JP4232545B2 - High-strength hot-rolled steel sheet and its manufacturing method - Google Patents

High-strength hot-rolled steel sheet and its manufacturing method Download PDF

Info

Publication number
JP4232545B2
JP4232545B2 JP2003166816A JP2003166816A JP4232545B2 JP 4232545 B2 JP4232545 B2 JP 4232545B2 JP 2003166816 A JP2003166816 A JP 2003166816A JP 2003166816 A JP2003166816 A JP 2003166816A JP 4232545 B2 JP4232545 B2 JP 4232545B2
Authority
JP
Japan
Prior art keywords
less
strength
steel sheet
rolled steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003166816A
Other languages
Japanese (ja)
Other versions
JP2005002406A (en
Inventor
規雄 今井
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2003166816A priority Critical patent/JP4232545B2/en
Publication of JP2005002406A publication Critical patent/JP2005002406A/en
Application granted granted Critical
Publication of JP4232545B2 publication Critical patent/JP4232545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車足廻り部品などに使用され、その薄肉軽量化に寄与する高強度熱延鋼板とその製造方法に関する。本発明にかかる熱延鋼板は、特に溶接性にも優れており、ホイールリムなど溶接後に成形されるような部品には最適である。
【0002】
【従来の技術】
連続熱間圧延によって製造されるいわゆる熱延鋼板は、比較的安価な構造用材料として自動車をはじめとする各種の産業機器に広く使用されている。特に燃費低減に大きく寄与する自動車の足廻り部品への高強度熱延鋼板の適用が増加しつつある。最近はさらなる環境問題意識の高まりにより、熱延鋼板の高強度化の要望はさらに強くなり、超高強度である880MPa以上の引張強さを有する熱延鋼板の要望がでてきた。
【0003】
880MPa以上の引張強さを有する熱延鋼板としては、例えば特許文献1、特許文献2に、低温巻取りにて変態強化を利用する方法が開示されている。しかしながら、この方法では、熱間圧延後の冷却過程で鋼板の平坦が不芳になるという問題と、降伏強度/引張強度である降伏比(YR)が低いという問題があった。降伏比が低いと例えばホイール・リムでの縁石衝突強度等で高強度化の十分な効果が得られない。さらにホイール・リムなど溶接後成形される部品に適用する場合、溶接熱影響部 (HAZ 部) の軟化が生じるため、その後の成形性に問題があった。
【0004】
一方、析出強化を主体に高強度化する方法は、例えば特許文献3、特許文献4、特許文献5が開示されている。いずれもTiを主体とした析出強化を図ったものであるが、引張強さで880MPa以上の高強度は得られていない。
【0005】
【特許文献1】
特開2000-282175 号公報
【特許文献2】
特開平11-193443 号公報
【特許文献3】
特開平8-199298号公報
【特許文献4】
特開平6-200351号公報
【特許文献5】
特開平6-228708号公報
【0006】
【発明が解決しようとする課題】
本発明は、前述したような従来技術の問題点を解決し、圧延直角方向の引張強さで880MPa以上を有し、かつ降伏比0.80以上を有する高強度鋼板とその製造方法を提供することである。
【0007】
【課題を解決するための手段】
熱間圧延後の巻取温度に鋼板の強度 (引張強度および降伏強度) は大きく影響を受ける。高い降伏強度、すなわち降伏比を得るために、巻取温度を上げ析出強化を利用して高強度化を図っても、TiやNbなどのみでは、ある程度以上含有させると効果が飽和するため引張強さで880MPa以上の高強度が得られないという問題があった。
【0008】
一方、高強度化のため変態強化を利用すべく低温巻取りを行えば、前述の平坦不良やマルテンサイトの増大などによる降伏比の低下という問題が生じる。
本発明者らは、かかる課題実現のため鋭意実験の結果、引張強度で880MPa以上の高強度鋼と降伏比0.80以上を得るにはVの多量の添加が有効であることを見出した。その際、Tiの複合添加と適切なMn添加が必要であることを見出し、本発明を完成させたのである。
【0009】
すなわち、本発明者らは、Vによる析出強化を効果的に発揮させるためには、Ti (またはTi、Nb) との複合添加を行い、かつ巻取温度を上げることにより、Vの析出を促進させることが有効であり、さらにMn量で変態点を最適化することが有効であることを知った。さらに、これらの効果を十分に発揮させるためには、(a) 粗圧延前のスラブ加熱の段階での炭化物の未固溶を防止すること (後述する(1) 式参照) 、(b)V、Ti、NbとCの含有量をバランスさせること (後述する(2) 式参照) が必要で、そして更に所望の強度を得るためには後述する(3) 式の関係を満足すればよいことが分かった。
【0010】
かくして、本発明によれば、降伏比0.80以上で引張強度で880MPa以上の高強度熱延鋼板が得られる。
本発明においてVとTiまたはNbとを複合添加することによりVの析出が促進される理由は明らかでないが、VとTi、Nbが炭化物として複合析出するか、または、Ti、Nbの炭化物がVの析出核として働き、Vの析出が促進されるものと考えられる。
【0011】
なお、本発明で炭化物には微量の窒素を含有する炭窒化物をも含む。
本発明はこのような知見に基づき完成した高強度鋼板およびその製造方法であって、本発明を要約すると以下の通りである。
【0012】
(1)質量%で、C:0.04 〜0.20%、Si:0.001%〜1.1 %、Mn:0.8%超、3.0 %以下、Al:0.001〜0.5 %、V:0.1%超、0.5 %以下、Ti:0.05 %以上、0.15%未満、Nb:0〜0.05%、かつ、下記(1) 式〜(3) 式を満たし、残部Feおよび不可避不純物からなる鋼組成を有し、880MPa以上の強度と降伏比0.8 以上を有する高強度熱延鋼板。
【0013】
(Ti/48+Nb/93) ×C/12≦ 3.5×10-5・・・・・・・・・ (1)
0.4 ≦ (V/51+Ti/48+Nb/93)/(C/12) ≦ 2.0・・・・・ (2)
V+Ti ×2+Nb×1.4+C×2+Si×0.2+Mn×0.1 ≧0.70・・ (3)
【0014】
(2)マルテンサイトおよび残留オーステナイトのそれぞれの体積率が5%未満であり、かつ合計の体積率が5%未満である上記(1) に記載の高強度熱延鋼板。
【0015】
(3)前記鋼組成が、更に、質量%で、Ca:0.0002 〜0.010 %、Zr:0.01 〜0.10%、および希土類元素:0.002〜0.10%のうちの1種または2種以上を含む上記(1) または(2) に記載の高強度熱延鋼板。
【0016】
(4)前記鋼組成が、更に、質量%で、Cr:0.05 〜1.0 %およびMo:0.05 〜1.0 %のうちの1種または2種を含む上記(1) 〜(3) のいずれかに記載の高強度熱延鋼板。
【0017】
(5)前記鋼組成が、更に、質量%で、Cu:0.05 〜1.0 %およびNi:0.05 〜1.0 %のうちの1種または2種を含む上記(1) 〜(4) のいずれかに記載の高強度熱延鋼板。
【0018】
(6)上記(1) 〜(5) のいずれかに記載の鋼組成を有する鋼片を1100℃以上に加熱してから、粗圧延を実施し、仕上温度750 ℃以上で仕上圧延を行って熱間圧延を終了後、平均冷却速度10℃/s以上で冷却し、400 〜650 ℃で巻取ることを特徴とする高強度熱延鋼板の製造方法。
【0019】
【発明の実施の形態】
次に、本発明の実施の形態についてさらに具体的に詳細に説明する。なお、本明細書における鋼組成を示す「%」は、特にことわりがない限り、「質量%」である。
【0020】
(1)鋼片の鋼組成(化学組成)
C:Cは、鋼板の強度を高めるに好ましい成分であり、0.04%以上含有する。その含有量が0.20%を超えると加工性の低下、およびマルテンサイトや残留オーステナイトの増大による降伏比の低下を招く上に、溶接性の劣化を招く。従ってCの含有量は0.20%以下と定めた。なお、高強度化の観点からは、0.06%超が好ましく、より好ましくは0.09%超である。また、0.17%以下が好ましく、0.16%以下がより好ましい。
【0021】
Si:Siは、固溶強化を通して鋼板の強度、延性を向上させる好ましい成分である。この作用を得るには0.001 %以上の含有が必要である。一方、1.1 %を超えて含有させても上記作用による効果が飽和する上に、溶接性の劣化を招く。したがって、Si含有量は1.1 %以下と定めた。化成処理性と、島状スケール疵による表面性状の劣化を抑制するという観点からは、好ましくは1.0 %以下、より好ましくは0.6 %以下、さらに好ましくは0.1 %以下である。
【0022】
Mn:Mnは鋼板の強度確保に必要な元素である。変態点を下げ、V炭化物の析出状態を制御するのに寄与するとともに、固溶強化元素として高強度化にも寄与する。Mnの含有量が0.8 %以下の場合には前述の作用が得られず、一方、3.0 %を超えて含有させてもその効果が飽和するだけでなく、加工性の低下と、マルテンサイトや残留オーステナイトの増大による降伏比の低下を招く。このためMnの含有量は0.8 %超、3.0 %以下と定めた。なお、下限は、高強度化の観点からは、好ましくは1.0 %超、より好ましくは1.5 %超である。上限は、加工性の観点から、好ましくは2.6 %、より好ましくは2.4 %である。
【0023】
V:Vは本発明で最も重要な元素である。Vは、比較的低い温度で、フェライト地に炭化物 (主に炭化物、微量の窒素を含有する炭窒化物の場合もある) として微細に析出し、高強度化に寄与する。その効果は0.1 %以下では得られない。一方、0.5 %を超えて含有させるとその効果は飽和するだけでなく、Vの炭化物が粗大となり強度と延性が低下する。従ってVの含有量をV:0.1%超、0.5 %以下と定めた。なお、好ましくは0.15%超であり、より好ましくは0.2 %超である。化成処理性の向上の観点からは、0.3 %以下が好ましい。
【0024】
Ti:Tiは本発明で重要な元素である。フェライト地に炭化物として析出し、溶接性を劣化させることなく、高強度化に寄与するとともに、Vとの複合析出あるいはVの析出核として、Vの析出を促進し高強度化に大きく寄与する。その効果は0.05%未満では得られない。一方、Ti:0.15 %以上含有させてもその効果は飽和する上、炭化物が粗大となり強度と延性が低下する。従って、Ti:0.05 %超、0.15%未満と定めた。好ましくは0.07%以上、0.15%未満である。
【0025】
Nb:Nbは必要に応じて添加され、フェライトの細粒化および析出強化で鋼板の高強度化に有効な元素である。またV、Tiとの複合析出またはVの析出核としてのTi、Nb炭化物として、Vの析出を促進する作用をも有する。その効果を得るためには0.005 %以上とすることが好ましく、0.01%以上がより好ましい。一方、Nb:0.05 %を超えて含有させてもその効果は飽和してしまうため経済的でない。従ってNb:0〜0.05%と定めた。
【0026】
更に、上述のV、Ti、Nbの作用を発揮させて所望の特性を得るためには、さらに下記(1) 式〜(3) 式を満足する鋼組成とする。
Ti、Nbが(1) 式の上限を超えると、粗圧延前のスラブ加熱の段階で、未固溶炭化物が増大して、未固溶炭化物の粗大化や固溶炭素の減少による微細析出物の減少によって強度ばかりでなく、降伏比と延性が低下する。
【0027】
V、Ti、Nbの含有量が(2) 式の下限未満では、Vの析出が不十分となり強度が低下する。一方、上限を超えるとVが粗大になり強度と延性が低下する。
(3) 式の下限未満では880MPa以上の強度が得られない。
【0028】
一層、強度と延性を向上させるという観点からは、(2) 式の上限は1.5 以下が好ましく、1.0 以下がより好ましい。(2) 式の下限は0.45が好ましく、0.5 がより好ましい。また、(1) 式の上限は、3.2 ×10-5以下が好ましく、3.0 ×10-5以下がより好ましい。(1) 式下限は1.6 ×10-5以上が好ましく、2.0 ×10-5以上がより好ましい。(3) 式は0.75以上が好ましく、0.80以上がより好ましい。
【0029】
(Ti/48+Nb/93) ×C/12≦ 3.5×10-5 ・・・・・・・・・(1)
0.4 ≦ (V/51+Ti/48+Nb/93)/(C/12) ≦ 2.0 ・・・・・(2)
V+Ti ×2+Nb×1.4+C×2+Si×0.2+Mn×0.1 ≧0.70・・・(3)
【0030】
Al:Alは脱酸を目的として添加する。0.001 %未満ではこの効果が得られない。一方、Alはフェライト体積率の増加を助け加工性をより一層向上させる効果を有するので、この効果を得るために0.5 %まで含有させても良い。そのため、含有量は0.001 %〜0.5 %とした。単に脱酸を目的とする場合には、0.10%を超えるとその効果が飽和して経済性を損ねるので、その含有量は0.10%以下とすることが好ましい。
【0031】
本発明にかかる熱延鋼板には以下に示す理由により、Ca、Zr、希土類元素、Cr、Mo、Cu、Niの1種または2種以上を必要に応じ含有させることができる。
Ca、Zr、および希土類元素:これらの成分は何れも介在物の形状を調整して加工性を改善する作用を有する。しかしその含有量がそれぞれCa:0.0002 %未満、Zr:0.01 %未満および希土類元素:0.002%未満では前記作用による所望の効果が得られず、一方、それぞれCa:0.010%、Zr:0.10 %および希土類元素:0.10 %を超えて含有させると、逆に鋼中の介在物が多くなりすぎて加工性が劣化するので、それぞれの含有量を、Ca:0.0002 〜0.010 %、Zr:0.01〜0.10%、希土類元素:0.002〜0.10%と定めた。
【0032】
Cr、Mo:Cr、Moは少なくとも1種含有され、固溶強化により鋼板の高強度化を図る効果を有する。しかしその効果はそれぞれ0.05%未満では得られず、一方、それぞれ1.0 %を超えて含有させるとその効果が飽和するため経済的でない。従ってそれぞれの含有量を0.05〜1.0 %と定めた。化成処理性の観点から各々0.5 %以下が好ましく、合計で0.5 %以下がより好ましい。
【0033】
Cu、Ni:Cu、Niは少なくとも1種含有され耐食性向上の作用を有する。しかしその効果はそれぞれ0.05%未満では得られず、一方、それぞれ1.0 %を超えて含有させるとその効果が飽和するため経済的でない。従ってそれぞれの含有量を0.05〜1.0 %と定めた。より一層の経済性を考慮する場合には、それぞれ0.5 %未満が好ましい。
【0034】
鋼中に不可避的に混入する「不可避不純物」としてはP、S、Nが挙げられるが、P、S、Nについては出来ればその含有量を以下のように規制するのが望ましい。
【0035】
P:Pは、粒界偏析による脆化だけでなく、溶接性を劣化させるため、その含有量は0.05%以下にすることが望ましい。それらの特性をより一層向上させようとの観点からは 0.03 %以下とすることが好ましい。
【0036】
S:Sは硫化物系介在物を形成して加工性を低下させる不純物元素であるため、その含有量は0.05%以下に抑えるのが望ましいが、一段と優れた加工性を確保しようとの観点からは 0.008%以下とすることが好ましく、より好ましくは0.003 %以下である。
【0037】
N:Nは加工性を低下させる不純物元素であり、その含有量は0.01%未満に抑えることが望ましい。好ましくは、0.006 %以下であり、より好ましくは、0.005 %未満である。
【0038】
本発明にかかる熱延鋼板の組織は、フェライトを体積率で50%以上含むことが好ましく、60%以上がより好ましく、70%以上がさらに好ましい。マルテンサイトや残留オーステナイトは、降伏比を低下させる上、HAZ 部での軟化を招いて溶接後の成形性を劣化させるため、その合計の体積率を5%未満とし、それぞれの体積率を5%未満とする。合計体積率は、好ましくは3%未満であり、より好ましくは0%である。マルテンサイトと残留オーステナイトのそれぞれの体積率は、好ましくは3%未満であり、より好ましくは0%である。このようにマルテンサイトおよび残留オーステナイトの組織を低減する手段としては熱間圧延終了後の冷却速度および巻取り温度を調整することが考えられる。
【0039】
本発明における鋼組成は、残部はFeであり、不可避的不純物として前述の窒素(N) や、P、Sの他にSn、B、Pb、Asなどがあり、それらは合計0.1 %まではその存在は許容される。
【0040】
以上の鋼組成を有する鋼は、例えば転炉、電気炉等により溶製される。鋼種も、リムド鋼、キャップド鋼、セミキルド鋼またはキルド鋼のいずれでもよい。さらに、鋼片の製造は、造塊−分塊圧延あるいは連続鋳造のいずれの手段によってもよい。これらの点について本発明は特に制限されない。
【0041】
このようにして用意された鋼片は、以下に述べる条件によって熱間圧延、巻取りを行う。
(2)熱延鋼板の製造条件
熱間圧延は、加熱温度1100℃以上、仕上温度は750 ℃以上で実施される。1100℃以上の加熱は、TiやVの析出物等を固溶させ、その後の再析出にて鋼板の強化に寄与させるためである。このとき加熱炉に装入するスラブは高温の熱片であってもよいし、室温まで冷やした冷片であってもよい。
【0042】
鋼片の加熱後、粗圧延を実施し、次いで仕上圧延が施される。粗圧延は特に制限されないが、仕上圧延の仕上温度は750 ℃以上とする。仕上温度が750 ℃未満では、バンド組織の過度の生成や、変態して生じたフェライトヘの過度の歪の導入で、加工性が劣化する。
【0043】
粗圧延後、仕上温度やコイル内での温度の均一化を図る目的で、粗バーを保温または加熱するのも有効な手段である。このときの加熱または保持は、租バーヒータや保温カバーで実施しても良いし、粗バーをコイル状に巻き取って、炉に装入しても構わない。なお、エッジなど一部のみ加熱するのも、有効な手段である。また仕上圧延開始前に前後の粗バーを接合して連続的に通板するのも何ら問題ない。
【0044】
仕上圧延後、冷却してコイル状に巻取られる。仕上圧延後から巻取りまでの冷却速度はTiやVの析出物の粗大化を抑えるために平均で10℃/s 以上とする。15℃/s 以上が好ましく、20℃/s 以上がより好ましい。上限は特に規定しないが、平均冷却速度が150 ℃/s を超えると平坦不良が発生しやすい。
【0045】
本発明においては、巻取温度が特に重要で、引張強さで880MPa以上、降伏比0.80以上を確保するには400 〜650 ℃とする。400 ℃未満では析出強化の働きが不十分であり、マルテンサイトや残留オーステナイトも増大する。また650 ℃を超えると析出物の粗大化が生じ、引張強さや降伏比の低下が生じる。析出物をより微細化し一層高強度化するためには巻取温度は600 ℃以下が好ましく、580 ℃以下がより好ましい。マルテンサイトや残留オーステナイトの体積率を低減してより一層降伏比を上昇させるためには、巻取温度は450 ℃以上が好ましく、より好ましくは500 ℃以上である。
【0046】
なお、炭化物の粗大化を抑制し、強度と延性をより一層向上させるという観点からは、650 ℃から巻取までの時間は15秒以内が好ましく、より好ましくは10秒以内である。
【0047】
鋼板の引張強さおよび降伏比は、自動車足回り部品の衝撃強度へ大きく影響する。したがって、引張強さは930MPa以上、さらには980MPa以上であるのが好ましい。また、降伏比は0.85以上が好ましい。
【0048】
製造された熱延鋼板については、通常はスキンパス圧延による形状矯正や酸洗によるスケールの除去が行われ、表面には防錆油が塗布される。
なお、本発明鋼板に溶融亜鉛めっき、合金化溶融亜鉛めっき、電気めっき等の表面処理を施す場合には、更に優れた表面性状、延性を備えた表面処理鋼板が得られる。
【0049】
本発明にかかる熱延鋼板は、通常は、板厚さが6〜1.2mm 、場合により3.2mm 以下であるが、特に制限されることはない。
次に、実施例によって本発明の作用効果をさらに具体的に説明する。
【0050】
【実施例】
表1に示す化学組成の鋼を、実験圧延機を使用して、表2に示す条件で加熱し、粗圧延および仕上圧延相当の圧延を行って板厚2.6mm の鋼板とし、さらに冷却した後に巻取りシミュレーションを行った。
【0051】
このときの巻取りシミュレーションは、巻取り温度まで冷却した鋼板を、巻き取り温度に保持した電気炉に装入し、その温度で30分保持した後、20℃/hr で冷却することにより行い、巻取り後の温度履歴を模擬した。得られた鋼板からJIS 5号引張試験片を採取し、引張試験を行った。また、溶接幅100mm でDCバット溶接した試験片を作製し、内側半径を板厚と等しくした 180°曲げの曲げ試験を溶接部について行って割れの有無を調査した。
【0052】
これらの結果を表2に示した。
表2から明らかなように、本発明により製造された鋼板は、何れも、880MPa以上の引張強度と、降伏比 (=降伏強度/引張強度) が0.80以上の降伏強度を示すとともに、強度−延性バランス (TS×El) が14000MPa−%以上と延性にも優れる熱延鋼板となっている。
【0053】
一方、成分または製造方法が本発明を外れる試番12〜20では、降伏比、引張強度、または強度−延性バランス (TS×El) のいずれかが劣る。
【0054】
【表1】

Figure 0004232545
【0055】
【表2】
Figure 0004232545
【0056】
【発明の効果】
本発明にかかる熱延鋼板は、880MPa以上の引張強度と降伏比0.80以上を有し、耐久性が問題となる自動車足廻り部品等に適用でき、特に耐縁石衝突強度が問題となるホイール・リムに最適である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a high-strength hot-rolled steel sheet that is used for automobile undercarriage parts and the like and contributes to the reduction in thickness and weight and a manufacturing method thereof. The hot-rolled steel sheet according to the present invention is particularly excellent in weldability, and is optimal for parts such as wheel rims that are formed after welding.
[0002]
[Prior art]
A so-called hot-rolled steel sheet manufactured by continuous hot rolling is widely used as a relatively inexpensive structural material in various industrial equipment including automobiles. In particular, the application of high-strength hot-rolled steel sheets to automobile undercarriage parts, which greatly contributes to reducing fuel consumption, is increasing. Recently, due to further awareness of environmental issues, the demand for higher strength of hot-rolled steel sheets has become stronger, and there has been a demand for hot-rolled steel sheets with a super-high strength of 880 MPa or more.
[0003]
As a hot-rolled steel sheet having a tensile strength of 880 MPa or more, for example, Patent Document 1 and Patent Document 2 disclose a method using transformation strengthening by low-temperature winding. However, this method has a problem that the flatness of the steel sheet becomes unsatisfactory in the cooling process after hot rolling and a problem that the yield ratio (YR) which is the yield strength / tensile strength is low. When the yield ratio is low, a sufficient effect of increasing the strength cannot be obtained due to, for example, curb impact strength at the wheel / rim. In addition, when applied to parts molded after welding, such as wheels and rims, the weld heat affected zone (HAZ zone) is softened, resulting in problems with subsequent molding.
[0004]
On the other hand, Patent Document 3, Patent Document 4, and Patent Document 5 are disclosed as methods for increasing the strength mainly by precipitation strengthening. All of them are precipitation strengthening mainly composed of Ti, but a high strength of 880 MPa or more in tensile strength has not been obtained.
[0005]
[Patent Document 1]
JP 2000-282175 A [Patent Document 2]
Japanese Patent Laid-Open No. 11-193443 [Patent Document 3]
Japanese Patent Laid-Open No. 8-199298 [Patent Document 4]
JP-A-62-200351 [Patent Document 5]
JP-A-6-228708 [0006]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and provides a high-strength steel sheet having a tensile strength in the direction perpendicular to rolling of 880 MPa or more and a yield ratio of 0.80 or more, and a method for producing the same. is there.
[0007]
[Means for Solving the Problems]
The steel sheet strength (tensile strength and yield strength) is greatly affected by the coiling temperature after hot rolling. To obtain high yield strength, that is, yield ratio, increase the coiling temperature and use precipitation strengthening to increase the strength. There was a problem that a high strength of 880 MPa or more could not be obtained.
[0008]
On the other hand, if low-temperature winding is performed in order to use transformation strengthening for increasing the strength, there arises a problem that the yield ratio is lowered due to the above-mentioned flatness failure or an increase in martensite.
As a result of diligent experiments, the present inventors have found that the addition of a large amount of V is effective for obtaining a high strength steel having a tensile strength of 880 MPa or more and a yield ratio of 0.80 or more. At that time, the present inventors completed the present invention by discovering that composite addition of Ti and appropriate addition of Mn are necessary.
[0009]
That is, the present inventors promoted the precipitation of V by making a composite addition with Ti (or Ti, Nb) and raising the coiling temperature in order to effectively exert the precipitation strengthening by V. It was found that it is effective to optimize the transformation point with the amount of Mn. Furthermore, in order to fully exhibit these effects, (a) preventing undissolved carbides in the slab heating stage before rough rolling (see equation (1) described later), (b) V It is necessary to balance the contents of Ti, Nb and C (see formula (2) described later), and in order to obtain the desired strength, the relationship of formula (3) described later should be satisfied. I understood.
[0010]
Thus, according to the present invention, a high strength hot rolled steel sheet having a yield ratio of 0.80 or more and a tensile strength of 880 MPa or more can be obtained.
The reason why the precipitation of V is promoted by the combined addition of V and Ti or Nb in the present invention is not clear, but V, Ti and Nb are precipitated together as carbides, or the carbides of Ti and Nb are V. It is considered that the precipitation nuclei are promoted and the precipitation of V is promoted.
[0011]
In the present invention, the carbide includes carbonitride containing a very small amount of nitrogen.
The present invention is a high-strength steel sheet completed based on such knowledge and a method for producing the same, and the present invention is summarized as follows.
[0012]
(1) By mass%, C: 0.04 to 0.20%, Si: 0.001% to 1.1%, Mn: more than 0.8%, 3.0% or less, Al: 0.001 to 0.5%, V: more than 0.1%, 0.5% or less, Ti : 0.05% or more, less than 0.15%, Nb: 0 to 0.05%, satisfies the following formulas (1) to (3), has a steel composition consisting of the remainder Fe and inevitable impurities, and has a strength and yield of 880 MPa or more. A high-strength hot-rolled steel sheet having a ratio of 0.8 or more.
[0013]
(Ti / 48 + Nb / 93) × C / 12 ≦ 3.5 × 10 -5 ... (1)
0.4 ≤ (V / 51 + Ti / 48 + Nb / 93) / (C / 12) ≤ 2.0 ... (2)
V + Ti × 2 + Nb × 1.4 + C × 2 + Si × 0.2 + Mn × 0.1 ≧ 0.70 ・ ・ (3)
[0014]
(2) The high-strength hot-rolled steel sheet according to (1) above, wherein the martensite and retained austenite each have a volume ratio of less than 5% and the total volume ratio is less than 5%.
[0015]
(3) The steel composition further includes one or more of Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and rare earth element: 0.002 to 0.10% by mass% (1 ) Or a high-strength hot-rolled steel sheet according to (2).
[0016]
(4) The steel composition further includes one or two of Cr: 0.05 to 1.0% and Mo: 0.05 to 1.0% by mass%, according to any one of the above (1) to (3) High strength hot rolled steel sheet.
[0017]
(5) The steel composition further includes one or two of Cu: 0.05 to 1.0% and Ni: 0.05 to 1.0% by mass%, according to any one of (1) to (4) above. High strength hot rolled steel sheet.
[0018]
(6) After heating the steel slab having the steel composition according to any one of (1) to (5) above to 1100 ° C or higher, rough rolling is performed, and finish rolling is performed at a finishing temperature of 750 ° C or higher. A method for producing a high-strength hot-rolled steel sheet, characterized by cooling at an average cooling rate of 10 ° C / s or more after the hot rolling and winding at 400 to 650 ° C.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail. In this specification, “%” indicating the steel composition is “% by mass” unless otherwise specified.
[0020]
(1) Steel composition (chemical composition) of billet
C: C is a preferable component for increasing the strength of the steel sheet, and is contained by 0.04% or more. When the content exceeds 0.20%, workability is deteriorated and yield ratio is lowered due to increase of martensite and retained austenite, and weldability is also deteriorated. Therefore, the C content is set to 0.20% or less. From the viewpoint of increasing the strength, it is preferably over 0.06%, more preferably over 0.09%. Moreover, 0.17% or less is preferable and 0.16% or less is more preferable.
[0021]
Si: Si is a preferred component that improves the strength and ductility of the steel sheet through solid solution strengthening. In order to obtain this effect, a content of 0.001% or more is necessary. On the other hand, if the content exceeds 1.1%, the effect of the above action is saturated and weldability is deteriorated. Therefore, the Si content is set to 1.1% or less. From the viewpoint of controlling the chemical conversion treatment and the deterioration of the surface properties due to island scale flaws, it is preferably 1.0% or less, more preferably 0.6% or less, and even more preferably 0.1% or less.
[0022]
Mn: Mn is an element necessary for securing the strength of the steel sheet. It lowers the transformation point, contributes to controlling the precipitation state of V carbide, and contributes to increasing the strength as a solid solution strengthening element. If the Mn content is 0.8% or less, the above-mentioned action cannot be obtained. On the other hand, if the content exceeds 3.0%, not only the effect is saturated, but also the workability decreases, martensite and residual The yield ratio is lowered due to the increase of austenite. Therefore, the Mn content is determined to be more than 0.8% and not more than 3.0%. The lower limit is preferably more than 1.0%, more preferably more than 1.5% from the viewpoint of increasing the strength. The upper limit is preferably 2.6%, more preferably 2.4% from the viewpoint of workability.
[0023]
V: V is the most important element in the present invention. V precipitates finely as carbides (mainly carbides and carbonitrides containing a small amount of nitrogen) in the ferrite ground at a relatively low temperature, and contributes to high strength. The effect cannot be obtained below 0.1%. On the other hand, when the content exceeds 0.5%, not only the effect is saturated, but also the carbide of V becomes coarse and the strength and ductility are lowered. Therefore, the V content is determined to be V: more than 0.1% and 0.5% or less. Note that it is preferably more than 0.15%, more preferably more than 0.2%. From the viewpoint of improving chemical conversion properties, it is preferably 0.3% or less.
[0024]
Ti: Ti is an important element in the present invention. It precipitates as a carbide on ferrite ground and contributes to high strength without deteriorating weldability, and promotes precipitation of V as a composite precipitation with V or V precipitation nucleus and greatly contributes to high strength. The effect cannot be obtained at less than 0.05%. On the other hand, even if Ti: 0.15% or more is contained, the effect is saturated, and the carbides become coarse and the strength and ductility are lowered. Therefore, Ti is defined as more than 0.05% and less than 0.15%. Preferably it is 0.07% or more and less than 0.15%.
[0025]
Nb: Nb is added as necessary, and is an element effective for increasing the strength of a steel sheet by making ferrite finer and strengthening precipitation. Moreover, it has the effect | action which accelerates | stimulates precipitation of V as a composite precipitation with V and Ti, or Ti and Nb carbide | carbonized_material as a precipitation nucleus of V. In order to obtain the effect, the content is preferably 0.005% or more, and more preferably 0.01% or more. On the other hand, even if Nb is contained in excess of 0.05%, the effect is saturated, which is not economical. Therefore, Nb was set to 0 to 0.05%.
[0026]
Furthermore, in order to obtain the desired characteristics by exerting the above-described effects of V, Ti, and Nb, the steel composition further satisfies the following formulas (1) to (3).
When Ti and Nb exceed the upper limit of equation (1), the amount of undissolved carbide increases at the stage of slab heating before rough rolling, resulting in fine precipitates due to coarsening of undissolved carbide and reduction of dissolved carbon. Not only does the strength decrease, but the yield ratio and ductility decrease.
[0027]
If the content of V, Ti and Nb is less than the lower limit of the formula (2), the precipitation of V becomes insufficient and the strength is lowered. On the other hand, if the upper limit is exceeded, V becomes coarse and the strength and ductility are reduced.
If it is less than the lower limit of the formula (3), a strength of 880 MPa or more cannot be obtained.
[0028]
From the viewpoint of further improving the strength and ductility, the upper limit of the formula (2) is preferably 1.5 or less, and more preferably 1.0 or less. The lower limit of the formula (2) is preferably 0.45, more preferably 0.5. Further, the upper limit of the formula (1) is preferably 3.2 × 10 −5 or less, and more preferably 3.0 × 10 −5 or less. (1) The lower limit of the formula is preferably 1.6 × 10 −5 or more, and more preferably 2.0 × 10 −5 or more. (3) The formula is preferably 0.75 or more, more preferably 0.80 or more.
[0029]
(Ti / 48 + Nb / 93) x C / 12 ≤ 3.5 x 10 -5 ... (1)
0.4 ≦ (V / 51 + Ti / 48 + Nb / 93) / (C / 12) ≦ 2.0 ・ ・ ・ ・ ・ (2)
V + Ti × 2 + Nb × 1.4 + C × 2 + Si × 0.2 + Mn × 0.1 ≧ 0.70 ... (3)
[0030]
Al: Al is added for the purpose of deoxidation. If it is less than 0.001%, this effect cannot be obtained. On the other hand, Al has an effect of helping increase the volume fraction of ferrite and further improving the workability, so that it may be contained up to 0.5% in order to obtain this effect. Therefore, the content is determined to be 0.001% to 0.5%. When the purpose is simply deoxidation, if the content exceeds 0.10%, the effect is saturated and the economic efficiency is impaired. Therefore, the content is preferably 0.10% or less.
[0031]
The hot-rolled steel sheet according to the present invention can contain one or more of Ca, Zr, rare earth elements, Cr, Mo, Cu, and Ni as necessary for the following reasons.
Ca, Zr, and rare earth elements: These components all have an effect of improving the workability by adjusting the shape of inclusions. However, if the content is less than Ca: 0.0002%, Zr: 0.01% and rare earth element: less than 0.002%, the desired effect due to the above action cannot be obtained, while Ca: 0.010%, Zr: 0.10% and rare earth, respectively. Element: If the content exceeds 0.10%, the inclusions in the steel are excessively increased and the workability deteriorates, so the respective contents are Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, Rare earth elements: determined to be 0.002 to 0.10%.
[0032]
Cr, Mo: Cr, Mo is contained at least one, and has the effect of increasing the strength of the steel sheet by solid solution strengthening. However, the effect cannot be obtained if the content is less than 0.05%. On the other hand, if the content exceeds 1.0%, the effect is saturated, which is not economical. Therefore, the respective contents are set to 0.05 to 1.0%. From the viewpoint of chemical conversion treatment, each is preferably 0.5% or less, and more preferably 0.5% or less in total.
[0033]
Cu, Ni: Cu, Ni is contained and has an effect of improving corrosion resistance. However, the effect cannot be obtained if the content is less than 0.05%. On the other hand, if the content exceeds 1.0%, the effect is saturated, which is not economical. Therefore, the respective contents are set to 0.05 to 1.0%. When considering further economic efficiency, each is preferably less than 0.5%.
[0034]
Examples of “inevitable impurities” that are inevitably mixed in steel include P, S, and N. If possible, the content of P, S, and N is preferably regulated as follows.
[0035]
P: P not only embrittles due to grain boundary segregation but also deteriorates weldability, so its content is preferably 0.05% or less. From the viewpoint of further improving these properties, it is preferably 0.03% or less.
[0036]
S: S is an impurity element that forms sulfide-based inclusions and lowers workability. Therefore, the content is preferably 0.05% or less. However, from the viewpoint of further improving workability. Is preferably 0.008% or less, and more preferably 0.003% or less.
[0037]
N: N is an impurity element that lowers workability, and its content is preferably suppressed to less than 0.01%. Preferably, it is 0.006% or less, More preferably, it is less than 0.005%.
[0038]
The structure of the hot rolled steel sheet according to the present invention preferably contains 50% or more of ferrite by volume, more preferably 60% or more, and even more preferably 70% or more. Martensite and retained austenite lower the yield ratio and cause softening at the HAZ part, which deteriorates the formability after welding. Therefore, the total volume ratio is less than 5%, and each volume ratio is 5%. Less than. The total volume ratio is preferably less than 3%, more preferably 0%. Each volume ratio of martensite and retained austenite is preferably less than 3%, more preferably 0%. Thus, as a means for reducing the structure of martensite and retained austenite, it is conceivable to adjust the cooling rate and the coiling temperature after the hot rolling is completed.
[0039]
In the steel composition of the present invention, the balance is Fe, and the inevitable impurities include the above-mentioned nitrogen (N), P, and S, Sn, B, Pb, As, etc., and up to a total of 0.1% Existence is allowed.
[0040]
Steel having the above steel composition is melted by, for example, a converter, an electric furnace, or the like. The steel type may also be any of rimmed steel, capped steel, semi-killed steel or killed steel. Further, the steel slab may be manufactured by any means of ingot-splitting rolling or continuous casting. With respect to these points, the present invention is not particularly limited.
[0041]
The steel slab thus prepared is hot-rolled and rolled up under the conditions described below.
(2) Manufacturing conditions for hot-rolled steel sheet Hot rolling is performed at a heating temperature of 1100 ° C or higher and a finishing temperature of 750 ° C or higher. This is because heating at 1100 ° C. or higher causes Ti and V precipitates or the like to form a solid solution and contributes to strengthening of the steel sheet by subsequent reprecipitation. At this time, the slab charged into the heating furnace may be a hot hot piece or a cold piece cooled to room temperature.
[0042]
After heating the steel slab, rough rolling is performed, and then finish rolling is performed. Although rough rolling is not particularly limited, the finishing temperature of finish rolling should be 750 ° C or higher. If the finishing temperature is less than 750 ° C., the workability deteriorates due to the excessive formation of band structure or the introduction of excessive strain to the ferrite generated by transformation.
[0043]
It is also an effective means to keep or heat the rough bar for the purpose of making the finishing temperature and the temperature uniform in the coil after rough rolling. The heating or holding at this time may be carried out with a bar heater or a heat insulating cover, or the coarse bar may be wound into a coil and charged into the furnace. Note that it is also an effective means to heat only a part such as an edge. Moreover, there is no problem if the rough bars before and after the finish rolling are joined and continuously passed.
[0044]
After finish rolling, it is cooled and wound into a coil. The cooling rate from finish rolling to winding is, on average, 10 ° C./s or more in order to suppress coarsening of Ti and V precipitates. 15 ° C./s or more is preferable, and 20 ° C./s or more is more preferable. There is no particular upper limit, but flatness is likely to occur when the average cooling rate exceeds 150 ° C / s.
[0045]
In the present invention, the coiling temperature is particularly important. To ensure a tensile strength of 880 MPa or more and a yield ratio of 0.80 or more, the temperature is set to 400 to 650 ° C. Below 400 ° C, precipitation strengthening is insufficient and martensite and retained austenite also increase. On the other hand, when the temperature exceeds 650 ° C., the precipitates become coarse and the tensile strength and yield ratio decrease. In order to further refine the precipitate and further increase the strength, the coiling temperature is preferably 600 ° C. or lower, more preferably 580 ° C. or lower. In order to further reduce the volume ratio of martensite and retained austenite and further increase the yield ratio, the coiling temperature is preferably 450 ° C. or higher, more preferably 500 ° C. or higher.
[0046]
From the viewpoint of suppressing the coarsening of the carbide and further improving the strength and ductility, the time from 650 ° C. to winding is preferably within 15 seconds, more preferably within 10 seconds.
[0047]
The tensile strength and yield ratio of a steel plate greatly influence the impact strength of automobile undercarriage parts. Therefore, the tensile strength is preferably 930 MPa or more, more preferably 980 MPa or more. The yield ratio is preferably 0.85 or more.
[0048]
The manufactured hot-rolled steel sheet is usually subjected to shape correction by skin pass rolling or scale removal by pickling, and rust preventive oil is applied to the surface.
In addition, when surface treatment, such as hot dip galvanization, alloying hot dip galvanization, electroplating, etc. is given to this invention steel plate, the surface treatment steel plate provided with the further outstanding surface property and ductility is obtained.
[0049]
The hot-rolled steel sheet according to the present invention usually has a plate thickness of 6 to 1.2 mm, and in some cases 3.2 mm or less, but is not particularly limited.
Next, the effects of the present invention will be described more specifically with reference to examples.
[0050]
【Example】
After heating the steel having the chemical composition shown in Table 1 under the conditions shown in Table 2 using an experimental rolling mill, performing rolling equivalent to rough rolling and finish rolling to form a steel plate having a thickness of 2.6 mm, and further cooling A winding simulation was performed.
[0051]
The winding simulation at this time was performed by charging the steel sheet cooled to the winding temperature into an electric furnace maintained at the winding temperature, holding at that temperature for 30 minutes, and then cooling at 20 ° C / hr, The temperature history after winding was simulated. A JIS No. 5 tensile test piece was collected from the obtained steel sheet and subjected to a tensile test. In addition, a specimen was prepared by DC butt welding with a welding width of 100 mm, and a bending test of 180 ° bending with the inner radius equal to the plate thickness was performed on the welded portion to investigate the presence of cracks.
[0052]
These results are shown in Table 2.
As is apparent from Table 2, all the steel sheets produced according to the present invention exhibit a tensile strength of 880 MPa or more, a yield ratio (= yield strength / tensile strength) of 0.80 or more, and strength-ductility. It is a hot-rolled steel sheet with excellent balance (TS x El) of 14000MPa-% or more.
[0053]
On the other hand, in the trial numbers 12 to 20 in which the component or the manufacturing method deviates from the present invention, any one of the yield ratio, the tensile strength, or the strength-ductility balance (TS × El) is inferior.
[0054]
[Table 1]
Figure 0004232545
[0055]
[Table 2]
Figure 0004232545
[0056]
【The invention's effect】
The hot-rolled steel sheet according to the present invention has a tensile strength of 880 MPa or more and a yield ratio of 0.80 or more, and can be applied to an automobile undercarriage part or the like in which durability is a problem. Ideal for.

Claims (6)

質量%で、C:0.04 〜0.20%、Si:0.001〜1.1 %、Mn:0.8%超、3.0 %以下、Al:0.001〜0.5 %、V:0.1%超、0.5 %以下、Ti:0.05 %以上、0.15%未満、Nb:0〜0.05%、かつ、下記(1) 式〜(3) 式を満たし、残部Feおよび不可避不純物からなる鋼組成を有し、880MPa以上の強度と降伏比0.80以上を有する高強度熱延鋼板。
(Ti/48+Nb/93) ×C/12≦ 3.5×10-5 ・・・・・・・・ (1)
0.4 ≦ (V/51+Ti/48+Nb/93)/(C/12) ≦ 2.0・・・・・ (2)
V+Ti ×2+Nb×1.4+C×2+Si×0.2+Mn×0.1 ≧0.70・・ (3)
In mass%, C: 0.04 to 0.20%, Si: 0.001 to 1.1%, Mn: more than 0.8%, 3.0% or less, Al: 0.001 to 0.5%, V: more than 0.1%, 0.5% or less, Ti: 0.05% or more Less than 0.15%, Nb: 0 to 0.05%, satisfying the following formulas (1) to (3), having a steel composition consisting of the remaining Fe and inevitable impurities, with a strength of 880 MPa or more and a yield ratio of 0.80 or more High strength hot rolled steel sheet.
(Ti / 48 + Nb / 93) × C / 12 ≦ 3.5 × 10 -5 ... (1)
0.4 ≤ (V / 51 + Ti / 48 + Nb / 93) / (C / 12) ≤ 2.0 ... (2)
V + Ti × 2 + Nb × 1.4 + C × 2 + Si × 0.2 + Mn × 0.1 ≧ 0.70 ・ ・ (3)
マルテンサイトおよび残留オーステナイトのそれぞれの体積率が5%未満であり、かつ合計の体積率が5%未満である請求項1に記載の高強度熱延鋼板。The high-strength hot-rolled steel sheet according to claim 1, wherein each of the martensite and retained austenite has a volume ratio of less than 5% and a total volume ratio of less than 5%. 前記鋼組成が、更に、質量%で、Ca:0.0002 〜0.010 %、Zr:0.01 〜0.10%、および希土類元素:0.002〜0.10%のうちの1種または2種以上を含む請求項1または2に記載の高強度熱延鋼板。The steel composition further includes one or more of Ca: 0.0002 to 0.010%, Zr: 0.01 to 0.10%, and rare earth elements: 0.002 to 0.10% in mass%. The high-strength hot-rolled steel sheet described. 前記鋼組成が、更に、質量%で、Cr:0.05 〜1.0 %およびMo:0.05 〜1.0 %のうちの1種または2種を含む請求項1〜3のいずれかに記載の高強度熱延鋼板。The high-strength hot-rolled steel sheet according to any one of claims 1 to 3, wherein the steel composition further includes one or two of Cr: 0.05 to 1.0% and Mo: 0.05 to 1.0% by mass%. . 前記鋼組成が、更に、質量%で、Cu:0.05 〜1.0 %およびNi:0.05 〜1.0 %のうちの1種または2種を含む請求項1〜4のいずれかに記載の高強度熱延鋼板。The high-strength hot-rolled steel sheet according to any one of claims 1 to 4, wherein the steel composition further includes one or two of Cu: 0.05 to 1.0% and Ni: 0.05 to 1.0% in mass%. . 請求項1〜5のいずれかに記載の鋼組成を有する鋼片を1100℃以上に加熱してから、粗圧延を実施し、仕上温度750 ℃以上で仕上圧延を行って熱間圧延を終了後、平均冷却速度10℃/s以上で冷却し、400 〜650 ℃で巻取ることを特徴とする高強度熱延鋼板の製造方法。After the steel slab having the steel composition according to any one of claims 1 to 5 is heated to 1100 ° C or higher, rough rolling is performed, finish rolling is performed at a finishing temperature of 750 ° C or higher, and hot rolling is finished. The method for producing a high-strength hot-rolled steel sheet, which is cooled at an average cooling rate of 10 ° C./s or more and wound at 400 to 650 ° C.
JP2003166816A 2003-06-11 2003-06-11 High-strength hot-rolled steel sheet and its manufacturing method Expired - Fee Related JP4232545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003166816A JP4232545B2 (en) 2003-06-11 2003-06-11 High-strength hot-rolled steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003166816A JP4232545B2 (en) 2003-06-11 2003-06-11 High-strength hot-rolled steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2005002406A JP2005002406A (en) 2005-01-06
JP4232545B2 true JP4232545B2 (en) 2009-03-04

Family

ID=34092857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003166816A Expired - Fee Related JP4232545B2 (en) 2003-06-11 2003-06-11 High-strength hot-rolled steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP4232545B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076394B2 (en) * 2005-08-05 2012-11-21 Jfeスチール株式会社 High-tensile steel plate and manufacturing method thereof
ES2528427T3 (en) * 2005-08-05 2015-02-09 Jfe Steel Corporation High tensile steel sheet and procedure to produce it
JP4710558B2 (en) * 2005-11-15 2011-06-29 Jfeスチール株式会社 High-tensile steel plate with excellent workability and method for producing the same
JP4840269B2 (en) * 2007-06-15 2011-12-21 住友金属工業株式会社 High-strength steel sheet and its manufacturing method
JP5326403B2 (en) * 2007-07-31 2013-10-30 Jfeスチール株式会社 High strength steel plate
WO2009115108A1 (en) * 2008-03-19 2009-09-24 Ruprecht-Karls-Universität Heidelberg A method and an apparatus for localization of single dye molecules in the fluorescent microscopy
JP5423191B2 (en) 2009-07-10 2014-02-19 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
JP5041084B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5041083B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5915435B2 (en) * 2011-07-28 2016-05-11 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in stretch flangeability and manufacturing method thereof
MX349893B (en) * 2011-08-09 2017-08-18 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet having high yield ratio and excellent low-temperature impact energy absorption and haz softening resistance and method for producing same.
JP5321672B2 (en) * 2011-11-08 2013-10-23 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent material uniformity and manufacturing method thereof
JP5321671B2 (en) * 2011-11-08 2013-10-23 Jfeスチール株式会社 High-tensile hot-rolled steel sheet with excellent strength and workability uniformity and method for producing the same
ES2640315T3 (en) * 2012-01-13 2017-11-02 Nippon Steel & Sumitomo Metal Corporation Hot rolled steel sheet and manufacturing method for it
CN104053806B (en) * 2012-01-26 2018-07-10 杰富意钢铁株式会社 High tensile hot rolled steel sheet and its manufacturing method
JP5578288B2 (en) 2012-01-31 2014-08-27 Jfeスチール株式会社 Hot-rolled steel sheet for generator rim and manufacturing method thereof
KR101546140B1 (en) * 2013-08-30 2015-08-20 현대제철 주식회사 Method of manufacturing steel
CN105441814A (en) * 2014-09-26 2016-03-30 宝山钢铁股份有限公司 Hot rolled Q&P steel with 700MPa grade yield strength and ultralow yield ratio and manufacturing method thereof
CN115595498B (en) * 2022-05-25 2023-06-16 昆明理工大学 Ti-Zr-Mo composite microalloyed 800 MPa-level high-strength high-toughness steel plate and preparation method thereof

Also Published As

Publication number Publication date
JP2005002406A (en) 2005-01-06

Similar Documents

Publication Publication Date Title
JP4581665B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP6787466B2 (en) Manufacturing method of high-strength galvanized steel sheet and manufacturing method of high-strength member
JP4232545B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP6893560B2 (en) Tempered martensitic steel with low yield ratio and excellent uniform elongation and its manufacturing method
JP4306202B2 (en) High tensile cold-rolled steel sheet and method for producing the same
JP6043801B2 (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP4464811B2 (en) Manufacturing method of high strength and low specific gravity steel sheet with excellent ductility
JP4235077B2 (en) High strength low specific gravity steel plate for automobile and its manufacturing method
US20090314395A1 (en) High strength thin-gauge steel sheet excellent in elongation and hole expandability and method of production of same
EP1969148B1 (en) Method for manufacturing high strength steel strips with superior formability and excellent coatability
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
EP2792762B1 (en) High-yield-ratio high-strength cold-rolled steel sheet and method for producing same
WO2012002566A1 (en) High-strength steel sheet with excellent processability and process for producing same
WO2013161090A1 (en) High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same
KR20120033008A (en) High strength cold-rolled dual phase steel sheet for automobile with excellent formability and method of manufacturing the cold-rolled multi phase steel sheet
JP5305149B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
CN113403543B (en) 60 kilogram-grade low-silicon easy-welding cold-rolled low-alloy high-strength steel plate and production method thereof
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP4214840B2 (en) High-strength steel sheet and manufacturing method thereof
JPH09118952A (en) Member made of high-strength hot rolled steel sheet having lower yield ratio
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
KR20230061413A (en) High-strength low-carbon martensitic steel with high hole expandability and manufacturing method thereof
JP4507364B2 (en) Manufacturing method of high strength hot-rolled steel sheet
JP3943754B2 (en) High-strength cold-rolled steel sheet and high-strength surface-treated steel sheet that have excellent fatigue properties of the base metal and formability after welding, and are difficult to soften the heat affected zone.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4232545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees