Nが大きい場合数百点のオーダーになり、逆行列の演算が難しくなるのに対して、(7)式は、5個の変数に縮約されているため、演算が容易になる点と、計測波形の特徴をとらえた普遍性をもつため、計測精度の向上に役立つことがわかっている。 This is the original response waveform (R (τ), τ = 1,..., N), but when N is large, it is on the order of several hundred points, and it is difficult to calculate the inverse matrix ( Since the equation (7) is reduced to five variables, it is known that the calculation is easy and the universality that captures the characteristics of the measurement waveform is useful for improving the measurement accuracy.
図5(a),(b)は、計測対象(構造物2)が超音波伝播方向aに平行な方向に振動する場合の、超音波の反射エコーを模擬計算した結果を示している。(a)は聴診器プローブと計測対象との間の送受信波形状を示し、(b)は反射波の形状を示している。また、図6(a),(b)は、計測対象が超音波伝播方向に直角の方向に振動する場合における超音波の反射エコーを模擬計算した結果を示している。 FIGS. 5A and 5B show the simulation calculation results of the reflected echo of the ultrasonic wave when the measurement target (structure 2) vibrates in a direction parallel to the ultrasonic wave propagation direction a. (A) shows the shape of the transmitted and received wave between the stethoscope probe and the measurement object, and (b) shows the shape of the reflected wave. FIGS. 6A and 6B show the result of simulation calculation of the reflected echo of the ultrasonic wave when the measurement object vibrates in the direction perpendicular to the ultrasonic wave propagation direction.
これらの計測方式の中で、係数AまたはBを求めておく必要があるが、これは、図5(a),(b)および図6(a),(b)に示したように、超音波の送受信を事前に模擬して、計測対象の位置(X,Y)と応答波形R(τ)の関係を数値的に求めておくことにより、係数A,Bを求めることができる。また、これは、計測対象を模擬したモックアップ試験装置で同じように、計測対象の位置(X,Y)と、応答R(τ)のデータとして求めておくことも可能である。そうすることで、(1)−(7)式を用いて、未知の計測対象の位置(X,Y)を、実際の計測反射エコー波形R(τ)から求めることができる。 Among these measurement methods, it is necessary to obtain the coefficient A or B. This is extremely large as shown in FIGS. 5 (a) and 5 (b) and FIGS. 6 (a) and 6 (b). Coefficients A and B can be obtained by simulating transmission / reception of sound waves in advance and numerically obtaining the relationship between the position (X, Y) of the measurement target and the response waveform R (τ). This can also be obtained as data of the position (X, Y) of the measurement target and the response R (τ) in the same manner as in a mock-up test apparatus that simulates the measurement target. By doing so, the position (X, Y) of the unknown measurement target can be obtained from the actual measurement reflected echo waveform R (τ) using the equations (1) to (7).
(3)式の場合、上記の応答波形Rと位置(X,Y)が求まっていれば、係数Aは下記のように計算される。
また、(5)式の場合も同様に、下記で係数Bが求まる。
図7(a),(b)は、計測対象が振動している際の、振動1周期における、超音波受信信号の応答波形の変化を、重ねがきで示したものである。図7(a)には原受信波形を示し、図7(b)にはヒルベルト変換後の波形を示している。 FIGS. 7A and 7B show the change in the response waveform of the ultrasonic reception signal in one vibration cycle when the measurement target is vibrating, in a superimposed manner. FIG. 7A shows the original received waveform, and FIG. 7B shows the waveform after the Hilbert transform.
なお、図7(a),(b)には、円柱状の計測対象が、0.1mmの振動で楕円軌道で振動している場合の反射エコー波を、楕円軌道1周分を重ね書きしたものを示している。すなわち、生の応答波形とヒルベルト変換した後の波形を示している。 7 (a) and 7 (b), the reflection echo wave in the case where the cylindrical measurement target is vibrating in an elliptical orbit with a vibration of 0.1 mm is overwritten for one round of the elliptical orbit. Shows things. That is, a raw response waveform and a waveform after Hilbert transform are shown.
図8は、本実施形態により、計測対象の振動中心位置の変位を推定した結果(推定値(×印))を、真値(黒丸印)と比較して示したものである。この図8により、(6)式により振動の中心座標を推定した結果として、真値と比べて2次元平面状で正しく位置を計測していることがわかる。 FIG. 8 shows the result (estimated value (x mark)) of estimating the displacement of the vibration center position of the measurement object according to this embodiment compared with the true value (black circle mark). As can be seen from FIG. 8, as a result of estimating the center coordinates of the vibration by the equation (6), the position is correctly measured in a two-dimensional plane as compared with the true value.
以上のように、本実施形態によれば、受信波形の形状の高次の特徴量と、対称の振動中心位置を関係づける予測関数を、あらかじめ準備して、その関数を利用して、二次元空間での振動変位位置を高精度で計測する振動計測装置を提供することができる。 As described above, according to the present embodiment, a prediction function that associates a high-order feature quantity of the shape of a received waveform with a symmetrical vibration center position is prepared in advance, and the two-dimensional It is possible to provide a vibration measuring device that measures the vibration displacement position in space with high accuracy.
また、本実施形態の振動計測装置においては、上述の方法を実施するための構成として、演算装置5は、受信波形の形状を数値化する際に受信波形をヒルベルト変換するヒルベルト変換手段と、変換された受信波形の絶対値により正の値の変動波形に変換する波形変換手段と、変換された波形の特徴量として、構造物2の重心、ひずみ度、平坦度の高次統計量を算出する高次統計量算出手段と、その高次統計量から二次元空間での振動変位を求める振動変位演算手段とを備えている。
Further, in the vibration measuring apparatus of the present embodiment, as a configuration for performing the above-described method, the
また、演算装置5は、受信波形の形状を数値化する際に絶対値を取込む絶対値取込み手段と、取込まれた受信波形の絶対値により正の値の変動波形に変換する波形変換手段と、変換された波形の特徴量として、重心、ひずみ度、平坦度などの高次統計量を算出する高次統計量算出手段と、その高次統計量から二次元空間での振動変位を求める振動変位演算手段とを備えている。
The
さらに、演算装置5は、高次統計量算出手段に代えて、受信波形の値を特異値分解した際の大きな特異値だけからなる小数の変数を用いて二次元空間での振動変位を求める振動変位演算手段を備えている。
Furthermore, the
[第2実施形態(図9〜図12)]
図9は、本発明の第2実施形態による振動計測装置の構成を示しており、送受信装置を分離して用いる構成例を示している。この図9に示すように、本実施形態の振動計測装置では、超音波送信装置3aと受信装置3bとが独立し、互いに分離した配置で容器1の外面側に設けられている。すなわち、本実施形態では、図9に示すように、送受信装置を二つに分け、一方から超音波送信を行い、他方で受信する構成となっている。
[Second Embodiment (FIGS. 9 to 12)]
FIG. 9 shows the configuration of the vibration measuring apparatus according to the second embodiment of the present invention, and shows an example of the configuration in which the transmitting / receiving apparatus is used separately. As shown in FIG. 9, in the vibration measuring apparatus of the present embodiment, the
また、図10は、本実施形態により、送受信装置を分離した場合の超音波伝播経路をシミュレーションで求めた結果を示している。これらの図9および図10に示すように、本実施形態の振動計測装置では、超音波の送信装置3aと受信装置3bとが独立し、互いに分離した配置で容器1の外面側に設けられている。そして、計測対象が振動している際の、振動1周期における超音波の受信信号の応答波形の変化を、重ね書きで示している。
FIG. 10 shows the result of the simulation of the ultrasonic propagation path when the transceiver is separated according to the present embodiment. As shown in FIG. 9 and FIG. 10, in the vibration measurement device of this embodiment, the
この際の計測波形を図11に示している。すなわち、図11(a)は原受信波形(生波形)を示し、図11(b)は、ヒルベルト変換後の波形を示している。また、図12は、本実施形態において、計測対象の振動中心位置の変位を推定した結果(推定値(×印))を示し、真値(黒丸印)と比較して示している。 The measurement waveform at this time is shown in FIG. That is, FIG. 11A shows the original received waveform (raw waveform), and FIG. 11B shows the waveform after the Hilbert transform. FIG. 12 shows a result (estimated value (x mark)) of estimating the displacement of the vibration center position to be measured in the present embodiment, and shows a comparison with a true value (black circle mark).
このように、本実施形態の振動計測装置では、超音波送信装置と受信装置とが独立し、互いに分離した配置で容器1の外面側に設けられた構成とすることにより、図10に示すように、二つの送受信間の超音波伝播経路が、計測対象の位置や、超音波プローブを装着可能な場所に応じて、単一センサーでなくとも、二つのセンサーを使用することで、第1実施形態と同様の計測が可能になる。この場合、計測対象は周期的な振動をしており、その一周期の振動時の複数の位置で、超音波受信波を計測し、それを重ねて表示される。計測対象が振動するにつれて中心位置が移動し、超音波の伝播時間が異なってくるため、受信波形の計測時間がずれていることが図11により明らかである。
As described above, in the vibration measuring apparatus according to the present embodiment, the ultrasonic transmitting apparatus and the receiving apparatus are independent from each other and are arranged on the outer surface side of the
図12は、上記の観測データを元に、第1実施形態と同じアルゴリズムで、振動変位の2次元座標を求めた結果を示している。図12において、黒丸印は、別途計測した振動変位の真値であり、×印が、本実施形態による計測値である。これらの計測値は両者よく一致しており、本発明が効果的であることを示している。 FIG. 12 shows the result of obtaining the two-dimensional coordinates of the vibration displacement by the same algorithm as in the first embodiment based on the above observation data. In FIG. 12, a black circle mark is a true value of vibration displacement measured separately, and a x mark is a measured value according to the present embodiment. These measured values are in good agreement with each other, indicating that the present invention is effective.
[第3実施形態(図13〜図15)]
図13は、本発明の第3の実施形態の構成を示している。図13に示すように、本実施形態では、送信装置3aの両側に二つの受信装置3bを配置した構成となっている。すなわち、本実施形態では、超音波の送信装置3aを容器1内の構造物2に対向配置させるとともに、送信装置3aの両脇に二つの受信装置3bを配置している。これらの受信装置3bには加算器7および差分器8が接続されている。そして、演算装置5では各受信装置で受信された二つの受信波形の加算値に基づいて計測対象の超音波伝播方向の振動変位が求められる。すなわち、この演算装置5は、二つの受信波形の差分値に基づいて構造物2の超音波伝播方向に直角な方向の振動変位を求める振動変位演算手段として構成されている。演算装置5には2次元位置表示装置9が接続されている。
[Third Embodiment (FIGS. 13 to 15)]
FIG. 13 shows the configuration of the third embodiment of the present invention. As shown in FIG. 13, in the present embodiment, two receiving
このように、送信装置3aが測定対象に対して中心位置に配置され、その両脇に二つの受信装置3bが配置されている場合、の両受信装置3bからの受信波形は、計測対象が超音波送信方向に対して直角方向にずれた場合、左右のどちらにずらすかで、応答波形の強弱が変わってくる。第1実施形態のように、単一の受信装置を用いた場合には、左右のどちらにずれても同じ応答波形になるため、これを識別できないことがあるが、本実施形態の構成であれば、左右の移動を識別できることになる。
As described above, when the
このように、本実施形態では二つの受信波形の加算値と差分値を利用する。そして、加算値については、超音波送信方向に平行な振動変位を計測する場合に用い、差分値については、超音波送信方向に直角な振動変位を計測する場合に用いる。もちろん、差分値ではなく、二つの受信波の比をとるなどの比較方法であれば、同等の結果が得られる。 Thus, in this embodiment, the added value and difference value of two received waveforms are used. The added value is used when measuring vibration displacement parallel to the ultrasonic transmission direction, and the difference value is used when measuring vibration displacement perpendicular to the ultrasonic transmission direction. Of course, an equivalent result can be obtained if the comparison method is not the difference value but the ratio of two received waves.
図14は、第3実施形態における受信波形を示し、計測対象の1周期の振動時における複数の計測受信波形を重ね書きしたものを示している。図14(a),(b)には加算値を示し、図14(c),(d)には差分値を示している。さらに、図14(a)、(c)上側にはヒルベルト変換後の値を示し、図14(b),(d)には、元の受信波形を示している。図14(a)は原受信波形を示し、図14(b)はヒルベルト変換後の波形を示している。また、図15は、本実施形態において、計測対象の振動中心位置の変位を推定した結果(推定値(×印))を、真値(黒丸印)と比較して示している。 FIG. 14 shows a received waveform in the third embodiment, and shows a result of overwriting a plurality of measured received waveforms at the time of vibration of one cycle to be measured. FIGS. 14A and 14B show addition values, and FIGS. 14C and 14D show difference values. 14A and 14C show values after the Hilbert transform, and FIGS. 14B and 14D show original received waveforms. FIG. 14A shows the original received waveform, and FIG. 14B shows the waveform after the Hilbert transform. FIG. 15 shows the result of estimating the displacement of the vibration center position of the measurement target (estimated value (x mark)) compared with the true value (black circle mark) in the present embodiment.
なお、これらの図に示したデータは、第1実施形態と同じアルゴリズムで、振動変位の2次元座標を求めた結果である。上述のように、図15に示した黒丸印は、別途計測した振動変位の真値であり、×印は本実施形態による計測値であり、これらの両者はよく一致している。これにより、本発明が効果的であることが判る。また、本実施形態では、振動変位が、超音波センサーの正面にあり、これにより左右対称に変動している場合でも、振動変位を正しく計測していることが判る。 The data shown in these figures is the result of obtaining the two-dimensional coordinates of the vibration displacement by the same algorithm as in the first embodiment. As described above, the black circle mark shown in FIG. 15 is a true value of vibration displacement measured separately, and the x mark is a measurement value according to the present embodiment, and both of these values are in good agreement. Thereby, it turns out that this invention is effective. Further, in the present embodiment, it can be seen that the vibration displacement is correctly measured even when the vibration displacement is in front of the ultrasonic sensor and thus fluctuates symmetrically.
[第4実施形態(図16)]
図16は、本発明の第4の実施形態を示し、振動計測と温度変動計測と同時に行う場合の構成例を示したものである。
[Fourth Embodiment (FIG. 16)]
FIG. 16 shows a fourth embodiment of the present invention and shows a configuration example in the case where the vibration measurement and the temperature fluctuation measurement are performed simultaneously.
本実施形態は、予め容器1内の超音波伝播媒体6について振動固有周期に応じた伝播時間と温度との関係値を求めておき、二次元空間での振動変位を計測する際に、超音波の平均伝播時間の計測値の変動特性に基づいて、振動変位と分離して容器1内の温度を計測する振動計測方法についてのものである。
In the present embodiment, a relationship value between the propagation time and temperature corresponding to the vibration natural period is obtained in advance for the
すなわち、送信される超音波は、介在する超音波伝播媒体を通過して計測対象である円柱に到達した後に反射されて受信機に到るが、この伝播時間は、計測対象の位置の変化だけでなく、伝播媒質の温度にも依存して変化する。伝播媒質の温度は、通常は、水などの流体であり、その流れの影響を受けて変動する。そうすると、超音波伝播速度も変化するが、この変動は、流れの渦などの影響を受ける場合、ランダムな変動とみなせる。一方で、計測対象の機械振動は、その振動固有周期に応じた周期的なものである。 In other words, the transmitted ultrasonic wave passes through the intervening ultrasonic propagation medium and reaches the cylinder to be measured and then is reflected and reaches the receiver, but this propagation time is only the change in the position of the measurement object. Instead, it varies depending on the temperature of the propagation medium. The temperature of the propagation medium is usually a fluid such as water and fluctuates under the influence of the flow. Then, the ultrasonic wave propagation speed also changes, but this fluctuation can be regarded as a random fluctuation when it is affected by a flow vortex or the like. On the other hand, the mechanical vibration to be measured is periodic according to its natural period.
このため、本実施形態では、演算装置5として、振動変位計算装置10、狭帯域通過フィルタ11および狭帯域除去フィルタ12を備えた構成となっている。すなわち、計測対象の振動固有周期に対応した狭帯域通過フィルタ11を用意して、計測された伝播時間の変動から、特定の周波数成分を抽出して、これを計測対象の振動計測値d1とする。さらに、同じ周波数成分を除去する狭帯域除去フィルタ12を用意して、こちらを通した信号を、温度変動信号の計測値d2とする。このような方法で、容器1内の振動計測と同時に、介在する媒体の温度変動値d2を計測することが可能になる。
For this reason, in this embodiment, it has the structure provided with the vibration
したがって、振動と併せて、超音波の伝播速度が、超音波を伝播させる媒体の温度に依存して変化することを利用して、介在する媒体の温度変動も同時に計測する手段を提供することができる。 Therefore, it is possible to provide means for simultaneously measuring the temperature fluctuation of the intervening medium by utilizing the fact that the propagation speed of the ultrasonic wave changes depending on the temperature of the medium through which the ultrasonic wave is propagated together with the vibration. it can.
1 容器 2 構造物
3 送受信装置 3a 送信装置
3b 受信装置 4 A/D変換装置
5 演算装置 6 冷却水
7 加算器 8 差分器
9 2次元位置表示装置 10 振動変位計算装置
11 狭帯域通過フィルタ 12 狭帯域除去フィルタ
DESCRIPTION OF
Claims (9)
前記対象物からの反射波を受信する受信装置と、
この受信装置による受信波形の演算処理を行う演算装置とを備え、
前記演算装置は、予め求めた受信波形の特徴量と前記対象物の振動中心位置とを関係づける予測関数を設定する関数設定手段と、
対象物の受信波形に基づいて前記対象物の超音波反射面の傾きの時間的変化による受信波形状のゆがみの特徴差を検出する受信波形状特徴量検出手段と、
この受信波形状特徴量検出手段により検出された前記ゆがみの特徴差から前記関数設定手段で設定された予測関数により前記対象物の高次統計量を算出する高次統計量算出手段と、
この高次統計量算出手段で算出された高次統計量に基づいて前記対象物に対する超音波伝播方向とそれに直角な方向との二次元空間における振動変位を求める二次元振動変位演算手段とを備えたことを特徴とする振動計測装置。 An ultrasonic transmission device for transmitting ultrasonic waves to an object;
A receiving device for receiving a reflected wave from the object;
An arithmetic device that performs arithmetic processing of a received waveform by this receiving device,
The calculation device includes a function setting unit that sets a prediction function that relates a feature amount of a received waveform obtained in advance and a vibration center position of the object;
A received wave shape feature quantity detecting means for detecting a characteristic difference of distortion of a received wave shape due to a temporal change in inclination of an ultrasonic reflection surface of the object based on a received waveform of the object;
High-order statistic calculation means for calculating a high-order statistic of the object by a prediction function set by the function setting means from the distortion feature difference detected by the received wave shape feature quantity detection means;
Two-dimensional vibration displacement calculation means for obtaining vibration displacement in a two-dimensional space between the ultrasonic wave propagation direction with respect to the object and a direction perpendicular thereto based on the high-order statistic calculated by the high-order statistic calculation means. A vibration measuring device characterized by that.
予め対象物の振動による超音波プローブと前記対象物上の超音波反射面との傾きの関係の時間的な変化による波形のゆがみを求めて超音波伝播方向に直角な方向の振動変位データとして保持する工程と、
計測時には、受信される反射波の形状変化を検出して超音波の進行方向に対する前記対象物の計測対象面の傾きの変化による波形のゆがみを計測する工程と、
そのゆがみ形状と前記振動変位データにおけるゆがみ形状との特徴差に基づいて超音波伝播方向に直角な方向の振動変位を求め、前記対象物に対する超音波伝播方向とそれに直角な方向との二次元空間における振動変位を求める工程と
を備えたことを特徴とする振動計測方法。 Transmitting ultrasonic waves to the object, obtaining vibration displacement in the ultrasonic propagation direction relative to the object according to the arrival time of the reflected wave reflected from the object;
Predetermining the waveform distortion due to the temporal change in the relationship between the inclination of the ultrasonic probe and the ultrasonic reflection surface on the object due to the vibration of the object, and holding it as vibration displacement data in the direction perpendicular to the ultrasonic wave propagation direction And the process of
At the time of measurement, detecting the shape change of the received reflected wave and measuring the distortion of the waveform due to the change in the inclination of the measurement target surface of the object relative to the traveling direction of the ultrasonic wave,
Based on the characteristic difference between the warped shape and the warped shape in the vibration displacement data, the vibration displacement in the direction perpendicular to the ultrasonic wave propagation direction is obtained, and the two-dimensional space between the ultrasonic wave propagation direction with respect to the object and the direction perpendicular thereto is obtained. A vibration measuring method comprising: obtaining a vibration displacement in
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005228506A JP4236651B2 (en) | 2005-08-05 | 2005-08-05 | Vibration measuring method and vibration measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005228506A JP4236651B2 (en) | 2005-08-05 | 2005-08-05 | Vibration measuring method and vibration measuring apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007046912A JP2007046912A (en) | 2007-02-22 |
JP4236651B2 true JP4236651B2 (en) | 2009-03-11 |
Family
ID=37849857
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005228506A Active JP4236651B2 (en) | 2005-08-05 | 2005-08-05 | Vibration measuring method and vibration measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4236651B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007170919A (en) * | 2005-12-20 | 2007-07-05 | Toshiba Corp | Method of measuring vibration of heat exchanger |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4891842B2 (en) * | 2007-06-12 | 2012-03-07 | 株式会社東芝 | Calibration apparatus and method for ultrasonic vibration displacement meter |
JP5318022B2 (en) * | 2010-03-31 | 2013-10-16 | 株式会社東芝 | Structure vibration monitoring apparatus and monitoring method |
-
2005
- 2005-08-05 JP JP2005228506A patent/JP4236651B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007170919A (en) * | 2005-12-20 | 2007-07-05 | Toshiba Corp | Method of measuring vibration of heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
JP2007046912A (en) | 2007-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ebrahimkhanlou et al. | Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections | |
CN105102924B (en) | The ultrasound examination of change to wall surface | |
Grabowski et al. | Time–distance domain transformation for Acoustic Emission source localization in thin metallic plates | |
US10641641B2 (en) | Method for ascertaining a characteristic variable for evaluating a measuring arrangement comprising a clamp-on, ultrasonic, flow measuring device and a pipe and/or for evaluating measurement operation of such a measuring arrangement | |
US6360609B1 (en) | Method and system for interpreting and utilizing multimode dispersive acoustic guided waves | |
EP1474680B1 (en) | System and method for detecting defects in a manufactured object | |
KR100832839B1 (en) | Thickness measurement instrumentation and method using ultrasonic longitudinal wave and shear wave | |
JP4236651B2 (en) | Vibration measuring method and vibration measuring apparatus | |
JP2018119845A (en) | Survey method of internal defect | |
US7654142B2 (en) | Method of imaging using topologic energy calculation | |
CN103097884B (en) | For measuring the method and apparatus in the orientation of defect present in mechanical part | |
KR20190037912A (en) | Method of Non-destructive Test | |
Zhong et al. | A composite beam integrating an in-situ FPCB sensor membrane with PVDF arrays for modal curvature measurement | |
RU108627U1 (en) | PIPELINE ULTRASONIC DEFECTOSCOPY SYSTEM | |
Harley et al. | Broadband localization in a dispersive medium through sparse wavenumber analysis | |
KR101090587B1 (en) | Method of non-destructive test | |
JP5224912B2 (en) | Vibration monitoring apparatus and monitoring method | |
RU102810U1 (en) | PIPELINE ULTRASONIC DEFECTOSCOPY SYSTEM | |
US11796511B1 (en) | Structural monitoring system | |
JP2008076387A (en) | Ultrasonic stress measuring method and instrument | |
JP4891842B2 (en) | Calibration apparatus and method for ultrasonic vibration displacement meter | |
US12013373B2 (en) | Free-encoder positioning system using acoustic features and IMU | |
US10620162B2 (en) | Ultrasonic inspection methods and systems | |
JP2001337077A (en) | Device for non-destructively inspecting exfoliation in concrete structure | |
JP4403280B2 (en) | Method for measuring physical properties of soft thin film and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20081105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20081209 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081216 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4236651 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111226 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121226 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121226 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131226 Year of fee payment: 5 |