JP3263381B2 - Bedrock moisture content measuring device - Google Patents

Bedrock moisture content measuring device

Info

Publication number
JP3263381B2
JP3263381B2 JP19171199A JP19171199A JP3263381B2 JP 3263381 B2 JP3263381 B2 JP 3263381B2 JP 19171199 A JP19171199 A JP 19171199A JP 19171199 A JP19171199 A JP 19171199A JP 3263381 B2 JP3263381 B2 JP 3263381B2
Authority
JP
Japan
Prior art keywords
water content
rock
pipe
measuring
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19171199A
Other languages
Japanese (ja)
Other versions
JP2001021504A (en
Inventor
輝行 石原
昇 櫟原
弘造 杉原
薫 西田
為人 林
哲也 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP19171199A priority Critical patent/JP3263381B2/en
Publication of JP2001021504A publication Critical patent/JP2001021504A/en
Application granted granted Critical
Publication of JP3263381B2 publication Critical patent/JP3263381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、トンネルや地下発
電所、石油・圧縮空気等の岩盤貯蔵施設、放射性廃棄物
処理場などにおいて、大気に接している岩盤表面から岩
盤内部までの含水状態を把握する際に適用するに好適な
岩盤の含水量測定装置に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for measuring the water content from the surface of a rock in contact with the atmosphere to the inside of the rock in tunnels, underground power plants, rock storage facilities for oil and compressed air, radioactive waste disposal sites, and the like. The present invention relates to an apparatus for measuring the water content of rock mass, which is suitable for use in grasping.

【0002】[0002]

【従来の技術】従来、岩盤の含水量を調べる方法として
は、対象となる岩盤をボーリング(穿孔)して岩石コア
を採取し、直接その岩石コアの含水量を測定する方法が
一般的であった。
2. Description of the Related Art Conventionally, as a method of examining the water content of a rock mass, a method of boring (boring) a target rock mass to collect a rock core and directly measuring the water content of the rock core has been generally used. Was.

【0003】[0003]

【発明が解決しようとする課題】しかし、こうした直接
計測方法では、測定の度に岩石コアを採取しなければな
らないため、手間がかかって面倒であるばかりか、同一
箇所において含水量の経時変化を見ることができないと
いう不都合があった。
However, in such a direct measurement method, since a rock core must be collected every time the measurement is performed, it is not only troublesome and troublesome, but also a time-dependent change in water content at the same location is required. There was an inconvenience of not being able to see it.

【0004】なお、この方法以外に、土質地盤の含水量
調査方法に倣ってテンシオメーターや土壌水分計等の機
器を利用する方法が考えられるが、センサーの岩盤への
設置方法が確立されていないことに加えて、岩盤の表面
部以外にセンサーを設置することが困難であることか
ら、実用化されるまでには至っていない。
[0004] In addition to this method, a method of using a device such as a tensiometer or a soil moisture meter in accordance with a method of examining the water content of the soil soil is conceivable, but a method of installing the sensor on the rock has been established. In addition to that, it is difficult to install sensors outside the surface of the bedrock, so they have not yet been put to practical use.

【0005】本発明は、このような事情に鑑み、岩石コ
アの採取を不要とすることにより、含水量の測定を簡便
化するとともに、同一箇所での含水量の経時変化を見る
ことができるようにした岩盤の含水量測定装置を提供す
ることを目的とする。
In view of such circumstances, the present invention simplifies the measurement of the water content by eliminating the need to collect rock cores, and allows the change in the water content at the same location with time to be observed. It is an object of the present invention to provide an apparatus for measuring the water content of rock mass.

【0006】[0006]

【課題を解決するための手段】すなわち本発明に係る岩
盤の含水量測定装置(1)は、先端が閉塞されたパイプ
(2)を有し、このパイプの先端近傍に孔(2a)を形
成し、前記パイプの外周に前記孔を覆う形で伸縮性スリ
ーブ(5)を当該パイプの径方向に膨張収縮自在に設
け、この伸縮性スリーブの外周に緩衝材(6)を設け、
この緩衝材の表面にプローブ(7)を貼設し、このプロ
ーブに電磁波を流して岩盤(13)の比誘電率を計測す
る計測手段(10)を設け、この計測手段によって計測
された比誘電率に基づいて前記岩盤の含水量を算出する
ようにして構成される。こうした構成を採用することに
より、岩盤の含水量を調べるには、パイプの先端をボー
リング孔(15)に挿通してプローブを圧着した後、比
誘電率を測定して含水量を算出するだけで済むため、測
定の度に岩石コアを採取する煩雑な作業が不要となる。
That is, a rock water content measuring device (1) according to the present invention has a pipe (2) having a closed end, and a hole (2a) is formed near the end of the pipe. An elastic sleeve (5) is provided on the outer periphery of the pipe so as to be capable of expanding and contracting in the radial direction of the pipe so as to cover the hole, and a cushioning material (6) is provided on the outer periphery of the elastic sleeve.
A probe (7) is attached to the surface of the cushioning material, and a measuring means (10) is provided for measuring the relative permittivity of the rock (13) by flowing an electromagnetic wave to the probe, and the relative permittivity measured by the measuring means is provided. It is configured to calculate the water content of the rock based on the rate. In order to check the water content of the bedrock by adopting such a configuration, it is only necessary to insert the tip of the pipe into the boring hole (15), crimp the probe, measure the relative permittivity, and calculate the water content. This eliminates the need for complicated work of collecting rock cores each time measurement is performed.

【0007】ここで、緩衝材としては、弾力性があって
比誘電率が既知のものであれば、いかなるものでも用い
ることができる。また、プローブの貼設方向について
は、円周方向であると孔軸方向であるとを問わない。
Here, as the cushioning material, any material having elasticity and a known relative dielectric constant can be used. Regarding the direction in which the probe is attached, it does not matter whether the direction is the circumferential direction or the hole axis direction.

【0008】なお、括弧内の符号は図面において対応す
る要素を表す便宜的なものであり、従って、本発明は図
面上の記載に限定拘束されるものではない。このことは
「特許請求の範囲」の欄についても同様である。
[0008] Incidentally, reference numerals in parentheses are for convenience showing corresponding elements in the drawings, and therefore, the present invention is not limited to the description on the drawings. The same applies to the column of “Claims”.

【0009】[0009]

【発明の実施の形態】以下、本発明のいくつかの実施形
態を図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Some embodiments of the present invention will be described below with reference to the drawings.

【0010】まず、図1〜図3に基づいて第1の実施形
態を説明する。
First, a first embodiment will be described with reference to FIGS.

【0011】図1は本発明に係る岩盤の含水量測定装置
の第1の実施形態を示す断面図、図2は図1に示す岩盤
の含水量測定装置の要部を示す詳細図、図3は図2に示
す岩盤の含水量測定装置のA−A線による拡大断面図で
ある。
FIG. 1 is a cross-sectional view showing a first embodiment of a rock water content measuring apparatus according to the present invention, FIG. 2 is a detailed view showing a main part of the rock water content measuring apparatus shown in FIG. 1, and FIG. FIG. 3 is an enlarged cross-sectional view taken along line AA of the apparatus for measuring water content of rock shown in FIG. 2.

【0012】この岩盤の含水量測定装置1は、図1に示
すように、先端が閉塞されたパイプ2を有しており、パ
イプ2の先端近傍の側面には複数個の孔2aがパイプ2
の内外を連通する形で穿設されている。パイプ2の先端
にはパッカー部3が装着されており、パッカー部3は、
図2に示すように、伸縮性スリーブ5、緩衝材6および
プローブ7から構成されている。
As shown in FIG. 1, the rock moisture content measuring device 1 has a pipe 2 having a closed end, and a plurality of holes 2a are formed in a side surface near the end of the pipe 2.
It is pierced so that it can communicate inside and outside. A packer part 3 is attached to the tip of the pipe 2, and the packer part 3 is
As shown in FIG. 2, it is composed of an elastic sleeve 5, a cushioning material 6 and a probe 7.

【0013】すなわち、パイプ2の先端近傍にはゴム製
の伸縮性スリーブ5がすべての孔2aを覆う形で周設さ
れており、この伸縮性スリーブ5はパイプ2の径方向に
膨張収縮することができる。また、伸縮性スリーブ5の
外周には発泡ポリスチレン(発泡スチロール)製の緩衝
材6が取り付けられており、緩衝材6の表面には、図2
および図3に示すように、所定枚数(例えば、2枚)の
テープ状のプローブ7が円周方向に貼設されている。
That is, a rubber elastic sleeve 5 is provided in the vicinity of the end of the pipe 2 so as to cover all the holes 2a, and the elastic sleeve 5 expands and contracts in the radial direction of the pipe 2. Can be. A cushioning material 6 made of expanded polystyrene (styrene foam) is attached to the outer periphery of the elastic sleeve 5.
As shown in FIG. 3, a predetermined number (for example, two) of tape-shaped probes 7 are attached in the circumferential direction.

【0014】さらに、パッカー部3の各プローブ7に
は、図1に示すように、TDR(Time Domain Reflectomet
ry)法による計測手段10が同軸ケーブル9を介して接
続されている。
Further, as shown in FIG. 1, a TDR (Time Domain Reflectomet
The measuring means 10 by the ry) method is connected via the coaxial cable 9.

【0015】岩盤の含水量測定装置1は以上のような構
成を有しているので、これを用いて岩盤の含水量を調べ
る際には、図1に示すように、まず、対象となる岩盤1
3をボーリングしてボーリング孔15を穿つ。勿論、す
でにボーリング孔15が形成されている場合はボーリン
グする必要はない。
Since the rock moisture content measuring device 1 has the above-described configuration, when examining the moisture content of the rock using this device, first, as shown in FIG. 1
3 is bored and a boring hole 15 is drilled. Of course, when the boring hole 15 is already formed, it is not necessary to perform boring.

【0016】次に、このボーリング孔15に岩盤の含水
量測定装置1のパッカー部3を所定の深度まで挿通した
後、ボーリング孔15の孔壁にプローブ7を圧着する。
それには、パイプ2の後端にコンプレッサー(またはポ
ンプ)等を接続し、パイプ2内に圧縮空気(または水)
を送り込む。すると、その圧縮空気(または水)はパイ
プ2の孔2aを通って伸縮性スリーブ5内に供給される
ため、その空気圧(または水圧)によって伸縮性スリー
ブ5がパイプ2の径方向に膨張し、ボーリング孔15の
孔壁に当接する。そして、すべてのプローブ7がボーリ
ング孔15の孔壁に圧着される適度な空気圧(または水
圧)に達したところで、圧縮空気(または水)の供給を
停止する。
Next, after the packer portion 3 of the apparatus 1 for measuring the water content of the bedrock is inserted into the borehole 15 to a predetermined depth, the probe 7 is pressed against the hole wall of the borehole 15.
To do so, connect a compressor (or pump) to the rear end of the pipe 2 and put compressed air (or water) inside the pipe 2.
Send. Then, since the compressed air (or water) is supplied into the elastic sleeve 5 through the hole 2a of the pipe 2, the elastic sleeve 5 expands in the radial direction of the pipe 2 by the air pressure (or water pressure), It contacts the hole wall of the boring hole 15. Then, when all the probes 7 reach an appropriate air pressure (or water pressure) to be pressed against the hole wall of the boring hole 15, the supply of the compressed air (or water) is stopped.

【0017】この状態で、計測手段10を駆動して、各
プローブ7に電磁波を流し、パッカー部3近傍の岩盤1
3の比誘電率を測定する。
In this state, the measuring means 10 is driven to cause an electromagnetic wave to flow through each probe 7, and the rock 1 near the packer section 3 is moved.
The relative dielectric constant of No. 3 is measured.

【0018】次いで、こうして測定された比誘電率に基
づき、対象となる岩盤13の含水量を算出する。それに
は、対象となる岩盤13から得られた試料を用いて、含
水量を様々に変化させたときの比誘電率を測定して両者
の対応関係を予め求めておき、この対応関係に基づき、
計測手段10によって計測された比誘電率から含水量を
求める。
Next, the water content of the target bedrock 13 is calculated based on the relative dielectric constant thus measured. To do so, using a sample obtained from the target rock 13 and measuring the relative permittivity when the water content is variously changed, the correspondence between the two is determined in advance, and based on this correspondence,
The water content is determined from the relative permittivity measured by the measuring means 10.

【0019】こうして、対象となる岩盤13の含水量が
算出されたところで、伸縮性スリーブ5内の空気圧(ま
たは水圧)を解放して収縮させた後、パイプ2を引き抜
く。すると、パッカー部3がボーリング孔15から撤去
され、ここで含水量測定作業が終了する。
When the water content of the target rock 13 is calculated in this way, the air pressure (or water pressure) in the elastic sleeve 5 is released and contracted, and then the pipe 2 is pulled out. Then, the packer unit 3 is removed from the boring hole 15, and the operation of measuring the water content ends here.

【0020】このように、岩盤13の含水量を調べるに
は、岩盤の含水量測定装置1のパッカー部3をボーリン
グ孔15に挿通してプローブ7を圧着した後、比誘電率
を測定して含水量を算出するだけで済むので、測定の度
に岩石コアを採取する必要のある従来法と比べて含水量
測定が簡便になる。しかも、既存のボーリング孔15が
ある場合には、そのボーリング孔15を利用して測定を
行うことができるため、含水量測定が一層簡便なものと
なる。また、ボーリング孔15に対するパッカー部3の
挿通深さを変えることにより、岩盤13の任意の深度位
置における含水量を定量的に把握することが可能とな
る。さらに、パッカー部3をボーリング孔15に設置し
たまま任意の時間間隔で測定を行うことにより、岩盤1
3の含水量の経時変化を把握することもできる。その
上、岩盤の含水量測定装置1はその設置と撤去が容易で
あり、1台で反復して複数箇所の測定を行えるので、経
済性にも優れる。なお、プローブ7は円周方向に貼設さ
れているので、岩盤13表面からの深度方向に対する測
定分解能に優れる。
As described above, to check the water content of the rock 13, the packer 3 of the rock water content measuring device 1 is inserted into the boring hole 15, the probe 7 is pressed, and the relative permittivity is measured. Since it is only necessary to calculate the water content, the measurement of the water content is simpler than in the conventional method in which a rock core needs to be collected each time the measurement is performed. In addition, when there is an existing boring hole 15, the measurement can be performed using the boring hole 15, so that the water content measurement is further simplified. Further, by changing the insertion depth of the packer portion 3 into the boring hole 15, it is possible to quantitatively grasp the water content at an arbitrary depth position of the rock 13. Further, by performing measurements at arbitrary time intervals while the packer unit 3 is installed in the boring hole 15, the rock 1
The change with time of the water content of No. 3 can also be grasped. In addition, the rock water content measuring device 1 can be easily installed and removed, and can be repeatedly measured by a single device at a plurality of locations, so that it is economically excellent. Since the probe 7 is attached in the circumferential direction, the probe 7 has excellent measurement resolution in the depth direction from the surface of the rock 13.

【0021】次に、図4、図5に基づいて第2の実施形
態を説明する。
Next, a second embodiment will be described with reference to FIGS.

【0022】図4は本発明に係る岩盤の含水量測定装置
の第2の実施形態を示す詳細断面図、図5は図4に示す
岩盤の含水量測定装置のB−B線による拡大断面図であ
る。
FIG. 4 is a detailed sectional view showing a second embodiment of the rock water content measuring apparatus according to the present invention, and FIG. 5 is an enlarged cross-sectional view of the rock water content measuring apparatus shown in FIG. It is.

【0023】この岩盤の含水量測定装置1では、プロー
ブ7の貼設方向を円周方向から孔軸方向に変えたこと以
外は、上述した第1の実施形態と同様である。したがっ
て、第1の実施形態と同じく、含水量測定が簡便で、岩
盤13の任意の深度位置における含水量が定量的に把握
でき、岩盤13の含水量の経時変化が把握できることに
加えて、プローブ7が孔軸方向に貼設されているので、
円周方向のプローブ7と比べて測定値の信頼性が高いと
いう利点がある。
The apparatus 1 for measuring the water content of a rock mass is the same as the first embodiment described above, except that the direction in which the probe 7 is attached is changed from the circumferential direction to the hole axis direction. Therefore, similarly to the first embodiment, the water content measurement is simple, the water content at an arbitrary depth position of the rock 13 can be quantitatively grasped, and the change with time of the water content of the rock 13 can be grasped. Since 7 is stuck in the hole axis direction,
There is an advantage that the reliability of the measured value is higher than that of the probe 7 in the circumferential direction.

【0024】なお、上述した第1および第2の実施形態
においては、パイプ2に1個のパッカー部3を装着した
岩盤の含水量測定装置1について説明したが、パッカー
部3の個数は1個に限られるわけではなく、複数個のパ
ッカー部3をパイプ2に装着することもできる。
In the above-described first and second embodiments, the rock moisture content measuring apparatus 1 in which one packer unit 3 is mounted on the pipe 2 has been described, but the number of the packer units 3 is one. However, the present invention is not limited to this, and a plurality of packers 3 can be mounted on the pipe 2.

【0025】また、上述した第1および第2の実施形態
においては、TDR(Time Domain Reflectometry)法によ
る計測手段10を備えた岩盤の含水量測定装置1につい
て説明したが、計測手段10の種類はこれに限定され
ず、例えばFDR(Frequency Domain Reflectometry)法
やADR(Amplitude Domain Reflectometry)法による計
測手段10を採用しても構わない。
Further, in the first and second embodiments described above, the rock moisture content measuring apparatus 1 provided with the measuring means 10 by the TDR (Time Domain Reflectometry) method has been described. However, the present invention is not limited to this. For example, the measuring means 10 using the FDR (Frequency Domain Reflectometry) method or the ADR (Amplitude Domain Reflectometry) method may be employed.

【0026】さらに、上述した第1および第2の実施形
態においては、岩盤13の比誘電率から含水量を求める
ときに、別途求められた含水量と比誘電率との対応関係
に基づいて算出したが、含水量と比誘電率との間の一般
的な関係式(例えば、数1に示す3相アルファミキシン
グモデルによる関係式、数2に示すToppの関係式など)
が適用できる範囲内であれば、その関係式を用いて比誘
電率から含水量を求めることも可能である。
Further, in the first and second embodiments described above, when the water content is obtained from the relative permittivity of the bedrock 13, the water content is calculated based on the correspondence between the separately obtained water content and the relative permittivity. However, a general relational expression between the water content and the relative permittivity (for example, a relational expression based on a three-phase alpha mixing model shown in Expression 1, a Topp relational expression shown in Expression 2, etc.)
Is within the applicable range, the water content can be determined from the relative permittivity using the relational expression.

【数1】 ここで、Ka:比誘電率 θv:含水量 n:有効間隙率 Kair:空気の比誘電率(=1) Kwater:水の比誘電率(=81) Ksolid:岩石鉱物の比誘電率(=一般的に4〜7) α:形状係数(=経験的に0.5)(Equation 1) Where Ka: relative permittivity θv: water content n: effective porosity Kair: relative permittivity of air (= 1) Kwater: relative permittivity of water (= 81) Ksolid: relative permittivity of rock mineral (= general Α: Shape factor (= 0.5 empirically)

【数2】Ka=3.03+9.3θv+146θv2 -76.7θv3 ここで、Ka:比誘電率 θv:含水量Ka = 3.03 + 9.3θv + 146θv 2 -76.7θv 3 where Ka: relative permittivity θv: water content

【0027】[0027]

【発明の効果】以上説明したように本発明によれば、先
端が閉塞されたパイプ2を有し、このパイプ2の先端近
傍に孔2aを形成し、前記パイプ2の外周に前記孔2a
を覆う形で伸縮性スリーブ5を当該パイプ2の径方向に
膨張収縮自在に設け、この伸縮性スリーブ5の外周に緩
衝材6を設け、この緩衝材6の表面にプローブ7を貼設
し、このプローブ7に電磁波を流して岩盤13の比誘電
率を計測する計測手段10を設け、この計測手段10に
よって計測された比誘電率に基づいて前記岩盤13の含
水量を算出するようにして構成したので、岩盤13の含
水量を調べるには、パイプ2の先端をボーリング孔15
に挿通してプローブ7を圧着した後、比誘電率を測定し
て含水量を算出するだけで済むため、測定の度に岩石コ
アを採取する煩雑な作業が不要となることから、含水量
の測定を簡便化するとともに、同一箇所での含水量の経
時変化を見ることが可能な岩盤の含水量測定装置1を提
供することができる。その結果、岩盤13において飽和
度の算出、飽和・不飽和の判定、飽和・不飽和領域境界
の把握などが実施可能となる。
As described above, according to the present invention, the pipe 2 has a closed end, a hole 2a is formed near the end of the pipe 2, and the hole 2a is formed in the outer periphery of the pipe 2.
The elastic sleeve 5 is provided so as to expand and contract in the radial direction of the pipe 2 so as to cover the outer periphery of the pipe 2, the cushioning material 6 is provided on the outer periphery of the elastic sleeve 5, and the probe 7 is attached to the surface of the cushioning material 6 Measuring means 10 for measuring the relative permittivity of the rock 13 by flowing an electromagnetic wave to the probe 7 is provided, and the water content of the rock 13 is calculated based on the relative permittivity measured by the measuring means 10. Therefore, in order to check the water content of the rock 13, the tip of the pipe 2 was
After crimping the probe 7 by inserting it into the probe, it is only necessary to measure the relative permittivity and calculate the water content. Therefore, it is not necessary to perform a complicated operation of collecting a rock core every time the measurement is performed. It is possible to provide a rock mass water content measuring device 1 that simplifies the measurement and allows the change of the water content with time at the same location to be observed. As a result, calculation of saturation, determination of saturation / unsaturation, grasp of saturation / unsaturation region boundaries, etc. can be performed in the rock 13.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る岩盤の含水量測定装置の第1の実
施形態を示す断面図である。
FIG. 1 is a cross-sectional view showing a first embodiment of a rock water content measuring device according to the present invention.

【図2】図1に示す岩盤の含水量測定装置の要部を示す
詳細図である。
FIG. 2 is a detailed view showing a main part of the rock mass moisture content measuring device shown in FIG.

【図3】図2に示す岩盤の含水量測定装置のA−A線に
よる拡大断面図である。
FIG. 3 is an enlarged sectional view taken along line AA of the apparatus for measuring water content of rock shown in FIG.

【図4】本発明に係る岩盤の含水量測定装置の第2の実
施形態を示す詳細断面図である。
FIG. 4 is a detailed sectional view showing a second embodiment of the rock water content measuring device according to the present invention.

【図5】図4に示す岩盤の含水量測定装置のB−B線に
よる拡大断面図である。
FIG. 5 is an enlarged sectional view taken along line BB of the apparatus for measuring the water content of the rock shown in FIG.

【符号の説明】 1……岩盤の含水量測定装置 2……パイプ 2a……孔 5……伸縮性スリーブ 6……緩衝材 7……プローブ 10……計測手段 13……岩盤 15……ボーリング孔[Description of Signs] 1... Rock mass moisture content measuring device 2... Pipe 2a... Hole 5... Elastic sleeve 6... Hole

フロントページの続き (72)発明者 櫟原 昇 岐阜県土岐市泉町定林寺959−31 核燃 料サイクル開発機構 東濃地科学センタ ー内 (72)発明者 杉原 弘造 岐阜県土岐市泉町定林寺959−31 核燃 料サイクル開発機構 東濃地科学センタ ー内 (72)発明者 西田 薫 東京都豊島区池袋三丁目1番2号 株式 会社ダイヤコンサルタント内 (72)発明者 林 為人 東京都豊島区池袋三丁目1番2号 株式 会社ダイヤコンサルタント内 (72)発明者 安達 哲也 東京都新宿区西新宿一丁目25番1号 大 成建設株式会社内 (56)参考文献 特開 平10−90201(JP,A) 特開 平10−142169(JP,A) 特開 昭61−182569(JP,A) 特開 昭63−148157(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01N 22/00 - 22/04 G01N 27/00 - 27/24 G01V 3/00 - 3/40 G01N 27/72 - 27/90 Continued on the front page (72) Inventor Noboru Ichihara 959-31 Izumicho Jorinji Temple, Toki City, Gifu Prefecture Nuclear Fuel Cycle Development Organization Tono Geoscience Center (72) Inventor Hirozo Sugihara 959-31 Izumicho Jorinji Temple, Toki City, Gifu Prefecture Within the Tono Geoscience Center, Japan Nuclear Cycle Development Institute (72) Inventor Kaoru Nishida 1-2-1, Ikebukuro, Toshima-ku, Tokyo Inside the diamond consultant (72) Inventor Tameto Hayashi 3-chome Ikebukuro, Toshima-ku, Tokyo No. 1-2 Inside Dia Consultant Co., Ltd. (72) Inventor Tetsuya Adachi Inside Taisei Corporation, 25-1, Nishi-Shinjuku, Shinjuku-ku, Tokyo (56) References JP-A-10-90201 (JP, A) JP-A-10-142169 (JP, A) JP-A-61-182569 (JP, A) JP-A-63-148157 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01N 22/00-22/04 G01N 27/00-27/24 G01V 3/00-3/40 G01N 27/72-27/90

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 先端が閉塞されたパイプ(2)を有し、 このパイプの先端近傍に孔(2a)を形成し、 前記パイプの外周に前記孔を覆う形で伸縮性スリーブ
(5)を当該パイプの径方向に膨張収縮自在に設け、 この伸縮性スリーブの外周に緩衝材(6)を設け、 この緩衝材の表面にプローブ(7)を貼設し、 このプローブに電磁波を流して岩盤(13)の比誘電率
を計測する計測手段(10)を設け、 この計測手段によって計測された比誘電率に基づいて前
記岩盤の含水量を算出することを特徴とする岩盤の含水
量測定装置。
1. A pipe (2) having a closed end, a hole (2a) is formed near the end of the pipe, and an elastic sleeve (5) is formed on the outer periphery of the pipe so as to cover the hole. The pipe is provided so as to be able to expand and contract in the radial direction, a cushioning material (6) is provided on the outer periphery of the elastic sleeve, a probe (7) is attached to the surface of the cushioning material, and an electromagnetic wave is caused to flow through the probe to the bedrock. (13) A measuring device (10) for measuring a relative dielectric constant, wherein the water content of the rock is calculated based on the relative dielectric constant measured by the measuring device. .
JP19171199A 1999-07-06 1999-07-06 Bedrock moisture content measuring device Expired - Fee Related JP3263381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19171199A JP3263381B2 (en) 1999-07-06 1999-07-06 Bedrock moisture content measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19171199A JP3263381B2 (en) 1999-07-06 1999-07-06 Bedrock moisture content measuring device

Publications (2)

Publication Number Publication Date
JP2001021504A JP2001021504A (en) 2001-01-26
JP3263381B2 true JP3263381B2 (en) 2002-03-04

Family

ID=16279217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19171199A Expired - Fee Related JP3263381B2 (en) 1999-07-06 1999-07-06 Bedrock moisture content measuring device

Country Status (1)

Country Link
JP (1) JP3263381B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005227199A (en) * 2004-02-16 2005-08-25 Central Res Inst Of Electric Power Ind Method for measuring concentration of boron and measuring instrument therefor
JP4864580B2 (en) * 2006-07-21 2012-02-01 財団法人電力中央研究所 Ground monitoring method and apparatus
US10884128B2 (en) 2015-03-24 2021-01-05 Utilis Israel Ltd. System and method of underground water detection
US9945942B2 (en) * 2015-03-24 2018-04-17 Utilis Israel Ltd. System and method of underground water detection
KR101858146B1 (en) * 2017-09-28 2018-05-15 한국원자력환경공단 A experimental apparatus and experimental method for radionuclide migration prediction under unsaturated condition

Also Published As

Publication number Publication date
JP2001021504A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
US7176697B1 (en) Flexible probe for measuring moisture content in soil
Tarantino et al. Field measurement of suction, water content, and water permeability
CN107941595A (en) A kind of method that Simulations on Dynamic Damage in Brittle Rocks degree is measured under the conditions of confined pressure
CN106226810A (en) In a kind of hole, earthquake probe and country rock thereof detect device and detection method
CN202182830U (en) Sandy soil rotary embedding device
CN105318824A (en) A method for measuring loose circles of surrounding rocks based on distributed resistance strain gauges
JP3263381B2 (en) Bedrock moisture content measuring device
CN110530772A (en) Coal sample large compressive strain and carbon dioxide displacement coal bed methane one experimental rig
CN104729915B (en) A kind of city underground interval road is loose and the fine device and method detected that comes to nothing
JPH0647813B2 (en) Low water pressure control hydraulic test method
JPH05500248A (en) Device and method for measuring ground displacement characteristics on site
Houston et al. Interpretation and comparison of collapse measurement techniques
CN109798107A (en) A kind of formation lithology analysis device and analysis method
Iliesi et al. Use of cone penetration tests and cone penetration tests with porewater pressure measurement for difficult soils profiling
CN216208444U (en) Single-cavity high-pressure pre-drilling type lateral pressure instrument capable of simultaneously measuring water level and seepage
JP2002004257A (en) Permeability test method and device therefor
JPS6144166B2 (en)
CN108051849A (en) A kind of earthquake three-component dry hole probe and test method
Ladanyi Some unconventional field testing methods for earth materials
JPH039249B2 (en)
Clarke Consolidation characteristics of clays from self-boring pressuremeter tests
Abrah et al. Importance of anisotropy in dam foundation, estimated by in-situ dilatometer tests
Pusch The Stripa Buffer Mass Test instrumentation for temperature, moisture, and pressure measurements
CN113884426A (en) Single-cavity high-pressure pre-drilling type lateral pressure instrument capable of simultaneously measuring water level and seepage
JP2593044Y2 (en) Groundwater sampling pore pressure gauge

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011113

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370