JP4236366B2 - Exploration device and exploration method for underground gas - Google Patents

Exploration device and exploration method for underground gas Download PDF

Info

Publication number
JP4236366B2
JP4236366B2 JP2000133377A JP2000133377A JP4236366B2 JP 4236366 B2 JP4236366 B2 JP 4236366B2 JP 2000133377 A JP2000133377 A JP 2000133377A JP 2000133377 A JP2000133377 A JP 2000133377A JP 4236366 B2 JP4236366 B2 JP 4236366B2
Authority
JP
Japan
Prior art keywords
gas
exploration
rod
tip
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000133377A
Other languages
Japanese (ja)
Other versions
JP2001318167A (en
Inventor
雄一 樋口
鋭吉 富岡
直人 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2000133377A priority Critical patent/JP4236366B2/en
Publication of JP2001318167A publication Critical patent/JP2001318167A/en
Application granted granted Critical
Publication of JP4236366B2 publication Critical patent/JP4236366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は地中に発生するガスを探査する装置と探査方法に関するものである。
【0002】
【従来の技術】
地盤を掘削する際や、埋め立て廃棄物を掘り起こす際に、人体に有害なガスや引火、爆発の恐れのあるガスが発生して安全作業の確保が困難な場合がある。
またこのようなガスの発生量が多いと、相対的に酸素が不足して酸欠事故を引き起こす可能性がある。
そのような事故の発生を防止するために、従来は次のような発生ガス探査技術が開発されている。
<イ>先端の尖った中空棒状のガス採取器を所定の深度まで地中に貫入させ、採取器内に揮発性有機塩素ガスを取り込み、これを地上に引き上げた後に試料をガス検知器などで分析する方法。(例えば特開平11−173963号)
<ロ>泥水を用いたボーリング掘削を行い、循環する泥水中に含まれるメタンガスを採取して、地山が含有するメタンガス総量を算定する方法。(例えば特開平9−292318)
【0003】
【発明が解決しようとする課題】
前記したような従来の地中発生ガスの探査装置と探査方法は次のような問題を備えていた。
<イ>ガス採取器を使用する方法は、測定深度に達するごとにガス採取器を地上部まで引き上げる必要がある。そのために調査深度が深くなるほど採取器の上げ下げに要する時間が増加し、その結果、試料採取に要する時間が増加することになる。
またガス採取器の取り出し中には貫入孔が開放されることになり、孔口からメタンで代表されるような軽量のガスが漏洩する可能性が有り危険である。
<ロ>ボーリング掘削によるガス採取方法は、泥水を循環させる方法、無水ボーリングを行い、吸引ポンプによってガスを採取する方法がある。
いずれの方法であっても調査深度が深い場合にはコアチューブの上げ下げに時間を要するために試料採取に時間を要し、不経済である。
またボーリングロッドの継ぎ足し中には掘削孔が開放されるので、孔口からメタンで代表されるような軽量のガスが漏洩する可能性があり危険である。
<ハ>特に管理型最終処分場などに埋め立てられた廃棄物地盤を対象としてボーリングによる採集を採用する場合には次のような問題がある。
▲1▼廃棄物地盤は一般地盤と比較して間隙率が大きいためにボーリングを行う際に泥水浸透量が格段に増加し、不経済である。大量の泥水を用いてボーリング掘削を行ったとしても処分場の浸出水処理設備に過大な負担を強いることになる。
▲2▼また無水ボーリングの場合には、泥水掘削に比べて掘削に要する時間が増大する。
▲3▼さらに処分場に埋め立てられている廃棄物には、自然の地盤材料と比べて大きな寸法のものも含まれているため、ボーリングロッドの先端が大廃棄物に接触した場合に掘削作業が困難となる。
【0004】
【本発明の目的】
本発明は上記のような問題を改善するためになされたもので、迅速な探査ができるとともに、探査中に有害ガスが地上に漏洩することがない、地中発生ガスの探査装置と探査方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記のような目的を達成するために本発明の地中発生ガスの探査装置は、 探査棒と、探査棒の基部側を加圧して先端を地中に圧入する圧入装置とより構成し、探査棒は、その先端付近に外部へ向けて取り付け、探査棒の外部の気圧を検知する圧力センサーと、探査棒の先端付近に外部へ向けて開口し、探査棒の外部のガスを吸引採取するガス吸引口と、探査棒の外周へ膨張可能であって、探査棒に対して圧力センサーやガス吸引口よりも基部側に取り付けたパッカーとより構成した、地中発生ガスの探査装置を特徴とするものである。
【0006】
また、本発明の地中ガスの探査方法は、外部の気圧を検知する圧力センサーと、外部のガスを吸引採取するガス吸引口と、外周へ膨張可能であって、探査棒に対して圧力センサーやガス吸引口よりも基部側に取り付けたパッカーとより構成した探査棒を使用し、この探査棒の基部を加圧して先端を地中に圧入し、その後探査棒を多少の距離だけ地中から引き抜いて先端に空洞を形成し、パッカーを膨張することによって探査棒と孔壁との間を閉塞し、先端の空洞に集まったガスの圧力を検知することによって涌出量を測定し、同時に発生ガスを採集して行う、地中発生ガスの探査方法を特徴とするものである。
【0007】
【発明の実施の形態】
以下図面にもとづいて本発明の一実施例を説明する。
【0008】
<イ>探査棒。
本発明の探査装置は探査棒Aと圧入装置Bとによって構成する。
探査棒Aは、先端の尖った中空の筒体であり、圧力センサー1と、ガス吸引口2と、パッカー3とを備えている。
圧入装置Bによって、探査棒Aの基部側を加圧して先端を地中に圧入する。
【0009】
<ロ>圧力センサー1。
探査棒Aには、その先端付近に圧力センサー1を取り付ける。圧力センサー1は外部へ向けて取り付けてあり、探査棒Aの外部の気圧を検知することができる。
圧力センサー1の検知部には外部から地盤材料や廃棄物が流入しないよう、フィルター11で保護してある。
圧力センサー1で検知した数値は、増幅器12を介して計測線によって地上の測定設備に伝達される。
【0010】
<ハ>ガス吸引口2。
探査棒Aの先端付近には、さらにガス吸引口2を外部へ向けて開口する。
このガス吸引口2にはガス採取管21を通して負圧を与えて探査棒Aの外部のガスを地上の測定装置に圧送することができる。
吸引口2には外部から地盤材料や廃棄物が流入しないよう、ポーラスメタルなどのフィルター22で保護してある。
【0011】
<ニ>パッカー3。
探査棒Aにはその外周へ膨張可能であるパッカー3を取り付ける。
このパッカー3は、探査棒Aに対して圧力センサー1やガス吸引口2よりも基部側に設ける。
パッカー3の取り付けのために、探査棒Aにはその外周に円周方向に向けて溝を形成する。
そして溝内には探査棒Aの外周を取り巻く状態でエアバッグ31を収納する。
エアバッグ31の外周には分割板32を取り付け、さらに分割板32を探査棒A側に引き寄せる引張バネ33を設ける。
エアバッグ31は、地上から圧力空気を供給することにより、外周に向けて膨張し、分割板32を孔壁に押し付ける。
圧力空気の供給を停止し、必要に応じて負圧を作用させれば、引張バネの弾性によって分割板32を引き寄せて探査棒Aの外周面と同一曲面を形成して溝の外周を保護する。
【0012】
<ホ>探査棒Aの圧入。
上記の構成の探査棒Aを、圧入装置Bによってその基部を加圧して先端を検査対象の地中に圧入する。圧入装置Bは定置式のもの、車載式のものなど公知の装置を利用できる。
探査棒Aの圧入中は、パッカー3周囲の分割板32が圧入の障害とならないよう、エアバッグ31の内部の空気を吸引することによって探査棒Aの外周面と同一曲面を形成しておく。
そのためにパッカー3の制御回路においてエアバッグ31と吸引ポンプとを連結する吸引回路側の電磁弁k1を開放し、エアバッグ31とコンプレッサーとを連結する加圧回路側の電磁弁k2を閉塞する。
【0013】
<ヘ>探査棒Aの引上げ。
所定の深度まで到達したら、探査棒Aを多少の距離だけ地中から引き抜いて先端に空洞を形成する。するとこの空洞に向けて周囲のガスが集まってくる。
【0014】
<ト>パッカー3の膨張。
その状態でパッカー制御回路の吸引回路側の電磁弁k1を閉塞し、加圧回路側の電磁弁k2を開放する。するとエアバッグ31に圧力空気が供給されることによりパッカー3が膨張する。
その結果、パッカー3が探査棒Aと孔壁との間を閉塞するから、空洞内のある力が増加する。またその際、その隙間からガスが地上に逃げることがなく、危険がない。
【0015】
<チ>ガス涌出量の測定。
圧力センサー1により、パッカー3を作動させる直前の初期状態における空洞内の圧力p0を測定しておく。
パッカー3の作動後、ガス発生にともなう圧力の増加を圧力センサー1によって測定する。
一定時間Δtの経過後に測定した圧力をpとすれば、ボイルシャルルの法則によってΔt間に発生するガス量Δvは次式によって得ることができる。
Δv={(p/p0)―1}v
ここで、Δv:時間Δt間に発生するガス量。
p:空洞内の初期圧力≒大気圧。
p0:時間Δt経過後における空洞内圧力。
v:空洞の体積。
【0016】
<リ>ガスの採取。
ガス測定装置の吸引ポンプを作動させることによって、ガス吸引口2を通して空洞内のガスを吸引し、クッションタンク内に送り込む。
この時に地下水が含まれる場合には、公知の分離装置によってクッションタンク内で液体と気体に分離する。
その状態で吸引ポンプの作動によって気相部からガスを引きぬいてガスセンサに送り、ガスの種類、濃度を測定して表示し、記録する。
この際の吸引ポンプの吸引量は、前工程で計測したガスの涌出量と一致させることが望ましい。
【0017】
<ヌ>パッカー3の収縮。
パッカー3制御装置の、加圧回路の電磁弁k2を閉じ、吸引回路の電磁弁k1を開放することによってエアバッグ31内の空気を吸引してパッカー3を収縮させる。
その結果、分割板32は探査棒Aの表面と同一曲面を形成し、圧入の抵抗がなくなる。
この状態で探査棒Aを次の探査深度まで圧入し、上記と同様の工程を繰り返す。探査棒Aの長さが不足すれば、延長ロッドを継ぎ足す。
こうして連続して地中のガスの探査を行うことができる。
【0018】
【発明の効果】
本発明は上記したようになるから、次のような効果を達成することができる。
<イ>実際の掘削作業を始める前に、硫化水素のような有害ガスの有無やその濃度、メタンのような引火性ガスの有無、濃度、あるいは酸素濃度を把握することができる。そのために未然に事故の発生を阻止し、事前の対策を講じることが可能となる。
<ロ>複数の深度におけるガスの発生状態を調査する場合に、従来の方法のように調査段階ごとに探査棒を上げ下げする必要がなく迅速な調査を行うことができる。
<ハ>本発明の装置、方法ではガス採取部よりも基部の側にパッカーを備え、このパッカーが探査棒と孔壁との間を遮断している。そのために有害ガスが隙間から地上に漏出してくる事がないから、長時間にわたっても安全に調査を行うことができる。
<ニ>泥水ボーリングのように液体を使用する作業が伴わない。そのために管理型廃棄物処分場のような場所でも採用することができる。
【図面の簡単な説明】
【図1】本発明の探査棒の実施例の説明図。
【図2】探査状態の説明図。
【図3】探査順序の説明図。
【図4】探査順序の説明図。
【図5】探査順序の説明図。
【図6】探査順序の説明図。
【図7】パッカーの制御回路の説明図。
【図8】ガス涌出量の測定回路の説明図。
【図9】発生ガスの採取、分析回路の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and an exploration method for exploring gas generated in the ground.
[0002]
[Prior art]
When excavating the ground or excavating landfill waste, there are cases where it is difficult to ensure safe work due to generation of gas that is harmful to human body, gas that may ignite or explode.
In addition, when such a large amount of gas is generated, there is a possibility that an oxygen deficiency accident may occur due to a relative shortage of oxygen.
In order to prevent the occurrence of such accidents, conventionally the following gas exploration technology has been developed.
<A> A hollow rod-shaped gas sampling device with a sharp tip is inserted into the ground to a predetermined depth, volatile organic chlorine gas is taken into the sampling device, and the sample is pulled up to the ground. How to analyze. (For example, JP-A-11-173963)
<B> A method for calculating the total amount of methane gas contained in natural ground by drilling using mud and collecting methane gas contained in the circulating mud. (For example, JP-A-9-292318)
[0003]
[Problems to be solved by the invention]
The conventional underground gas exploration device and exploration method as described above have the following problems.
<B> The method using the gas sampler requires that the gas sampler be pulled up to the ground every time the measurement depth is reached. Therefore, as the investigation depth increases, the time required for raising and lowering the sampler increases, and as a result, the time required for sample collection increases.
Moreover, the penetration hole is opened during the removal of the gas collector, and there is a possibility that a light gas such as methane may leak from the hole, which is dangerous.
<B> Gas sampling methods by boring excavation include a method of circulating mud water, a method of performing anhydrous boring, and a method of sampling gas with a suction pump.
In either method, if the investigation depth is deep, it takes time to raise and lower the core tube, so that it takes time to collect the sample, which is uneconomical.
Further, since the excavation hole is opened during the addition of the boring rod, there is a possibility that a light gas such as methane may leak from the hole, which is dangerous.
<C> There are the following problems when collecting by boring for waste ground buried in a managed final disposal site.
(1) Since the waste ground has a larger porosity than the general ground, the amount of infiltrated muddy water is greatly increased when drilling, which is uneconomical. Even if a large amount of muddy water is used for boring excavation, an excessive burden is imposed on the leachate treatment facility at the disposal site.
{Circle around (2)} In the case of anhydrous boring, the time required for excavation increases compared to mud excavation.
(3) Further, the waste landfilled at the disposal site includes those with larger dimensions than natural ground materials. Therefore, when the tip of the boring rod comes into contact with the large waste, excavation work is performed. It becomes difficult.
[0004]
[Object of the present invention]
The present invention has been made to remedy the above-described problems, and provides an exploration apparatus and exploration method for underground generated gas that can perform expeditious exploration and prevent harmful gases from leaking to the ground during exploration. The purpose is to provide.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the underground gas exploration device of the present invention comprises an exploration rod and a press-fitting device that pressurizes the base side of the exploration rod and press-fits the tip into the ground. The rod is attached to the vicinity of the tip of the probe. The pressure sensor detects the atmospheric pressure outside the probe rod, and the gas is opened near the tip of the probe rod. Characterized by an exploration device for underground generated gas, which is composed of a suction port and a packer that is expandable to the outer periphery of the exploration rod and is attached to the base side of the exploration rod with respect to the pressure sensor and the gas suction port Is.
[0006]
Further, the underground gas exploration method of the present invention includes a pressure sensor that detects an external atmospheric pressure, a gas suction port that sucks and collects external gas, and is expandable to the outer periphery, and is a pressure sensor for the exploration rod. And a probe that is composed of a packer attached to the base side of the gas suction port and the probe rod, pressurize the base of the probe rod, press the tip into the ground, and then place the probe rod from the ground for a certain distance. Pull out to form a cavity at the tip, expand the packer to close the space between the exploration rod and the hole wall, measure the amount of spillage by detecting the pressure of gas collected in the tip cavity, and simultaneously generate It is characterized by an underground gas exploration method that collects gas.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings.
[0008]
<I> Exploration rod.
The exploration device of the present invention is constituted by an exploration rod A and a press-fitting device B.
The exploration rod A is a hollow cylinder with a sharp tip, and includes a pressure sensor 1, a gas suction port 2, and a packer 3.
With the press-fitting device B, the base side of the exploration rod A is pressurized and the tip is press-fitted into the ground.
[0009]
<B> Pressure sensor 1.
A pressure sensor 1 is attached to the exploration rod A near its tip. The pressure sensor 1 is attached to the outside and can detect the atmospheric pressure outside the exploration rod A.
The detection part of the pressure sensor 1 is protected by a filter 11 so that ground material and waste do not flow from the outside.
The numerical value detected by the pressure sensor 1 is transmitted to the measurement facility on the ground via the amplifier 12 via the measurement line.
[0010]
<C> Gas suction port 2.
In the vicinity of the tip of the exploration rod A, a gas suction port 2 is further opened to the outside.
A negative pressure can be applied to the gas suction port 2 through the gas sampling tube 21 to pump the gas outside the exploration rod A to the measuring device on the ground.
The suction port 2 is protected by a filter 22 such as porous metal so that ground material and waste do not flow from the outside.
[0011]
<D> Packer 3.
The exploration rod A is attached with a packer 3 that can expand to the outer periphery thereof.
The packer 3 is provided on the base side of the exploration rod A with respect to the pressure sensor 1 and the gas suction port 2.
In order to attach the packer 3, a groove is formed on the outer circumference of the exploration rod A in the circumferential direction.
The airbag 31 is accommodated in the groove so as to surround the outer periphery of the exploration rod A.
A split plate 32 is attached to the outer periphery of the airbag 31, and a tension spring 33 for pulling the split plate 32 toward the exploration rod A is provided.
The airbag 31 is inflated toward the outer periphery by supplying pressurized air from the ground, and presses the dividing plate 32 against the hole wall.
If the supply of pressurized air is stopped and negative pressure is applied as necessary, the dividing plate 32 is pulled by the elasticity of the tension spring to form the same curved surface as the outer peripheral surface of the exploration rod A to protect the outer periphery of the groove. .
[0012]
<E> Press-in of exploration rod A.
The base of the exploration rod A having the above configuration is pressed by the press-fitting device B and the tip is press-fitted into the ground to be inspected. As the press-fitting device B, a known device such as a stationary device or a vehicle-mounted device can be used.
During the press-fitting of the exploration rod A, the same curved surface as the outer peripheral surface of the exploration rod A is formed by sucking the air inside the airbag 31 so that the divided plate 32 around the packer 3 does not obstruct the press-fitting.
For this purpose, in the control circuit of the packer 3, the electromagnetic valve k1 on the suction circuit side that connects the airbag 31 and the suction pump is opened, and the electromagnetic valve k2 on the pressure circuit side that connects the airbag 31 and the compressor is closed.
[0013]
<F> Pull up exploration rod A.
When reaching a predetermined depth, the exploration rod A is pulled out from the ground by a certain distance to form a cavity at the tip. Then, surrounding gas gathers toward this cavity.
[0014]
<G> Expansion of the packer 3.
In this state, the electromagnetic valve k1 on the suction circuit side of the packer control circuit is closed, and the electromagnetic valve k2 on the pressure circuit side is opened. Then, the pressure air is supplied to the airbag 31 so that the packer 3 is inflated.
As a result, since the packer 3 closes between the exploration rod A and the hole wall, a certain force in the cavity increases. At that time, gas does not escape from the gap to the ground, and there is no danger.
[0015]
<H> Measurement of gas discharge amount.
The pressure sensor 1 measures the pressure p0 in the cavity in the initial state immediately before the packer 3 is operated.
After the operation of the packer 3, an increase in pressure accompanying gas generation is measured by the pressure sensor 1.
If the pressure measured after the elapse of the fixed time Δt is p, the gas amount Δv generated between Δt according to Boyle's law can be obtained by the following equation.
Δv = {(p / p0) −1} v
Here, Δv: the amount of gas generated during the time Δt.
p: Initial pressure in the cavity≈atmospheric pressure.
p0: Pressure inside the cavity after the time Δt has elapsed.
v: The volume of the cavity.
[0016]
<Li> Gas sampling.
By operating the suction pump of the gas measuring device, the gas in the cavity is sucked through the gas suction port 2 and sent into the cushion tank.
When groundwater is contained at this time, it is separated into liquid and gas in the cushion tank by a known separation device.
In this state, the suction pump is operated to pull the gas from the gas phase and send it to the gas sensor, and the type and concentration of the gas are measured, displayed, and recorded.
The suction amount of the suction pump at this time is preferably matched with the amount of gas discharged measured in the previous step.
[0017]
<Nu> Shrinkage of packer 3.
By closing the electromagnetic valve k2 of the pressurizing circuit and opening the electromagnetic valve k1 of the suction circuit, the packer 3 is contracted by sucking the air in the airbag 31.
As a result, the dividing plate 32 forms the same curved surface as the surface of the exploration rod A, and there is no resistance to press-fitting.
In this state, the exploration rod A is press-fitted to the next exploration depth, and the same process as described above is repeated. If the length of the probe rod A is insufficient, an extension rod is added.
In this way, the underground gas can be explored continuously.
[0018]
【The invention's effect】
Since the present invention is as described above, the following effects can be achieved.
<A> Before starting the actual excavation work, it is possible to determine the presence or concentration of a harmful gas such as hydrogen sulfide, the presence or absence of a flammable gas such as methane, the concentration, or the oxygen concentration. Therefore, it is possible to prevent accidents and take precautions beforehand.
<B> When investigating the gas generation state at a plurality of depths, it is not necessary to raise and lower the exploration rod at every investigation stage as in the conventional method, and a quick investigation can be performed.
<C> In the apparatus and method of the present invention, a packer is provided closer to the base than the gas sampling section, and the packer blocks the space between the exploration rod and the hole wall. For this reason, no harmful gas leaks from the gap to the ground, so it is possible to investigate safely for a long time.
<D> Work that uses liquid like mud boring is not involved. Therefore, it can be adopted even in places such as managed waste disposal sites.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of an exploration rod according to the present invention.
FIG. 2 is an explanatory diagram of a search state.
FIG. 3 is an explanatory diagram of a search order.
FIG. 4 is an explanatory diagram of a search order.
FIG. 5 is an explanatory diagram of a search order.
FIG. 6 is an explanatory diagram of a search order.
FIG. 7 is an explanatory diagram of a packer control circuit.
FIG. 8 is an explanatory diagram of a measurement circuit for the amount of gas discharged.
FIG. 9 is an explanatory diagram of a generated gas collection and analysis circuit.

Claims (2)

探査棒と、探査棒の基部側を加圧して先端を地中に圧入する圧入装置とより構成し、
探査棒は、
その先端付近に外部へ向けて取り付け、探査棒の外部の気圧を検知する圧力センサーと、
探査棒の先端付近に外部へ向けて開口し、探査棒の外部のガスを吸引採取するガス吸引口と、
探査棒の外周へ膨張可能であって、探査棒に対して圧力センサーやガス吸引口よりも基部側に取り付けたパッカーとより構成した、
地中発生ガスの探査装置。
It consists of a probe and a press-fitting device that pressurizes the base of the probe and presses the tip into the ground.
The exploration rod
A pressure sensor that attaches to the vicinity of the tip and detects the atmospheric pressure outside the exploration rod, and
A gas suction port that opens toward the outside near the tip of the probe and sucks and collects gas outside the probe,
It can be expanded to the outer periphery of the exploration rod, and consists of a pressure sensor and a packer attached to the base side of the gas suction port with respect to the exploration rod.
Underground gas exploration equipment.
外部の気圧を検知する圧力センサーと、
外部のガスを吸引採取するガス吸引口と、
外周へ膨張可能であって、探査棒に対して圧力センサーやガス吸引口よりも基部側に取り付けたパッカーとより構成した探査棒を使用し、
この探査棒の基部を加圧して先端を地中に圧入し、
その後探査棒を多少の距離だけ地中から引き抜いて先端に空洞を形成し、
パッカーを膨張することによって探査棒と孔壁との間を閉塞し、
先端の空洞に集まったガスの圧力を検知することによって涌出量を測定し、
同時に発生ガスを採集して行う、
地中発生ガスの探査方法。
A pressure sensor that detects external atmospheric pressure;
A gas suction port for sucking and collecting external gas;
The exploration rod that can be expanded to the outer periphery and is composed of a packer attached to the base side from the pressure sensor and gas suction port to the exploration rod,
Pressurize the base of this exploration rod and press the tip into the ground,
After that, the exploration rod is pulled out from the ground by a certain distance to form a cavity at the tip,
Close the space between the exploration rod and the hole wall by expanding the packer,
Measure the amount of spillage by detecting the pressure of gas collected in the cavity at the tip,
At the same time collecting the generated gas,
Exploration method for underground gas.
JP2000133377A 2000-05-02 2000-05-02 Exploration device and exploration method for underground gas Expired - Fee Related JP4236366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133377A JP4236366B2 (en) 2000-05-02 2000-05-02 Exploration device and exploration method for underground gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133377A JP4236366B2 (en) 2000-05-02 2000-05-02 Exploration device and exploration method for underground gas

Publications (2)

Publication Number Publication Date
JP2001318167A JP2001318167A (en) 2001-11-16
JP4236366B2 true JP4236366B2 (en) 2009-03-11

Family

ID=18641886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133377A Expired - Fee Related JP4236366B2 (en) 2000-05-02 2000-05-02 Exploration device and exploration method for underground gas

Country Status (1)

Country Link
JP (1) JP4236366B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2359631B (en) * 2000-02-26 2002-03-06 Schlumberger Holdings Hydrogen sulphide detection method and apparatus
GB0611527D0 (en) * 2006-06-10 2006-07-19 Intelisys Ltd In-borehole gas monitoring apparatus and method
GB0915150D0 (en) * 2009-09-01 2009-10-07 Intelisys Ltd In-borehole gas monitor apparatus and method
JP6527703B2 (en) * 2014-12-19 2019-06-05 松原 岩夫 Radiation dose measuring device, radiation measuring method and radiation dose map producing method
KR101875063B1 (en) * 2016-12-27 2018-07-06 씨앤에치아이앤씨(주) Earthquake monitoring system that use radon detection
CN113324809B (en) * 2021-05-31 2022-11-01 西安石油大学 Oil gas geochemical exploration trace gas collection device
CN114544269B (en) * 2022-03-08 2023-02-07 生态环境部南京环境科学研究所 Portable collecting device for collecting soil gas samples

Also Published As

Publication number Publication date
JP2001318167A (en) 2001-11-16

Similar Documents

Publication Publication Date Title
US8186211B2 (en) In-borehole gas monitor apparatus and method
JP4236366B2 (en) Exploration device and exploration method for underground gas
US5076728A (en) Landfill liner leak detection system and method
JP3804807B1 (en) Groundwater sampling device
JP6238047B2 (en) Groundwater quality measurement method and groundwater quality measurement device
CN100489489C (en) Method and system for estimating gas produced by a landfill or other subsurface source
JP2006346578A (en) Restoration method and soil gas examination mechanism of dumping site and disposal field
KR100730653B1 (en) Vacuum testing apparatus of manhole for sewer&#39;s construction, complete inspection
JPH0647813B2 (en) Low water pressure control hydraulic test method
JP3975437B2 (en) High pressure gas storage facility
CN211402790U (en) Shallow harmful gas detection equipment
JP3782845B2 (en) Method for measuring air permeability and air permeability in contaminated strata or waste collection points
JP3263381B2 (en) Bedrock moisture content measuring device
Stannard Theory, construction and operation of simple tensiometers
JP3187171B2 (en) In-hole permeability test equipment
CN110793819A (en) Active soil gas sampling device suitable for shallow underground water burial depth area
JPH1019715A (en) Method for detecting water leakage, gas leakage of shielding structure
CN213632208U (en) Cable shaft detection device
CN211205929U (en) Active soil gas sampling device suitable for shallow underground water burial depth area
CN206891666U (en) A kind of double track weld joint air-tight detecting instrument
JPS5850215A (en) Permeability test at site
JPS6130752A (en) Soil combustible gas detector and detection method
CN117443918A (en) Underground water refined investigation and in-situ repair device and operation method
JP3965505B2 (en) Underground air survey method and apparatus
CN116222692A (en) Control system and method for multilayer groundwater level measurement and water sample collection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees